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The high-energy polynomial and logarithmic behavior of renormalized Feynman amplitudes, involving 
subtractions, is derived with total generality when some or all of the external momentum components of 
the graphs in question become large in Euclidean space nonexceptionally. This is achieved by explicitly 
carrying out the subtractions of renormalization as dictated, for example, by the improved Dyson-Salam 
renormalization scheme directly in momentum-space. 

I. INTRODUCTION 

The high-energy polynomial and logarithmic behavior 
of renormalized Feynman amplitudes A, involving sub
tractions, is derived with total generality when all or, 
more generally, some of the external momentum com
ponents of the graphs in question become large in 
Euclidean space nonexceptionally. This is obtained by 
explicitly carrying out the subtractions of renormaliza
tion as dictated by the improved Dyson-Salam renor
malization schemel directly in momentum space in ob
taining the final expression for the renormalized Feyn
man integrand R or by the scheme of Bogoliubov
Parasiuk-Hepp-Zimmermann as given by Zimmer
mann. 2 The latter form is more suitable for this par
ticular problem but is equivalent to the former one for 
the final expression for R. 

In our investigations, the earlier work of Weinberg3 

and Fink,4 which is also formulated in momentum 
space, and the ingenious method of determining the 
asymptotic behavior of special types of functions, of 
the typP of Feynman integrals, is used as a basis, The 
analysiS follows by a straightforward dimensional 
analysis of the subtracted out Feynman integrand fol
lowed by a detailed analysis of the so-called maximiz
ing subspaces in determining the behavior of A in the 
Weinberg-Fink sense. 

Section II is restricted to the simpler problem of the 
polynomial behavior of A and is then extended to the 
polynomial and logarithmic behavior of A in Sec. III 
where the maximizing subs paces are analyzed, An ex
ample is then worked out in detail, A general account 
of dimensional analYSis of subtracted out Feynman inte
grands will be given in a subsequent work. The degree 
of divergence will be chosen to coincide with the dimen
sionality of a graph throughout the analysis. 

II. POLYNOMIAL BEHAVIOR 

Let the 4n integration variables of the renormalized 
Feynman integrand R and the 4n' components of the ex
ternal independent momenta be combined to denote the 
components of a 4(n +n ')-vector in a Euclidean space 
R 4(n+n'), Let 

(1 ) 

such that any of the integration variables and any of the 
external independent momentum components may be 
written as a linear combination of the components of P. 

Let G, corresponding to the unrenormalized Feynman 
integrand Ie, denote the proper and connected graph 
associated with the renormalized amplitude A. For each 
line l in G carrying a momentum Q" we introduce a 
vector V, inR4(n+n') such that V,'P=Q, for each com
ponent Q/ of the corresponding 4-vector. We denote 
the collection of all the V / vec tors collectively by 
V, .... Let 1 be any chosen subspace of R4<n+n') asso
ciated with the 4n integration variables and let E be 
chosen to be anv space in R 4 (n+n') such that 1 and E are 
disjoint and R 4<n+n') =1 + E. [For definite and precise 
definition of A(I), which we adopt, we refer the reader 
to Ref. 3.] 

Let U be the set of all subspaces r;;, R 4(n+n') such that 
for any 5 E U, A(I)5 =5r (r;;, E) in reference to the re
normalized, subtracted out1

• 2 Feynman amplitude 

A (LI171 .00 17m + 0 o. + Lr17r' 0 0 17 m +.0 0 Lm17m + C), (2) 

5 r ={L1>, •. ,Lr }, O<r-<:m, 0<111 <:4n', (3) 

where Ll , . , , ,L" are independent vectors in E s pan
ning the space 5r and C is a vector confined to a finite 
region W in E, The parameters 171,172' •• 0 are real and 
positive and taken to be independently large. 

In reference to a space 5' ~R4(n+n'), denote the asymp
totic coefficient of the bound of R, in general, bya(5'). 
All the maximizing subspaces (E U) for the bound of A, 
with respect to the parameter 17r in (2), are, by defini
tion, included in the following subclass C of subs paces 
in U, 

Definition of elas s C: Let {5', 5'1, ... } be the subclass 
C r;;, U of all, arbitrarily labeled, subs paces C;O RHn+n') 

such that for any 5',5" E C, a(5') + dim5' = a(5'1) 
+dim5", andforany5EU, a(S)+ dim5 <:a(5') + dim5', 
and if the equality holds, then SEC. 

We now introduce the subclass Co of C from which 
the polynomial bound of A is readily determined 
(Theorem 1), 

Definition of class Co: Let {5',S", 0 0 • } be the given 
subclass T r;;, U of all, arbitrarily labeled, subspaces 
and G', G", 0 • 0 diagrams (r;;, G) associated with them, 
i. e" with all their V's not orthogonal to 5',S", 0 •• , 

respectively, such that the following are true. Let G[ 
be anyone of the connected components of G', Let Gio 
be the subdiagram of G; corresponding to all those lines 
in G; forming closed loops, which means G;/G10 is 
either singly connecting (i. e., involving no closed 
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loops) or empty (if Gio is not empty in the latter 
case), and dim5' - dimS y = 4L:i L(Gjo), where the sum 
corresponds to the connected parts of G'. L(G) de
notes the number of independent loops of G. [At least 
some of the V's, associated with the external variables, 
in each proper and connected components of Gio must 
be not orthogonal to 5'. 1 The subdiagrams G' and G'i 
were arbitrary, Now let U M denote the set of all the 
above diagrams G', G", ". respecting the just-men
tioned properties, UM = {G', G ", ' 0 ,}, Let U! c;: UM con
sist of all those diagrams in U M maximizing the expres
sion {d(G '), d(G "), 0 "}. I. e" if 5 E T, associated with 
it a diagram G, then d(G) O:;d(G') with G E UM , G' E U~l 
and if the equality holds then G E U~. Denote the class 
{5', ••• } of all the spaces with which are associated the 
diagrams in U~{ by Co. 

A straightforward dimensional analysis of R with the 
subtractions given in the Zimmermann form establishes 
the following result, 

Theorem 1: The asymptotic coefficient of 
A (L j11j " " " 11m + " .. + L y11y •• " 11m + ... + C) associated with 
11y is given by 

(4) 

where 5' is any space in Co and d(5') denotes the dimen
sionality d(G') of diagram G' associated with 5', and 
CoC:C. 

The simplicity of Theorem 1 is that although the 
theory involves subtractions, one may restrict oneself 
to a subclass Co, in determining the polynomial bound 
of A, in such a way "as if" the theory involves no 
subtractions. 

In the next section the class C will be determined and 
we finally obtain not only the polynomial but also the 
logarithmic behavior of the renormalized amplitudes A, 
When the theory involves subtractions the set C - Co is, 
in general, not empty and the knowledge of the larger 
class C is essential. It is thus important to note that 
the class C cannot be obtained without carrying out the 
subtractions of renormalization, 

III. POLYNOMIAL AND LOGARITHMIC BEHAVIOR 

In this section we complete our study in determining 
both the polynomial and logarithmic behavior of the re
normalized, subtracted out, Feynman amplitudes. To 
do this we must first determine the larger class C of 
the maximizing subspaces for the bound of A relative 
to 5 y (;,; E) in Eqs. (1) and (2). 

As a preparation for Theorem 2 we need the following 
construction. 

Let 5 be a given space in U. Suppose G' is a sub
diagram of G such that I G / G• is independent of X, the 
parameter associated with 5 in R. Here all the momen
ta, internal and/or external, in those lines in G with 
their V's not orthogonal to 5 have been scaled by X. 
Let Gj, ••• , G~ be the connected components of G'. Let 
Gil>'" , GiN; denote the proper and connected parts of 
Gi, i=1, ... ,n and Gio"'U::jG1i. By definition, with Gi 
~ Gio, Ci is constructed out of Cij, ... , GiN. with the 
latter connected with one another by singly' connecting 
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lines, i. e., GiGio involves no closed loops, Let all 
the V's associated with the external variables, in G[/Gio 
be not orthogonal to 5 for all i = 1, ... ,n. 

In general, let Giij , Gin> ••. be any proper and con
nected (if *.0) subdiagrams contained in a G[i such that 
Gijjn Gi i2 =.0, "', pairwise and 

d(Gi i1 ) ~ 0, d(G1n) ~ 0, ••• , (5) 

with j E [1, .•. ,N i], i E [1, ... , n J, and such that all the 
V's associated with the internal variables in the lines 
of Gi ij , Gin, '" are orthogonal to 5. 

Let 

L(5) '" 2:;' L(Gi/GL1~) Cin ~ ... ), 
1 ~j:$cNi 
t ~i ~n 

(6) 

where the sum in (6) is restricted only to those terms 
with all the V's, associated with the internal variables 
in C;/C1ij U Cin U, 0 0 not orthogonal to 5. 

Finally the space 5 and diagram C' are so chosen that 
the following are true: 

(a) Let C' be any other diagram, similarly constructed 
as C', with corresponding subdiagrams Gli"'" Gi ik ,··· 
as defined above for C', with G' formally obtained from 
C' by adding or deleting a set of lines and vertices to 
C' with 

L(5) = 2:;' L(G;/Ciil U Gjn U '00), (7) 

in reference to 5 Similarly defined as in (6). Then G' is 
such that 

d(G') sd(G'L (8) 

(b) For any proper and connected diagrams 

G B~} ._1 Gi ,Q ) • ,G B' ~! ,-,I Gj ,. ~ " 
s=1 s s' =1 s' 

(9) 

(if any), where 

{Ci "", Ci },.", {Cj , .. ,' Gj~}, ". 
I k I ~ 

(10) 

are any disjoint subsets of the set 

{Ci" .. , C~}, 

with 

G B r, G B' =.0, pairwise (11) 

and 

I(UBGB)U\\~;Gi)//dlG'i' is independent of 11, (12) 

where U BG B is the union of the proper and connected 
diagrams as in (9) corresponding to the subsets appear
ing in (10) and ,J;:IG: corresponds to the subdiagrams 
not appearing in the subsets in (10), then 

2:; d(G B ) + t, d(C[) "" t d(Ci) =d(G'), (13) 
B i.1 i.1 

for any possible subsets as in (10) with any possible 
proper and connected diagrams as in (9), (11), and (13). 
Equation (13) is also true for all diagrams C', .. " as 
C', as given in (a) with the extreme left-hand side of 
(13) replaced by corresponding expressions for Gn's de
fined in reference to C' and the sum ::;; d(G;l replaced by 
a corresponding expression '2.: d(Gfj with the right-hand 
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side of (13) unchanged. The conditions (a) and (b) are not 
difficult to follow (see below Theorem 2 and the con
struction of class C to be given below). 

Then a straightforward dimensional analysis by using 
the subtractions in the Zimmermann form yields the 
following. 

Theorem 2: 

degr~R csd(G')- 4L(S), (14) 

with L(S) as defined in (6). The equality in (14) may hold 
if one of the following is true for each G lj C Gi, with 
G' = U 7=IGi, in each of the following cases: 

Case 1: All the V's, associated with the internal vari
ables, in a Gi/G li1 U Gin U 0"' are not orthogonal to s. 

(0 d(Gi i ) /'0, Gi il , Gin, • o. =p. 
(ii) d(GL);O 0, Giit> Gin, 00, =p, and some of the V's 

associated with the external variables in GL are not 
orthogonal to S. 

(iii) d(Gii ) < 0, Gin, Gin, '00,* p, and at least some of 
the V's associated with external variables in each 
G Ll> G I i2' 0 •• are not orthogonal to 5 [the latter may be 
formally relaxed for those Gi ik with d(G lik ) '" ° from 
dimensional analysis alone]. 

(iv) d(GiJ);:O· 0, Gin, G!i2' • , • '* p, at least some of the 
V's associated with the external variables in each 
Gin, GL2' '00 are not orthogonal to 5 [unless formally 
for d(Gi ik ) '" 0] and some of the V's associated with the 
external variables to G!/GiJ1 U Gin U 0 ., are not ortho
gonal to S. 

Case 2: All the V's, associated with the internal vari
ables, in a Gij are orthogonal to s. 

(v) d(GL) > ° and some of the V's associated with the 
external variables in Gij are not orthogonal to S. 

If all the V's, associated with the internal variables, 
in G' are orthogonal to 5, then the above (i}-(v) criteria 
collapse to the last one [(v)] for all G:/s in G' with L(S) 
:= 0. 

Condition (8) just guarantees the fact that the degree 
of R, with respect to X, cannot be increased further be
yond the right-hand side value of Eq. (14) by a rear
rangement of subdiagrams. Condition (13) guarantees the 
fact that we cannot find Taylor operations corresponding 
to the subdiagrams GB , ••• ,GB,,'" in (9) and (11) which 
may further increase degr,R beyond the bound given in 
Eq. (14). The latter derives from the following. Let 

YCB:=IeBIG' .. lG' l'G' li. o .(l-TG ... ) 
"J ' kl ' mn'-J r.J 

be an expression corresponding to a subset in (10) such 
that 

degr"(l - T c' . .l Y C' . . 'S d(G/i ) - 4Lij(SO), 
1) t J 

where LiJ(SO) of. ° is the number of independent loops in 
Gi/Gii1 U Gin U "', for example. Then we have explicit
ly for GB::J UsGi with d(GB)? 0, 

s 
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Summing over all such GB's in (9) leads to the condition 
stated in Eq. (13). On the other hand, (13) and (8) are 
equivalent if, for example, the diagram (UBGB)U (U7:IG{) 
coincides with G'. [Condition (13) also guarantees the 
fact that we cannot find a space S E U, as 5 given above, 
which may increase the expression degr):R + 4L(S), be
yond the value d(G'), where X is the parameter asso
ciated with 5 and L(S) is defined similarly to L(S). } 

Theorem 2, together with the definition of class Co 
and the formal definition of class C gives us the infor
mation needed to readily construct the class C. 

A. Construction of class C 

Let {S;,S!" .,.} be the collection of all, arbitrary 
labeled, spaces belonging to class Co with GI, Gt, .•• 
diagrams associated with them with their V's not ortho
gonal to Sj, S{" ' • " respectively. By definition each 
connected part of Gj, for example, may be constructed 
out of proper and connected parts connected with one 
another by singly connecting lines. Let 

GjIO' G{20, .• 0 ,Gino, be the collection of all the proper 
and connected parts of Gj. (15) 

ForanyiE[l"o.,n}, let 

be the set of the empty and all proper subdiagrams 
<:;; Glio , respectively, such that 

d(g~k»O, j=2, ..• ,tf, 

(16) 

(17) 

for each l?th proper and connected part of g}. Consider 
the set 

(18) 

with 

(19) 

For each fixed set {it> . 0 0 ,in}, we define a 

generalized diagram: (G; I J.d U·,· u gi ), (20) 
I n 

by shrinking gi , .•. ,g7 in Gi to points and by replacing 
their corresporiding int~grands Ig! , ••• ,Ig~ , by 

Ii 'n 

respectively in I G" where the k(j)'s correspond to the 
1 

proper and connected components of g{J' Note that since 
Gfjo Ii GfkO = p, j of. k and gV~ Gfjo, all the elements in 
Ki i ... i in (18) are disjoint. 

1 2 n 

As a function of the external variables to g{., we in
] 

troduce a generalized vertex function defined by 

/g? '" n (- Tgi . )I~ .' (22) 
'j kU) 'jk(]) ijk(]) 

[In general, we may also allow any other permissible Tay-
lor operations between (- T g~ .) and Igi . in (22) [and 

• i k ( ]) I ikU) 

(21)} in defining/ct., but it is no loss of generality as 
given in (22) for tli~ foregoing analysis.] The generalized 
diagram (G{ I gil U ' •• U gl) is then determined from G{ 
by replaCing the subdiagrams gi , •.• ,gj in the latter, 
as a function of their external viriables,n by the corre
sponding fg), ••• ,fg? ' respectively, in the analytic ex-

n 
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pression for I Gj • In this notation, gll"" ,gi will be 
treated as vertices in (Gjlgll U ••• U gl.) and ;'ertex func
tions fg. , ••. ,jg~ , in their external variables. In partic
ular it is wortli'noting that, by definition, (G{ I ¢) = G[ and 
(G{ I GO if admissible, means just a vertex function as a 
func tion f Gj in the external variables of G;, 

Let S[I'oo/ be any space in U such that all the V's in 
Gt/gll U ' , , U gin are not orthogonal to Si l",/. and at 
least some of the V's in each of the proper and con
nected parts of g) , ' , . ,g~ , associated with their exter-

. t. [ nal variables, are not orthogonal to Si l,,,/. the latter 
may be formally relaxed for those proper and connected 
parts gf jk and d(gf .k) = 0, from dimensional analysis 
alone 1 with J 

dimSil'" j - dimS r ==4L(S; "./ ) • 1 n 

=4L(G;/glt U '" Ugi). 

By definition, we, arbitrarily, label the subspaces in 
correspondence with the labeling of the diagrams as
sociated with them. Accordingly the space S; • ., i is not 

1 b " ,,1. unique y la eled because, in general, one may formal-
ly generate differently labeled spaces Sil'''i., ••• by 
varying the number of lines in g/t , ... ,g1 with the cor-

t n 
responding V's, associated with the external variables, 
not orthogonal to 5il ... ; ,'" with 4L(S[ ... i ) _ n 1 n 

==4L(S/I"'i )==" •. Accordingly we will let Si ... ; de-
n 1 n 

note, "in general" for convenience, a class 01 all such 
subspaces with which are "associated" the generalized 
diagram (GIl g)1 U ' •• U gi) without introducing further 
notation. 

By definition, SII"'1 =S;' in our previous notation. In 
particular it is worth noting that if Gl were (totally) 
Singly connecting (which may be defined as a tree) then 
tf == 1. 

Let t' = t;x •.. xt~ and relabel the set 
{SI, ... ,SII"'/n' .•• } for all 1 <: il <: t;' ... ,1 <: in <: t~ by 
{SI' Sf, .•• ,S;.}. Repeat the above construction corre
sponding to the spaces S{" S\", ••• in Co. 

From definition of the classes Co, C and Theorem 2 
we readily see that the classes Co and C are given by 

C o=={S{,Sl', ••• }, 

C {S ' 5"5" S"····} ::::: 1,···, t', 1"'" t-, . 

(23) 

(24) 

An explicit example of the above construction will be 
given later. 

We will learn from Theorem 3 below, in determining 
the logarithmic asymptotic coefficients, that its con
clusion does not change if an element in C is counted 
twice (or more) in it. [On the other hand, in general, 
an element in C may stand for a class of subspaces as 
mentioned above. The subspaces in C (and Co) are arbi
trarily labeled in correspondence with the labeling of 
the subdiagrams associated with them.] 

B. Logarithmic asymptotic coefficients (Jj(Sr) 

Write I as a decomposition to, arbitrarily chosen 
and arbitrarily labeled, one-dimensional 4n disjoint 
subspaces, 1==11 +12 +". +I4n , associated with the 4n 
integration variables, Introduce 4n parameters, 
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PI"" 'P4n which may take on only the values ° or 1. If 
all the maximizing subs paces for the 11 integration rela
tive to Sr> in reference to A [Eqs. (2) and (3)], after 
performing the 12 +'" +I4n integration, have the same 
dimension, then set PI == 0, and 1 otherwise. If all the 
maximizing subs paces for a Ii integration, after per
forming the 1/+1 + 0" + 14n integration, relative to any 
of the maximizing subspaces for the I i _1 integration af
ter performing the Ii + ' . 0 + 14• integration have the 
same dimension, then Pi = 0, and 1 otherwise for 
i == 2, • , . , 4n. Then according to Fink, 4 the logari thmic 
asymptotic coefficient associated with A is given by 

{3[(Sr)=I; Pi' (25) 
i=1 

By repeating the elementary Lemma 1 of Ref. 4 we 
arrive at the following lemma. 

Lemma 1: 

(i) Let 5' rc. C, then A(I2 +, " + 14.)S' is a maximizing 
subspace for the 11 integration relative to Sr after per
forming the 12 + •• , + 14n integration. 

(ii) Any maximizing subspace for the 11 integration 
relative to Sr after performing the 12 +, • , + 14n integra
tion belongs to the class 

{A(12+.oo)S',A(12+''')S'', .o.} 

=: A(I2 +'" + 14n )C, 

where C =={S',S", ".} and A(I2 +0 0, +I4n )C consists of 
all such maximizing subs paces for the II integration. 

Again by repeating Lemma 1 for the 12 integration, 
we obtain the following lemma, 

Lemma 2: 

(i) A( 1, +, 0 0 14n )S" (with 5" c C) is a maximizing sub
space for the 12 integration, after performing the 
13 + 0 " + IJn integration, relative to A( 12 + ••. + 14.)5', 
foranyS'cC, if and only if, A(I2+o o

, +I4")S" 
=A(12+'oo +I4n )5', 

(ii) All the maximizing subs paces for the 12 integra
tion, after performing the 13 +, ,. + I Jn integration, 
relative to A(12 +, 00 + 14n )5', for any S' EO C, are given 
through {A(13 + ••• )S", A(13 +, 0 , )S "', ' •• , A(13 + •.• )S'}, 
with 5", S "', • 0 " those elements in C such that 
A(12 + ••• )S" == A(12 + o •• )8'" ==' •. =A(12 + ..• )S'. 

GeneraliZing Lemma 2 to an arbitrary I; integration, 
inductively, we readily arrive at the following in which 
we give the elementary details for the convenience of 
the reader, Suppose all those spaces 5,5", ... in C 
with 

A(Ii_1 +"')5'==A(Ji-\ +,,0)5" 

="0 =A(Ii_1 +0'" )S;_I' 

are maximizing subspaces for the Ii -I +. , • /4n integra
tion relative to A(I/_t +'" )Si_1 with SI_I some space in 
C. Then 

max [a/.+",(S) + dimS 
A(Ii_1)S=A(li_l+ ••• )Si_1 t 
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- dimA(11-1 + ... )5[_tl ~ art+"" (A (11 +'" )5[) 

+ dimA(11 +, , . ) 5[ - dimA(1I_1 +, , , )5[_1 

tp.ax [a (5) + dimS 
A(rl+ "')S_AUI + ... )S~ 

- dimA(1t_l +'" )5[.t1 

~ a(5") + dimS" - dimA(1I_1 +" , )5[_1, 

where 5[ and 5" E C are such that 

A(11 +.,. )5" =A(11 + .. , )5[, 

A(1I_1 + ..• )5"=A(1I_1 + ... )5[ 

=A(1I_1 + ..• )51_1, 

i. e., 5" is a maximizing subspace for the 11_1 +, " + 14" 

integration relative to A(11_1 +.,' )5;_1, by hypothesis. 
Hence the chain of the above inequalities becomes one 
of the equalities leading to the conclusion that, in par
ticular, A(1t + ..• )5; is a maximizing subspace for the 
II integration, after performing the 11+1 + •. , + 14" inte
gration, relative to A(1I_1 +,., )5;_1' We also readily, 
and similarly, learn that all the maximizing sub
spaces for the II +, " + I 4n integration relative to 
A(11 +, .• )5; are all those 5',5", ••• in C with 

A(1! + .•. )5' = A (11 + ••• )5" ='" 

= A (11 + ... )5;, 

and all the maximizing subspaces for the 11+1 integra
tion, after performing the 11+2 +, .• 14" integration, rela-
tive to A(1t + ... )5; are all the elements in 

{A(11+1 + ... )5', A(11+1 + ••• )5", .. , ,A(1t+l + ••• )5[} 

with 5',5 ", "', those elements in C satisfying the above 
relation. This leads to the following lemma. 

Lemma 3: There is a space 51 in C, such that 
A(11 + •.• )5i is a maximizing subspace for the 11_ 1 inte
gration, after performing the It +. ,. +14" integration, 
relative to anyone of the maximizing subspaces for the 
I t _2 integration after performing the 11-1 + ••• + 14" inte
gration. All the maximizing subspaces for the II integra
tion, after performing the Ii+l + ..• + 14" integration, 
relative to A (II + ... )5j are given by 

{A (II+l + ... )51+1> A (Ihl + . 0 • )5;'+1> . , • ,A (Ii •1 + ... )5;}, 

with 5;+1> 5;'.1> .. " all those elements in C such that 

A (II + ... )51.1 =A(Ij + ... )5i'.1 ='" 

=A(Ij + .•. )5;. 

The logarithmic asymptotic coefficient i3r(5r ) asso
ciated with A is then determined from the class C as 
given in the following theorem. 

Theorem 3: 

4n 

(3r(5 r) =- '0 PI, 
1=1 

where: 

(1) PI = 0, if all the elements in 

(26) 

{dimA (12 + ... )5~ dimS" dimA (12 + ... )5" - dim5r, •.. } 

(27) 
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are equal, with {5', 5", .. ·}=C, andPl=l otherwise; 

(2)p/=0, iE[2,3" .. ,4n], if all the elements in 

{dimA(Ii+l + ... )51+1 - dimSr, dimA(Ii+l + ... )S';.1 

- dim5n ••• } (28) 

are equal, and Pi = 1 otherwise, for all those S/+1> 
S;'+I' ••• E C, such that 

A (II + ... )S;+1 =A(II + ... )S;'.1 ='" =A(Ii + ... )S;, (29) 

where A (II + ... )S; is a maximizing subspace for the 
11_1 integration, after performing the II + ... + 14" inte
gration, relative to anyone of the maximizing sub
spaces for the 11_2 integration after performing the 
I i _1 + ... + 14" integration, with 5; some element in C. 

For convenience, the dimension of the maximizing 
subspaces in (27) and (28) were measured relative to 
the dimension of 5r • 

Theorem 3 is general and fully determined from the 
class C. It will be simplified further in Theorem 4. 
However, it is instructive to apply Theorem 3 to the 
example given in the Appendix. In the example depicted 
in Fig. 1 and given in the Appendix, let 11 + ... + 14 be 
arbitrarily associated with the variables kn and 15 + ... 
+ Is with kn, with nonvanishing Jacobian, 

J(k~l' :12) . 
24, 13 

Then 

PI - {dimA(J2 + ... )S1- dimS" •. , ,dimA (I2 + ... )S4 

- dim5r} 

={1,0,1,0}, Pt=1, 

P2 - {dimA (I3 + ... )5'; - dimSr } = {O}, P2 = 0, 

P3 - {dimA (I4 + ... )S4 - dimSr}={O}, P3 = 0, 

P4 -{dimA(I5 + ... )S4 - dim5r} = {o}, P4 = 0, 

P5 - {dimA (Is + ... )S2 - dimS" dimA (Is + ... )SI - dimSr} 

={1,0}, p5=1 

(see definition of S2 in the Appendix), 

Ps - {dimA (I7 + ... )S4 - dimSr}= {a}, Ps = 0, 

h-{dimA(Is+"')S4- dimSr}={0}, h=O, 

Ps-{dimS4-dim5r}={0}, Ps=O. 

Hence we finally have for the example given in the 
Appendix, 

(30) 

(31) 

For any S' EO C, S' is a maximizing subspace for the 
(I2 + ... + I4n) integration relative to Sr and also by the 
same reasoning as that leading to Lemma 3 we learn 
that S' is a maximizing subspace for the II + ... + I4n 
integration relative to A (Ii + ... I4")S' for any 1 '" i '" 4n. 
By the application of Theorem 3 and by conveniently 
chOOSing 5' to be an element in Co we arrive at the fol
lowing simpler version of Theorem 3, 
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Theorem 4: Let S', S", ... be all those spaces in C 
such that 

A (I; + ... )S' =A(I; + ... )S" 

=' •• =A (Ii + ... )SI , 

with Sf E Co, then 

4n 

i3r(S~) = 6 Ph 
i=1 

with P; = 0, if all the elements in 

(32) 

{dimA (11+1 + ... )SI- dimSro ••• , dimA (Il+l + ... )S" 

- dimSro dimA (11+1 + ... )S' - dimS~} 

(33) 

are equal, and Pi = 1, otherwise, with i = 1, • , , ,4n. 

In determining i3r (S1') from Theorem 4, the subspace 
SHE Co) will be called a reference space. In many ap
plications, Theorem 4 simplifies the analysis, since a 
specific reference space has been chosen, and this is 
especially the case for examples with Co = {Sf} and by 
the very construction of class C, 

For the example given in the Appendix with the vari
ables chosen as before, an immediate application of 
Theorem 4 (and Theorem 1) leads to: 

Pi ~ {dimA (12 + ... )SI- dimS" ' , , , dimA (/2 + ... )S'; 

- dimS.} 

={1,0,1,0}, Pl=1, 

PI ~ {dimA (/;'1 + ... )51- dimS1'}= {O}, Pi = 0, 

i=2,3,4,6,7,8, 

P5 - {dimA (I6 + ... )5;- dimS., dimA (I6 + ... )53 
- dimS.} 

={5,4}, P5=1, 

and hence 

0' [(51') = 1, 

{3r(S1') = 2, 

as before, 

IV. SUMMARY 

(34) 

(35) 

(36) 

Definition of the class Co, the construction of the 
class C, and the very general Theorem 4 (or Theorem 
3) and Theorem 1, essentially contain our main results 
which we now summarize. Other examples, including 
special cases, then follow from the application of these 
very general results in a standard manner. 

We give the following brief, but formal, summary of 
our results, which is helpful for practical applications 
in obtaining the power and logarithmic behavior of the 
renormalized, subtracted out, amplitudes A. 

(1) In determining the power of Tl1' in A, 1. e., 0',(51')' 
one may, formally, read off a [(51') by inspecting the 
maximum dimensionality d(G') (1. e" of a maximizing 
G') of a sUbdiagram of G' <;;:; G with G' associated with a 
space S' (1. e., all its V's are not orthogonal to 5') with 
A (1)5' = 51' and the number of independent loops of G' 
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equal to dimS' - dimS~. G', of course, may in general 
contain a subdiagram (or subdiagrams) with no closed 
loops, The association of a subidagram G' with a space 
5' and the introduction of the vectors V, here, is as 
already given, precisely as in Ref, 3. The analysis of 
carrying out the subtractions in determining the power 
law of A, 1, e" the power of TI, shows that this may be 
done "as if" the theory involves no subtractions, 

(ii) In determining the logarithmic asymptotic coeffi
cients {3[(S.), all the maximizing subspaces for the 
bound of A need to be analyzed. In the previous section 
we have shown how to construct all these maximizing 
subspaces. This may be, formally, summarized 
through the following, Let {Gt, G'i, ... } be the set of all 
subdiagrams <;;:; G maximizing the expression for the 
bound of A as given in (i), 1. e., in such a way as if the 
theory involves no subtractions. Let {51' 51', ... } be the 
set of subspaces with which are associated the subdia
gramsGj,G1'.··· [with A (I)Sj = Sro etc.]. Let{O,gto"'} 
be the set of all proper, but not necessarily connected, 
subdiagrams <;;:; Gf, such that each connected part of 
g1> ••• is divergent (1, e" with nonnegative dimension
ality), including the case withgo"'~' [By definition, a 
proper but not necessarily connected diagram means 
that the number of its connected parts does not increase 
upon cutting anyone of its internal lines. 1 For each Cf, 
introduce the set of all subdiagrams {Gl, .. . , (Gt/ 
gil, ••. } with gi E {O,gto ., . } as just defined, Let 
{S;,S2, ••• } be the set of all spaces such that all the 
V's in ... , (Gflgj), '" are not orthogonal to "', 
Si, "', respectively, with all the V's in (GIGD ortho
gonal to Sf, 52, .. " respectively, and the number of 
independent loops of (Gt/ gil equal to dimS: - dimS1'• By 
repeating the above construction from the subdiagrams 
GI', .. " as well, we obtain, formally, the class of all 
the maximizing subspaces for the bound of A, 
{51, 52, .•. , 51' , 52', ... }, The logarithmic as ymptotic 
coefficients are then readily obtained by the application 
of Theorems 3 or 4, An explicit example of the above 
construction has been given in the text, 

The above two points then briefly, but formally, 
summarize our results for the determination of the 
behavior of A, The keen reader will, however, appre
ciate going through the analysis and the more precise 
definitions as given in the text. 
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APPENDIX 

Consider the self-energy graph in Fig, 1 with 51' cor
responding to the vector q by the fermion, 

Let Qjj denote the momentum flowing from the ith to 
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1 \.............. ~t / ••.. .J 

................. 

FIG. 1. A self-energy graph G of the fermion with a ~Ij!<I> 
coupling contribution to it with the dotted line denoting a scalar 
boson and the fermion is of spin L 

the jth vertex in Fig. 1 with Q12 and Q34 denoting the 
momenta carried by the virtual scalar boson. The 
former may be written as 

(A1) 

where k ij is a linear combination of the integration 
variables and q ii is a function of the external variable 
q of G. A canonical choice of variables2, 1 is given as 
the solution of 

with 

q12 +q13 =q24 +q34=q, 

q12+q32+q42=0, 

q13+q43+q23=0. 

(A2) 

(A3) 

Similarly, in reference to the subdiagram gt. we write 

Qij =k~} + q~}, i,j E: [2, 3, 4], 

with qB as the solution of 

q~}=Vi-Vj, 

Q12 +q~! +q~~ =0, 

Q13 +qg+qg = 0, 

qn+qH=q. 

In reference to the subdiagram g2, we write 

Qij=k~+q~L i,jE:[1,2,3], 

with qfi as the solution of 

q~=Wi- Wj, Q42 +qa +q~~=O, 

q + q~1 +q~1 = 0, q~~ + q~~ +Q43 =0. 

(A4) 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

The above system is readily solVed to give a solution 
of the form: 

923 

Q12 =Akl + Ck2 +q/2, 

Q13 = - Akl - Ck2 + q/2, 

Q32 = - (A - B)kl - (C - D)k2' 

Q34=- Bk 1- Dk2 +q/2, 

Q24 =Bkl +Dk2 +q/2, 

(A10) 

k~l = (B -1)kl + (D - ~)k2' q~l = ~ kl + ~ k2 +t ' 

k~l=- (B- :)kt - (D- ~)k2' 
(All) 
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ka = - (A - ~ )kl - (c -~ )k2' qa = - ~ kl - ~ k2 +i ' 
k~=(A-~)kl+(C-%)k2, qr~=~kl+~k2+i, 

k~~ =- (A - ~)kl - (c -~)k2' q~~ = 2: kl + 2~ k2' 

(A12) 

where the constants A,B,C,D are arbitrary to the ex
tent that k~~*O, k{m*O for arbitrary kl and kz, i=1,2, 
and l, m E: [1, 2,3,4]. 

Construction of the class C: The class Co is given by 
Co = {Sf} with the whole graph G associated with Sf : Gf 
'" G and Gfo'" G, i, e., Gi/ Gfo is empty. From the con
struction of C we readily obtain 

C = {Sf, S2, S~, Si}, (A13) 

with which are, respectively, associated the 
diagrams, 

(A14) 

[Note that since d(gl)=0=d(g2), it follows that (Glg1) 

= (G/g j ). ] The spaces Sf, .•• ,S4 are precisely defined 
as follows. Label the coordinate axes by (k ll k2' q). 
Then 

with 

with 

Sf = {Lt, Lz, L 3} 

L1 =(1,0,0), Lz=(O,l,O), L3(0,0,1)j 

52 = {til> L2} 

Lf = (0!2, (3z, 0), L2 = (0, 0, 1), 

respectively, where 0!2 and {3z are any nontrivial con
sistent solutions of 

0!2 (B -~ ) + {3z (D -~) = OJ (A15) 

S~ = {Li', L2'} with Ll' = (0!3' (33, 0), L2' = (0,0,1), respec
tively, where 0!3 and (33 are any nontrivial consistent 
solutions of 

0!3(~ -A)+(33~~ -c)=o, (A16) 

and S4 ={L} with L= (0,0,1). [It should be noted that 
kt. k2' q are formally 4-vectors. ] 
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In this paper we studied the spectral theory of the operator (either in the exterior domain or in the whole 
space) that is induced from problems in the n-dimensional Euclidean space for the hyperbolic linear 
partial differential equations with the generalized Neumann boundary condition. The resulting theory 
provides a foundation for studying the wave operator and scattering operator involved in scattering theory 
and possibly also for studying the respective inverse problem. 

I. INTRODUCTION 

The following is a preliminary report on some recent 
theoretical investigation pertaining to scattering theory. 
Further study and the physical implications of these 
results will be discussed elsewhere. The scheme for 
direct scattering theory is outlined first, and an im
portant topic is indicated for the inverse problem, 

If u(x) is the difference between the instantaneous 
pressure and the equilibrium pressure, p(x) is the 
equilibrium density of the medium, c(x) is the local 
speed of sound, n is an open connected subset of R" 
with bounded complement, D t denotes a/at, and 

1 
A='-c2 (x)p(x)V'o -(-) '17, fER, XEn, 

px 

then the acoustic wave equation is 

D;u= -Au, 

with the initial conditions 

u(O,x)=f(x) and Dtu(O,x)=g(x), XE n. 
and the generaliz ed N eum anl1 boundary condition 

r c- 2 (X)p-1 (x)Au(x )v(x)dx 

= r p-1 (x)V'll(x) • '171' (x)dx , x E r;? and v, '1711 E L 2(n). 

(1) 

(2) 

(3) 
If the domain n considered here has a smooth boundary 
an, say C2 , then boundary condition (3) is equivalent to 
the classical Neumann boundary condition 

V'V'u(t,x)=o, xEan, (4) 

with v denoting the outward unit normal to an at x. 

This acoustic wave propagation problem is consid
ered here as a perturbed system in contrast to the fol
lowing, named "the unperturbed system": 

(5 ) 

alMost portion of the research work was carried on while 
K. H. Chen was at the Department of Mathematics. The Uni
versity of New Orleans and at the Department of Biomathe
matics, University of Alabama in Birmingham. 

with the same initial and boundary conditions (2) and 
(3) of the perturbed problem. 

We impose here the general assumptions that apply 
throughout this paper: 

Assumption 1: The exterior domain n has the finite 
tiling property: There exists an open set 0 in R", com
pact sets Kl' 0' ., K N in R", and nonzero vectors 
x<l) , . , 0, X<N) such that 

anco, 

and 

(6) 

(7) 

{x=xo+tx<j):O<t<l}cn, xoEnnKj' (8) 

This property of an exterior domain is due to Wilcox. 1 

Here we would not exlude the case n = R". 

Assumption 2: The density p(x) is C2 (n) and real 
valued, and for some constant J> 1 

J~p(X)';".J-1, XEn. 

Also, 
p(x)-1 when Ixl- oO , 

and 

(9) 

(10) 

D" p(~) behaves like. o( I x 1-1
) when I x I - 00 (11) 

for all QI, 1 ~ I QlI =Ql1 +0 0 0 +QI"~ 2, 

Assumption 3: The local speed c(x) is C1 (n) and real 
valued, and for some constant K> 1 

K?- c(x)?-K-1, XE n, 
Also, 

c(x) - 1 when I x I - 00 

and 

(12) 

(13) 

(14) 

Assumption 4: The "Stummel condition" is satisfied 
by q(x)='c-2(X)p-1(X), that is, for some a> 0, 

supflq(y)12Ix -y I-n+~ady < +00, if n?- 4, (15) 
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where the integration variable y runs in the disk {I x - y I 
< 1} n n and the supremum is taken on x En. 

The differential operator Ao defined by (5) on n, with 
Assumption 1, subject to the generalized Neumann 
boundary condition, is a self-adjoint, nonnegative op
erator in the Hilbert space L2 (n), Its spectrum is the 
closed interval [0, 00) and is absolutely (spectral) con
tinuous and without eigenvalues, These interesting re
sults are proved by Wilcox.l With these four general 
assumptions we will show that the operator A defined by 
(1) subject to the generalized Neumann boundary con
dition is also a self-adjoint, nonnegative operator in 
the same Hilbert space L2 (n) and that its spectrum con
tains the interval (0, oa), is contained in [0, 00), and is 
absolutely continuous. The only uncertainty occurs 
when the origin is to be an eigenvalue, These results 
are discussed in the next section. 

The scattering operator S is unitary if the M0ller 
wave operators W. are orthogonal, 

W:W. =1, 

and are complete, 

W.W: =1-E(O+), 

(16) 

(17) 

in the Lebesque measure, 

UE:Hm(O) <==>D"UEL2 (0), l"'lo;:m, 

IlEHm(n;c2p)<=> (C2p)ol/2D"UEL2(0), lal o;:m, 

and 

These spaces are Hilbert spaces with respect to the 
following inner products respectively: 

(u,v)= 1 u(x)v(x)dx, XE II, 
n 

(l1,l')m =6 (D"u,D"'v), IClII-cm, 

(21} 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

where E(A) is the resolution of the identity for A. There- and 
fore, in the third section, we will discuss the existence 
of the Mpller wave operators W. and properties (16) 
and (17). 

Both relations (16) and (17) could be proved by em
ploying the expansion principle of the generalized eigen
functions, which requires the principle of the limiting 
absorption. This latter principle also plays a key role 
in the proof of the spectrum to be absolutely continuous. 
In Sec 4, we will study the principle in detail. 

II. SOLUTIONS OF THE ACOUSTIC WAVE EQUATION 
EQUATION WITH THE NEUMANN BOUNDARY 
CONDITION AND ITS SPECTRAL THEORY 

A solution of the mixed initial-boundary-value prob
lem of Eqs. (1)-(3) will be constructed by using a 
famous spectral theorem. Then the absolute continuity 
of the spectrum of A will be studied. The resulting 
theory provides a preparation for constructing the wave 
operator and scattering operator. 

We recall here the initial-boundary-value problem: 

V:=-AII=C2(X)p(X)~· _(1) ~u, t>O, XE II, (18) 
px 

u(O,x) = j(x), 

and 

(19) 

and 

fc· 2 (x )p.l (x)Au (x)v (x)dx 

= Ip<l(x)VU(X) ° Vv(x)dx, XEO and v,VvEL2(0), 

(20) 

The formulation of the problem will be based on the 
following function spaces: 
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1 --
p(x) vJu(x)VJv(x)dx, x EO and 10;: j $,i 0;: 2, 

(30) 

It is clear from the characteristics (9) of p in Assump
tion 2 and (12) of ,(x) in Assumption 3 that Ho(0)=L2(0), 

L 2 (n; c2p) =Ho(O; c2p), and Hm(O; c2p) is equivalent to 
Hm (0) in the view of their norms. 

Suppose that the boundary ao of 0 is sufficiently 
smooth, say C2

, Then Green's theorem implies that 

(Au,v)=- f[ ~o p(~) vUC'd] v (x)dx 

= f p(~) Vu(x) °Vv(x)dx 

= f [vo p~x) ~PU(X)}(X)dS(X)' XE ao, (31) 

where v is the unit outward normal of ao at x, This 
means that 

-(Au,V)+[U'V]l=fp~) [voVu(x)]ov(x)dS(x), XEaO, 

(32) 

Therefore, for UE X 2 , u satisfies the claSSical Neumann 
boundary condition v ° ~1l (t, x) = 0 if and only if U satisfies 
the relation (20), which in the new notation is 

(Au,v)=[u,v]l' VEX1 nL2 (0; c2p), (33) 

Definition 1: A function U E X2 is said to satisfy the 
generalized Neumann condition if and only if (33) holds, 

This definition does not require the assumption of the 
smoothness of the boundary a n of 0, However, it de
fines the classical Neumann condition if ao is smooth, 

Furthermore, a definition is introduced for a closed 
subspace in X 2 : 
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11 E H <=> U E X 2 and satisfies (33), (34) 

The construction of a solution of the initial-boundary
value problem is based on the linear operator A in H2 
given by (18) with domain 

D(A) =/1 (35) 

Theorem 1: A is a self-adjoint operator on the Hilbert 
space L 2 (S1; c2p), Moreover, A::o, 0, 

The verification of the assertions is based on the 
following result. Lem ma 1: Let H be a Hilbert space and 
let L:H -:- H be a linear operator densely defined in H 0 

Assume that L c L*, the adjoint of L, L?' 0, and that the 
range R(I + L) of 1+ L is H 0 Then L is self-adjoinL 

Proof of Lemma 1: L::o, ° indicates that the deficiency 
indices of the symmetric operator L and of L*, an ex
tension of L, are equal. 2 Condition R(I+L)=H implies 
the deficiency index is zero and hence L is self-adjoinL 

Proof of Theorem 1: Verify the conditions of Lemma 
1 forH defined by (34) and L=A, The space C~(S1) of 
infinitely-many-times continuously differentiable func
tions with compact support in S1 is a subset of D(A) = H; 
hence D(A) is dense in L 2 (S1; c2p). Let u and l' be any 
two elements of D(AL Then (33) and (30) yield 

(Au,V)=[U,V]l=!p(!) V'1t(x)°V'l,Cd(ix=(ll,Av). (36) 

Consequently, D(A) c D(A *) and A *11 = All for all 11 E D(A); 

that is, A c A * 0 

The assertion A >- 0, also one of the conditions to be 
checked, follows from the result yielded by (33) and (30) 
that for all U E D(A) 

The only condition left to be verified, R (I + A) 
=L2(S1; c2p), means that for eachfin L 2(S1; c2p) there 
exists an element u of D(A) such that 

(u,v) +(Au,v) =(f,l') for all v in H1(S1; c2p). (38) 

This, together with (33), is equivalent to 

(lI,V)+[U,V]l=(j,V) forallvinH1(S1;c2p). (39) 

Sufficiently, if the equivalent inner product for HI (S1; 
c2p) that we use is 

{u,v}=(u,v)+[u,v]p 1l,vEHi (S1; c2p), (40) 

we need to verify the existence of 11 such that 

{u, v} =(j,v), VE HI (S1; c2p), 

However, 

(41) 

The Riesz representation theorem in the Hilbert space 
(H1 (S1; c2p), {o, o}) yields the existence of an element u 
in H

1
(S1; c2p) satisfying (41) and then (39). On the other 

hand, (39) implies (38) for all v in C~(S1). Tnus Au 
=f-u with the member 011 the right side in L 2 (S1, c~p); 
hence Au is also in L 2 (S1, c2p). Moreover, because the 
validity of (38) itself is implied when c~ (S1) is dense in 
HI (S1, c2p), the combination of (38) and (39) ensures that 
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u satisfies the generalized Neumann condition (33). 
Thus R(I+A)=H is verified, and the proof of theorem 
1 is complete. 

Therefore, the Kato (Ref. 2, p. 331) second rep
resentation theorem ensures the following corollary: 

Corollary: A has a nonnegative square root A1/2 
whose domain D(A 1/2) = HI (S1; Cpl I 2) has the inner 
product 

{u, v} = 6 Ic-1 (x)p-11 2 (x)D"'u(x)D"'v (x)dx , x E S1, 10' Is 10 

(42) 

Furthermore, A 112 satisfies the relation 

{A 1/2u A1/2Ul = 6(p~1/2(X)D 11 p-1/2D.u) 1 < j<; 11 (43) ,r J ' J' . 

From the results in Theorem 1 and Corollary 1, the 
argument of Wilcox, 1 with slight adjustment, gives the 
following theorem" 

Theorem 2. For eachfin D(A) and K in D(N/2) there 
exists a uniquely defined strict solution II with finite 
energy of the initial-boundary-value problem (18), (19), 
and (33) with tE R such that 

liE C"[R,L2(S1, c2p)]nC1[R,Hl(S1, cp1/2)Jn C(R,H» 

and /l has the energy integral in the two equivalent forms 

j=I, .. "I1, 

= {D tu(t), D tU (t)} + {NI 21/ (t), Al/21l (t)} , 

and has the constancy of energy 

(44) 

E(lI,S1, t) = 6{Dj,D/'l- +{K,K}. (45) 

From the spectral theorem for A and the associated 
operator calculus, we have the following theorem. 

Theorem 3· For real-valued functions f in L 2(S1) and 
Kin D(A-1 / 2), define 

h=f+ikI/2KE L 2 (S1) , 

Then the solution in L 2 (S1) defined by 

u(t) = (costA I/ 2)f+ (A~1/2 sintN / 2)K 

with bounded coefficient operators, satisfies 

U(t ,x) = Rel'(t ,x), 

where v(t,x) is the complex valued solution in L 2 (S1) 
defined by 

v(t, 0) = exp (- itN/2)h. 

(46) 

(47) 

(48) 

(49) 

Because the operator A is nonnegative, its spectrum 
alA) is contained in the interval [0, ""). The nonexis
tence of the positive eigenvalue is ensured by the follow
ing theorem. 

Theoyel1l 4 (Mochizllki 3): Assume Assumptions 2-4. 
Then, 11 = 0 in S1 is the only L 2 (S1) solution of the 
equation 

1 
-V'o_(-)V'u_:\c··2(X)p-l(X)U=0, xES1, :\>0, (50) 

px 

K.H. Chen and C.C. Yang 926 



                                                                                                                                    

Proof: It suffices to check the conditions imposed by 
Mochizuki. His first three conditions are presented by 
Assumptions 2-4 by setting ajk(x) = I)jkp·l (x), b j = 0, P 
=0, andq(x)=Ac·2(x)p·l(x). Particularly, ifn"-3, the 
"Stummel condition" 

(51) 

of the last section ensure the existence of the unitary 
groups exp(- iLot) and exp(- iLl), - 00 < t < 00, associated 
with the self-adjoint operators Lo=A~/2 and L=N/2. 

The strong limits 

W±=s-lim exp(iLt)exp(-iLot), t-±oo (54) 

are called the M!'Hler wave operators, This yields 
is a consequence of the boundedness and the smoothness 
of c(x) and p(x) on n, His fourth condition is given by limllexp(-iLt)h-exp(-iLot)h±II=O, t-±oo, (55) 
his Remark 1,2 and by (9), (11), and (14), The smooth- and 
ness assumption on c(x) and p(x) implies the Holder con-
dition (cL Friedman Ref, 4, p. 23), This condition gives h=W)l±. (56) 

the unique continuation property in his last condition The foUowing map is the scattering operator: 
according to his Remark 1,1, which is referred to in 
Refs.5and6, 5:/.-/.=5/.. (57) 

Under the conditions just checked, stronger result on 
the growth of solutions has been concluded by 
Mochizuki,3 It will be recalled here because of the need 
in the principle of limiting absorption in Sec. 4. Denote 
by S(t) the sphere with radius t: S(t) ={xl Ixl=t} (t >0). 

Theorem 5 (Mochizuki3): Assume Assumptions 2-4. 
If 11 is a not identically vanishing solution of Eq, (49), 
then for any a> 0, 

lim inft"JIAc·2 (x)p·l(x)1 lu(x)12 
t-'" 

(52) 

The employment of the standard principle of limiting 
absorption yields the absolute continuity of the con
tinuous spectrum of A, The principle will be discussed 
in Sec, 4 and there also will be provided a proof for the 
following statement. 

Theorem 6: The resolution E(s) of the identity for the 
operator A is absolutely continuous on any closed in
terval in (0,00), 

Remark: Whether A =0 is an eigenvalue or belongs to 
the continuous spectrum is not yet clear 0 

To be an important preparation for the discussion of 
the principle of limiting absorption, the argument used 
in the proof of Theorem 1 will be employed again to 
prove the local coercivity of the operator A, More pre
cisely, this argument is utilized to the operator At 
=A + t on nt with the same kind of boundary condition 
on the boundary of nt' Here n t ={xn I I x I < t} 0 Denote 
by (U,l'>rn.t the inner product (u,v>m with integral con
sidered on nt on (u,v)t for (u,v), Then, the local co
erci vity is the following. 

Theorem 7: For a local H2 (n t ; c2p) function satisfying 
the boundary condition (33) with sufficiently large t > 0, 
there exist constants d(t) such that 

(53) 

III. DISCUSSION OF THE M0LLER WAVE OPERATORS 
OPERATORS 

As indicated in the Introduction, all properties of A 
studied in the last section hold for Aa. Moreover, the 
spectrum of Ao is [0, 00] and is absolutely continuous, 
These are results of Wilcox.! These results and those 

927 J. Math. Phys .• Vol. 19, No.5, May 1978 

It is required to be unitary on L 2 (n), which is an easy 
consequence of the orthogonality (16) and the complete
ness (17) of the M¢ller wave operators, 

The existence of the strong limit (54) is proved by 
employing the vanishing, when t - ± 00, of the local en
ergy of the solution to the unperturbed system and 
employing the decaying in rate -1 - I) of I tl for the 
derivatives of the first two orders of the solution to the 
unperturbed system, 

The coincidence of the M¢ller wave operator W± with 
the stationary wave operators U± and the properties of 
the orthogonality and the completeness for U. guarantee 
the corresponding properties for W± The proof of the 
coincidence and of these two properties for U± is based 
on the expansion principle of the generalized eigen
functions of A, which has been employed by a dozen 
different authors, including Ikebe, 7 Mochizuki, B. 9 and 
Wilcox,! This principle will be given in the follow-up 
article. A portion of the article involves the principle 
of limiting absorption, which will be studied in the next 
section, 

IV. PRINCIPLE OF LIMITING ABSORPTION 

There is no doubt about the role played by the princi
ple of limiting absorption in the eigenfunction expansion, 
which is a keystone for scattering theory. However, 
in the three-dimensional inverse scattering theory for 
the Schrodinger equation, both Faddeevlo and Newtonll 

studied the "Volterra" integral equation, where the 
principle of limiting absorption again played an essen
tial role, We will apply the principle of limiting ab
sorption to the acoustic wave equation, This should 
bring some light to the study of the inverse problem 
of the scattering theory for the acoustic wave in three 
dimenSions, which will extend results of ReI, 12, At 
the end of this section, there is given the proof of 
Theorem 4 on the absolute continuity of spectrum, The 
argument of this section follows that of Mochizuki. 13 

For a real number a, let L2.Jn), L 2 •a(n; c2p), 
Hm.a(n), Hm.a(n; c2p), and X i •a, be the spaces conSisting 
the functions u that (1 + I xl )all (x) belong to the respective 
spaces L 2(0), L 2(n; c2p), H m•a (n), Hm•a (n; c2p), and Xi' 
In the rest, a is a positive numbero By the principle 
of limiting absorption here, we mean that for a positive 
(negative) number J.l and a set of complex numhers K, 
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with positive ImK and nonnegative (nonpositive) real 
part ReK, imaginary parts having /-L as the limit, and 
for the set of fUnctions (A - K2rlj for each j in 
L 2,1 •• (I1;c 2p), their limits exist and are in the space 
L z,_I_a<l1;c2 p), subject to the following uniqueness condi
tion-the radiation condition 0 

Definition: A solution u(x) in L2.,,10.(I1; c2p) of the 
equation 

Au(x)=g2u(x)+j(x) in 11, fEL zol+a(I1;C2p), (58) 

[satisfying the boundary condition (33») is said to satisfy 
the incoming (outgoing) radiation condition if and only if 

('V-iKx)u(x!E (H_ 1 .. )n (x=xilxl). 

Then, upon a very delicate inequality analysis 
Mochizuki 3 proved the powerful inequality 

«v - iKx)u, ('V - iK'X)u) -1+a 

(59) 

(60) 

where C> 0 is a constant independent of K, f, and U 0 

The principle of limiting absorption consists of two 
parts-uniqueness and existenceo We take care of 
uniqueness part first and then the existence part. 

Theorem 8: Equation (58) has at most one outgoing 
(incoming) solution. 

Proof: The following holds: 

2ImK I ReK I (u, u) ~ {(I + I x /l1+af,j)1!2( (1 + I X /l-l-au , up! 2; 

(61) 

liminft" J {pol (x)'Vu(x) ''1u(x) 
t~oo 

(62) 

They are inequality (3.7) and the last inequality in the 
proof of Theorem 3.1 in Ref. 13, p. 42. There the 
boundary condition is different from (33). But both 
arguments fit our problem because the imaginary part 
of the right side of (33) with v=u vanishes, which is 
the only adjustment necessary. 

Now Eq. (61) implies the assertion of this theorem 
for the case ImK> O. We suppose K= Jl is real. Then, 
(62) and (52) contradict each other. The proof is then 
complete. 

Next is the statement of the existence part of the 
principle; its proof is outlined afterward. 

Theorem 9: Let Jl be any positive (negative) number 
and let K. be a set of complex numbers K, with ImK 
> 0 and ReK ~ 0 (ReK ~ 0), having Jl as its limit. Let 
u(x, K) = (A - g2)-lf for a given f in L Z • 1+a (11, c2 p). Then, 
the L2 ._1_.(I1; CZp) limit of u(x,K) exists as u(x, /-L) and 
belongs to L Z ._1_. (n; c2p). The function u (x, Jl) is a unique 
outgoing (incoming) solution of (58) with K = Jl. 

Outline of Proof: Let Kn be a sequence in K. con
vergent to iJ. Let fn be a bounded sequence in 
LZol+a (n; c2pL Then, by A being self-adjoint, un 

= (A - lc;r 1jn exists and is a solution of (58) with K = Kn 
and j= fn in L 2 (n; c2p). Moreover, un satisfies the out
going (incoming) radiation condition. Next, by applying 
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the inequality for (61), Theorem 7 and the Rellich com
pactness criterion, we have that {uJ is precompact in 
L 2,_1_a (11; CZp) if and only if {uJ is bounded in the same 
space" 

This and inequality (60) give the claim that if {uJ con
verges in L 2 ._1_. (11; c2p) to u, then u satisfies the radia
tion condition with K = Jl. Moreover, upon this claim and 
Theorem 8 by building up a contradiction, there is a 
constant C depending only on K. that 

sup(u(x,K),u(x,K))~L~ ~ C(j,f)W (KEK), 

where u(x,K)=(A-g2)-lfo 

(63) 

Thus far, {u(x,Kn)} is compact in L 2 ._ 1_.(11 ;c2p). And 
then, there exists a subsequence {u(x,K)} which con
verges to an outgoing (incoming) solution u(x, iJ) of (58) 
with K = /-L. Finally, the previous uniqueness theorem 
yields the assertion and the theorem is proved. 

This proof indicates that for a given K as above and 
fin L201+,<I1; c2p), there exists a unique outgoing (in
coming) solution of (58), Then, treating R(gz) = (A 
- }0)-1, with ImK> 0, as the operator from 
L 2 >l+a(n; c2p) to L 2 ._1_.(I1; c2p), we have as a consequence 
of the proof the following. 

Theorem 10; The operator R(g2) is bounded and de
pends continuously on K, 

Finally, we find that the absolute continuity of the con
tinuous spectrum is a corollary of this last theorem, 
which is spelled out more precisely as follows and has 
the same proof as Mochizuki (Ref. 13, Theorem 3.4). 

Theorem 11: The continuous spectrum of the self
adjoint operator A is absolutely continuous with respect 
to the Lebesque measure. 
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The use of the symmetric group in the construction of 
multispinor Lagrangians8
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The construction of Lagrange functions for nth rank multispinor (Bargmann-Wigner) fields is developed 
using the symmetric group Sn' Restrictions on the number of fields present in the Lagrangian and their 
couplings to one another are obtained by constructing differential operators which transform irreducibly 
under Sn. The technique is illustrated by a brief discussion of the second and third rank cases and a more 
detailed fourth rank example. The Lagrangians thus obtained are precisely those specified by Lorentz 
invariance. but the method used greatly facilitates their construction. 

1. INTRODUCTION 

Since the introduction of the Dirac formulation for the 
spin-~ field,l a variety of higher spin formulations has 
been developed. 2-5 Most of these have been applied in 
situations involving relatively low spin where problems 
associated with the construction of Lagrange functions 
are few, if any. In this paper, we consider the prob
lem of constructing Lagrange functions for Bargmann
Wigner fields4 of arbitrary spin. As originally intro
duced, a Bargmann-Wigner field of spin s is repre
sented by a totally symmetrical multispinor 1/!"'1"2 0'0"2s' 

1 ~ I't i ~ 4, which satisfies the equations6 

(y. a)", l"'i<P"'1'" 2 ''''''2s = - 1111/1"'1"'2 000 "'2s 

These equations can also be applied to multispinors 
whose symmetry under the operation of permuting in
dices is more complicated, and the result is again a 
field with a definite spin. 7 

The problem of determining a Lagrange function 
which depends on the fields and their first derivatives 
and leads to Eqs. (1) is easily solved for the cas~s 
s = 1,20 The former is nothing but the well-known 
Lagrange function for the Dirac field, while the latter 
can be constructed by analogy as 

L=_iP[(y·a)I~(y·ah +mJ<p, (2) 

where the subscripts denote the operations 

[(y. a)ll/!l",a = (y 0 a)", ",.<jJ"" B, 

[(y 0 ah<P l",B = (yo a)BIl' <P",Il" etc. 
(3) 

In order to obtain the Bargmann-Wigner equations for 
fields with s> 2, it is necessary to introduce auxiliary 
fields into the Lagrange function. 8,9 These fields are 
introduced in such a way that the Bargmann-Wigner 
equations result for the primary fields while, at the 
same time, the field equations for the auxiliary fields 
imply that they vanish. The Lagrange function for spin 
t can be written in the form8,9 

a)Work supported in part by the National Science Foundation. 
b) Present address: Towson State University, Baltimore, MD 

21204. 

L =- iPl(y 0 a)1 + JJIN: +~X[(Y' a)l - (y. iJ)3 + 3m]x 

+ Q"l(y. rJh - 17I]&G - (IN'3)[x(y' aM + ~(Y' a)lx] 

+ ~[x(Y'a)3&G+~(y' il)3xl. (4) 

Here, <1'( "BY) is totally symmetrical in its three indices, 
&Gr"BYl is totally antisymmetrical, and Xr",SlY is a field 
of mixed symmetry such thatlO 

X[ ",Bly + X[ Byl" + Xry", lB = O. 

(5a) 

(5b) 

The choicEo of auxiliary fields in the third rank case 
is not exceedingly difficult because the options for 
various symmetries are limited. 11 For higher spin 
cases, the symmetry type, number, and couplings of 
the auxiliary fields are no longer so obvious. Thus, we 
seek a systematic way to determine the properties of 
the auxiliary fields in order to produce a Lagrange 
function such that the Bargmann-Wigner equations hold 
for the desired field and the other fields vanish. 

The requirement that the Lagrangian be invariant 
under the symmetric group fixes the nature of the auxil
iary fields and their couplings. Only multispinors which 
transform irreducibly under the symmetric group cor
respond to fields of definite spin when the Bargmann
Wigner equations are applied to them. Given this, it is 
natural to ask whether the kinetic operators (y. il)i, i 
= 1, 2, ... , n, can be arranged to have definite sym
metric group transformation properties. Once it is 
established that this is pOSSible, the Clebsch-Gordan 
series for Sn provides a simple way of determining the 
independent couplings. The number of such couplings 
is the same as that obtained by any "trial and error" 
method, the advantage being that a simple character 
table calculation replaces the more usual tedious man
ipulation of spinor indices. 

In the next section we develop the relationship be
tween the symmetric group and multispinor Lagrange 
functions. Section 3 contains an application of this 
development to the fields of spin 1, L and the spin- 0 
part of a fourth-rank multispinor. We conclude with 
some discussion about the general case. 

2. THE SYMMETRIC GROUP AND MUL TlSPINOR 
LAGRANGIANS 

The symmetric group Sn is the group of n! permu-
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tations on n objects. Methods exist for finding the num
ber of irreducible representations and their charac
ters and are described in many standard texts. 12 

We assert that the multispinor Lagrangian is invari
ant under symmetric group transformations. The kinetic 
terms are of the bilinear form FOG, where F and G are 
fields which, without loss of generality, may be chosen 
to transform as irreducible representations of the sym
metric group appropriate for the spinor rank. The 
operator 0 is a matrix of the dimension required to 
connect the representations F and G and has elements 
that are linear combinations of (y. ali' 

We first seek a convenient representation for the 
elements of O. Derivative operators which transform 
under the symmetric group may be constructed from 
the projection operator 

(6) 

Here dm is the order of the representation, g is the 
order of the group, r(s) if the matrix representation of 
the permutation s, and P is the particular transforma
tion corresponding to this permutation. If this operator 
acts on an arbitrary function F, the result is F(m), a 
function belonging to the irreducible representation m, 
provided the result is not zero. 

For multispinors of rank n there are clearly n linear
ly independent matrices ('Y' a);. We apply the operator 
in Eq. (6) to (y 0 0)1 and generate a single operator from 
the identity representation 

1 n 
0'=- 6(y o a);, 

n i=1 

and (n - 0 other operators (3k from the (n - 1, 1) 
representation 12 

k 

(3k=[l/v'n(n-l)] 6 (y. ali -k(yo ah.JJk(k +1), 
;=1 

I?=1,2, ... ,(n-l). 

(7) 

(8) 

The operators (3k then form a one column matrix that 
transforms as the (n - 1,1) representation of Sn. Since 
0' and the (3k exhaust all the linear combinations of 
(y 0 a)i' the elements of the operators 0 may all be ex
pressed as linear combinations of 0' and (3k' Thus, the 
kinetic operators as well as the fields themselves may 
be chosen to have definite transformation properties 
under the symmetric group. 

Application of symmetric group invariance then pro
vides a convenient way of enumerating the various 
~o~plings. This follows from the fact that the coupling 
FOG represents a Kronecker product of three repre
sentations and must itself transform as the identity. If 
(A) is the representation to which F belongs and (j.l.) is 
the representation to which G belongs, then from a gen
eral result of group theory the Clebsch-Gordan series 

(A)X(j.l.)=6a j (j) 
j 

(9) 

must contain either the representation (n) or (n - 1,1) 
for a nonvanishing coupling FOe to occur. If the series 
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contains (n), then an 0'- type coupling is possible: 

FaG; 

if (n - 1,1), then the coupling contains a matrix 0 with 
elements that are linear combinations of the (3k' 

The components of 0 may be constructed as follows. 
For a coupling FOG with F belonging to the (X) repre
sentation and G belonging to the (j.l.) representation, the 
js-component of 0 may be computed from 

[c)(A, 11) ]js =6 (3k(Aj, (n - Ol? I I1S), 
k 

where for brevity (n - 1) denotes the (n - 1, 1) repre
sentation. (Aj, (11 - l)k [ I1S) is the Clebsch-Gordan 
coefficient connecting the (A) and the (n - 1, 1) repre
sentations to the (11) representation. 

(10) 

The requirement that all fields in the Lagrangian 
transform as irreducible representations of the sym
metric group assures a nonredundant and exhaustive 
choice of fields. Moreover, the symmetry of [OG] un
der a pern~utation of its multispinor indices is the same 
as that o~F under the same permutation. As a conse
quence, F may be varied as though all of its compo
nents were independent. Thus, use of symmetric group 
invariance not only facilitates the writing of the 
Lagrangian, but also simplifies the process of obtaining 
the field equations. 

3. APPLICATIONS 
A. Second rank multispinor 

The multispinor field with two indices has two sym
metries corresponding to the irreducible representa
tions of 82: (2) and (1 2). The symmetric field is de
noted </!(",a) and must satisfy the Bargmann-Wigner 
equations 

(y 0 0)"'1"'1 4''''1'''2 = - 11I</!"'1"'2' 

(y 0 a)", Ci.</!", "" =- m</!", '" , 
2 2 I 2 I 2 

(11) 

if </! is to represent a spin-1 particle. 
symmetric field is deSignated n[CiSl' 

The totally anti-

The totally symmetric operator 0' is 

0' = H(y· 0)1 + (y. a)2], 

and (3 is 

(3=t[(yo 0)1- (yo 0)2]' 

The most general Lagrangian takes the form 

(12) 

(13) 

L = - /f;(a -I- m)</! +a[/f;(3n -I- Q{3iI!] -I- bQan -I- cmQSl. (14) 

Variation of the Lagrangian gives the field equations 

- (0' -I-1Il)</!-I-a(3n=o, 

ban -I- cmfJ -I- a(3</!= 0. 
(15) 

It is easy to check that </! satisfies the Bargmann-Wig
ner equations and Sl vanishes if and only if 

In this simple case, the formalism shows that the 
auxiliary field n is unnecessary, in agreement with 
Eq. (2), 
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B. Third rank multispinor 

There are three irreducible representations in 53 
c..s>rresponding to the partitions of 3: (3), (2,1), (1 3), or 
(3), the representation (2,1) being two dimensional. We 
thus require three multispinor fields in the Lagrangian 
with symmetries as indicated below. 

IjJ(OIsr), :SOlBr = (X(",s)r), n[",Brl' 
X[OISlr 

The derivative operators CI and 13 k are obtained from 
the projection operator, Eq. (6), namely 

CI =M(y' 0)1 + (y. 0)2 + (Y' 0)3]' 

{31 = (l/2V3)[(y' 0)1 - (Y" 0)2], 

{32 =H(y' 0)1 + (y. 0)2 - 2(y· 0)3]' 

(17) 

(18) 

(19) 

By inspection of the Clebsch-Gordan series connecting 
the respective representations, the following couplings 
are seen to be symmetric group invariant: 

IjJClIjJ :S0(2,3)1jJ :S0(2,3)n 

~0(3,2):S nCin :SCl:S • 

The notation for the 0 matrices indicates the repre
sentations connected by them. The (201) representation 
is designated by 2 for brevity, Once the Clebsch-Gor
dan coefficients have been calculated, formula (10) may 
be used to obtain the following expressions: 

0(2,2)=(-i~ i:), 

0(3,2) = ({32' (31), 

0(3,2) = ({31' - (32)' 

(20) 

An appropriate choice of constants weighting each 
coupling in the Lagrangian leads to field equations 
which imply the Bargmann-Wigner equations on 1jJ(",Br) 

and the vanishing of :SOlsr and n[",Brl' The Lagrangian 
thus constructed is8• s 

L =- ~(CI +m)1jJ +~ 2:0(2,2):S- i'i(CI +m)n+m2::S 

+i[~0(3, 2):S +2:0(2, 3)1jJ] +i[ZO(2,3)n 

+i'iO(3,2):S]. (21) 

C. Fourth rank multispinor 

The partitions of 4: (4), (3,1), (22), (2,1 2), and (14) 
correspond to the irreducible representations of 54' It 
is therefore possible to construct fields with the follow
ing symmetries: 

932 

(4) IjJ(OISrb), 

(3,1) :SOlBrb = X('OIS)rb , ~
Xi"'Sr)b ] 

/I' X[OISHrb) 

[
~(OIS)(r5lJ 

(2, 12) ~"'Brb = ~t"'Sl(rb) , 

~['~Brlb 
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(14) n[OIBrbl' 

These functions fulfill the following cyclic relations 
over four indices: 

XOISrb +XbOlBr +Xr5",s +Xsr501 =0, 

~OIBr5 - ~501Br + ~rbOls - ~sr5'" = 0, (22) 

<POIBrb - <PbOlsr - <Pr5",S + <PBrb", = 0. 

IjJ transforms under the identity representation and n 
under the alternating representation. The derivative 
operators obtained as before are 

CI =H(y' 0)1 + (y. il)2 + (y. 0)3 + (y. il)4]' 

{31 = (l/2,1'6)[(y' 0)1 - (y. olz]' 
{32 = (1/6Y2)[(y' 0)1 + (y. 0)2 - 2(y 00)3], 

(23) 

For illustrative purposes we choose the simplest 
nontrivial case, that of spin 0, and establish that the 
field <P defined above has only one positive energy com
ponent if it satisfies the Klein-Gordon equation and 

(CI + 1Il)<p = 0. 

Consider the element <P[OISl[rol' In the rest frame Eq. 
(24) becomes 

(24) 

(25) 

In standard representation the elements of the diagonal 
matrix y 4 are (1, 1, - 1, - 1) so that <P vanishes unless 
its indices correspond to the first or second rows of 
Y4' But the antisymmetry of the indices leaves only one 
independent solution: <P[12l[12l' For negative energies 
only <P[34l[34l survives. Thus the field is a spin-O object. 
For auxiliary fields only the fields with lower symme
try are selected: ~ and n. 

The couplings among these fields as determined for 
the previous cases are 

_ A __ 

<pCI<p W(3,4)n 

¢0(2,3)~ i'i0(4,3)~ 

to(3,2)<p nCin 

~CI~ 10(3,:m 

As before, the argument of 0 is all abbreviation for the 
two representations c~nnected by O. Upon closer exam
ination, the coupling nCin is found to vanish as a conse
quence of the total antisymmetry of n. The 0 operators 
are found to bet3 

[

i33 + .f2 {32 - .f2 (31 

0(3,3) =.h - .f2 {31 {33 - .f2 {32 

{31 - (32 

(26) 

0(4,3) = v'273 (- {3t, (32' - (33)' 
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and, in terms of these operators, the Lagrangian is 

L = - 1>(a + m)cp + (1/13)[1>0(2,3)1; + IO(3, 2)cp] 

- (2/v'6)[nO(4, 3)1; + IO(3, 4)n] -H(a - m)1; 

+mnn. 

We now show that this leads to the desired field 
equations. 

Variation of Eq. (27) leads to the field equations 

(27) 

- (a + m)cp + (1/13)0(2,3)1; = 0, (28a) 

(1/13)0(3, 2)cp - }(a - m)!; - (2/v'6)0(3, 4)n =0, (28b) 

- (2/J6)0(4, 3)1; +mn=o. (28c) 

Eliminating n between Eq. (28b) and (28c), one obtains 

(m/v'3) 0(3, 2)cp - Hi(a - m)m +0(3,4)0(4,3)]1; = 0. 

(29) 

To combine this with Eq. (28a), we must first operate 
on it with 0(2,3) and use the identities 

0(2,3) 0(3,4) 0(4,3) = -}(4a 2 - c1) 0(2, 3), (30) 

0(2,3) 0(3, 2) = _}(a 2 - 0 2) - Q(2, 2), (31) 

where Q(2, 2) is a 2 x 2 matrix quadratic in the deriva
tive operators which does not transform as any particu
lar representation of 54' Thus we have 

(m/13)[ - }(a 2 - 0 2
) - Q(2, 2)]cp - Hi(a - m)m 

-}(4a 2 -02)]0(2,3)1;=0. (32) 

Eliminating 0(2,3)t between this and Eq. (28a) gives 

[}(4a 2 - c1)a +}(4a 2 - c1)m - tmQ(2, 2) 

+im 3]cp=0. (33) 

If we now multiply Eq. (33) by 0(3,2), and exploit the 
identities 

0(3, 2)Q(2, 2) =i(4a2 - 0 2)0(3, 2), 

(4a 2 _ 02)aO(3, 2)=0, 

we find 

0(3, 2)cp:= 0. 

Now, the identity (4a 2 - 02)al3k :=0 implies 

(4a 2 - 02)aO=0, 
A 

for all O. From this and Eq. (28a) we have 

(4a 2 _02)a(a +m)cp=O. 

(34) 

(35) 

(36) 

(37) 

(38) 

With this result and the identity aQ(2, 2) = 0, operating 
on Eq. (33) with a leads to 

[(4a 2 - 02)a + 3m 3]acp = 0, 

which, together with Eq. (38), gives 

(a +m)acp=O. 

From Eqs. (36) and (28a), we then find 

0(3,2)0(2,3)/;=0. 

(39) 

(40) 

(41) 

Thus operating on Eq. (28b) with 0(3, 2)0(2,3) produces 

(4a 2 -02)0(3,4)n=0, (42) 

where use has been made of the relation 
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This relation also implies 

(4a 2 - 02)(a - m)1; = 0, 

which, with Eq. (37), leads to 

(4a 2 - 0 2)0(4,3)/;=0. 

Thus taking (4a 2 - 0 2) through Eq. (28c) gives 

(43) 

(44) 

(45) 

(4a2_02)n:=0. (46) 

In similar fashion one obtains 

(4a 2 -02)0(2,3)1;=0 (47) 

from Eq. (44), and hence Eq. (28a) can be written 

(4a 2 - 02)(a + m)cp = 0. (48) 

Returning now to Eq. (33) and using this last result 
together with Eqs. (31) and (36), one finds 

(a 2 _ m 2 )cp = 0. (49) 

This relation and Eq. (40) imply 

(a + m)cp = 0, (50) 

which, together with Eq. (36), insures that cp satisfies 
the Bargmann-Wigner equations. 

We now show that the fields I; and n vanish. The re-
maining field equations are 

1 A - -

,,(a - m)!; + (1/16)0(3, 4)n = 0, 

- (1/16)0(4,3)1; +tmn=o. 

(51a) 

(51b) 

Operating on Eq. (51a) with (1/16)0(4:,3) and on Eqo 
(51b) with }(a - m) and adding the results, I; is elimi
nated. Using the identity 

0(4,3)0(3,4) = - }(a 2 _ 0 2), 

and Eq. (46), we arrive at 

(2a 2 + am - m 2)n = 00 

(52) 

(53) 

Now we consider an in detail, The totally antisym
metric nature of n"SY6 =E"SYOW assures that [an],,8Y6 is 
also totally antisymmetric. USing this fact, we have 

[(y 0 a)1 + (y. 3)2 + (y. 3 h + (y 0 a)4]n - Tr[y 0 a]w = 0. 

Thus, Eq. (53) implies 

n=o. 

Equations (51) now reduce to 

(a - m)t=O, 

0(4,3)1;=0, 

and from Eqs. (50) and (28a) 

0(2,3)1;=0. 

(54) 

(55a) 

(55b) 

(56) 

Use of these equations and the appropriate identities 
leads to 

(57) 

(58) 
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Equations (55)-(57) imply that!; satisfies the Barg
mann-Wigner equations, This fact and the symmetry 
of !; are sufficient to insure its vanishing. 

4. CONCLUSION 

It has been shown that the symmetric group provides 
a useful tool in the construction of multispinor 
Lagrangians of second, third, and fourth rank, The 
irreducible repreSenk'ltions of Sn for these dimensions 
correspond to the multispinor fields which must be in
troduced, while the direct product series provides in
formation about the nature and number of the couplings 
which survive. Moreover, the operators in the kinetic 
terms may be constructed directly using general group 
theoretical methods and the transformation matrices of 

Sn' 

In third and fourth rank examples of Sec. 3, we have 
omitted all details of the arguments leading to the 
numerical coefficients in the Lagrange functions, Eqs. 
(21) and (27). They are, of course, determined by 
starting with unspecified coefficients and choosing them 
such that the desired equations emerge. This process 
requires a strategy for reducing the field equations by 
systematically eliminating auxiliary fields in favor of 
the primary field until the Bargmann-Wigner equations 
have been obtained, In the examples we have considered 
it was always possible to obtain an operator /( such that 

= J where ~' is the primary field. /( I)as the property 
that it annihilates the kinetic operator 0 which couples 
the primary field to the auxiliary field of next lower 
symmetry. These conditions are sufficient to obtain the 
Bargmann-Wigner equations on the primary field, and, 
with a suitable adjustment of the constants, the auxiliary 
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fields can be made to vanish. We believe this to be a 
general procedure for obtaining the desired field 
equations, 
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Definition of polarization of a spin 1/2 particle in an 
external electromagnetic field 

s. s. Sidhu and R. H. Good, Jr. 

Physics Department. The Pennsylvania State University. University Park. Pennsylvania 16802 
(Received 8 June 1977) 

The 3-vector polarization of a Dirac particle with Pauli anomalous moment, in external electric and 
magnetic fields. is shown to be given by a certain ratio of components of the wavefunction. The result is 
valid in the same approximation as leads to the Bargmann-Michel-Telegdi classical equations for the 
polarization. 

I. INTRODUCTION 

The polarization of a free Dirac particle may be dis
cussed either in terms of a 4-vector operator 

T = Y5 (ir - p) = j3Cf - Y5P, 

T4 = Y5 (iY4 - iH) = iCf' P 

or a 3-vector operator 

o =p-2[(H/ IH I) Cf' PP + pX (j3CfXp)). 

(la) 

(lb) 

(2) 

Here TIJ. is closely related to the Bargmann-Wigner 
operator1 and 0 was introduced by Stech. 2 The proper
ties and interrelations of these operators were reviewed 
by Fradkin and Good3; their conventions and notation 
are used in this present paper. The two operators are 
related by an operator analog of the rest-to-lab Lorentz 
transformation 

T =0+ (IH I + 1)-10'pp, 

T4=i(H/IHI)0·p. 

(3a) 

(3b) 

Every pure plane-wave state is polarized in the sense 
that, given a four- component wavefunction 'i', there is 
a unique unit vector s such that 

O·s1Jt='i'. (4) 

The actual determination of the polarization of a parti
cle state (having H/ IH I = + 1) may be made easily by 
using the relation 

'i'2/'i'1 = exp(i¢) tan~e (5) 

where e, ¢ are the spherical polar angles of s. 

There is a limited carry-over of these ideas to the 
case of a Dirac particle with Pauli anomalous moment 
in external electric and magnetic fields. Fradkin and 
Good3 defined the polarization 4-vector as 

T = {3Cf- Y51T, 

T 4 =iCf '1T. 

(6a) 

(6b) 

An important justification for this definition is that, 
when averages over a narrow wavepacket are taken so 
as to get a classical treatment of polarization, (T IJ.) 
satisfies the Bargmann-Michel-Telegdi equations. 4 

The 3-vector polarization, as an aspect of the Dirac 
wavefunction for an interacting particle, has not been 
discussed previously. 

The purpose of this paper is to show that, in the same 
approximation as leads to the BMT equations, the 3-

vector polarization is well defined and given again by 
Eq. (5). 

It is expected that this result will have application in 
following the change of polarization through a barrier 
penetration. The BMT4 or Thomas5 classical equationsG 

ordinarily apply in following the polarization through
out the classically allowed regions on opposite sides of 
a barrier. If the connection between the wavefunctions 
on the two sides of the barrier can be found, perhaps 
by using a WKB type of approximation, then Eq. (5) 
gives the connection between the polarizations and 
hence between the classical solutions in the two allowed 
regions. 

II. BASIC EQUATIONS 

The Dirac equation with Pauli anomalous moment 
term included is 

(YIJ.1T1J. +$;en/lFlJ.vYIJ.Yv-i)'i'=O. 

As shown in detail in Ref. 3 the classical equations 

(7) 

for the orbit and the BMT equations for the polarization 
apply when there is a narrow wavepacket such that one 
can write 

(8) 

and when all components enF IJ.V are small compared to 
unity. In Eq. (8) (1T IJ.) denotes the classical value, a 
function of t only. Consider a classically allowed region 
for a particle solution so that - i(1T4) is real and posi
tive. As in Ref. 3 the notation - i(1T4) =y is used; it is 
the classical rest-pIus-kinetic energy of the particle. 

III. POLARIZATION DISCUSSION 

Let the four- component wavefunction be written as 
two two-component functions 

(9) 

(if the system is nonrelativistic 'i'a and 'i'b are the large 
and small components). The upper half of Eq. (7) leads 
directly to 

'i' = - 1 _ Cf' (1T)'i' 
b 1 + Y a (10) 

in first approximation, the terms in ('nF IJ.V disregarded. 
With this result everything can be expressed in terms 
of the two-component function 'i'a' 
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Consider two functions 'Wj and 'W2, for two packets 
that follow the same classical orbit but that may other
wise lJe Jifferent. Let the polarization 4-vector be 
defined by 

(11) 

[this is a different definition of the fourth component 
than used in Ref. 3, Eq. (6) above, but the difference 
involves only terms proportional to efiF I>V which are 
negligible in the discussion of the BMT limit]. A 
straightforward calculation leads to 

t 2)7 t 
'W t 'W2 = T + Y 'Wta 'Wz a , (12) 

(13a) 

tT . 2)7 t • ( ) 
'W j 4'WZ =zl + y 'Wta (1 7f 'W2a' (13b) 

This shows that, within the present approximation, one 
can replace a discussion of the polarization 4-vector 
T I> in the space of the four-component wavefunction 'W 
by a discussion of the Pauli spin matrices" in the space 
of the two components 'Wa• One must make due allowance 
for a different normalization and for the instantaneous 
rest-to-lab Lorentz transformation. 

As is well known, any two component wavefunction 
'Wa is polarized in the sense that 
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". B'Wa = 'Wa , (14) 

where the spherical polar angles of the polarization 
direction B are given by 

(15) 

The conclusion is that the particle has a definite 3-
vector polarization with direction given by the ratio of 
the top two components of the four-component wave
function. Although the ratio is a function of X and t, the 
polarization in this approximation has meaning only at 
the wavepacket so one can evaluate the ratio at x(t) as 
given by the classical orbit. 

lV. Bargmann and E. P. \vigner, Proc. Natl. Acad. Sci. 
USA 34, 211 (1948). 

2B. Stech, Z. Physik 144, 214 (1956). 
3D.l'vL Fradkin and R. H. Good, Jr. , Rev. Mod. Phys. 33, 
343 (1961). 

4V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. 
Lett. 2, 4:J5 (1959). 

5L. H. Thomas, Phi!. Mag. 3, 1 (1927). 
"For a review of the classical equations see, for example, 
R. H. Good, Jr. and T. J. Nelson, Classical Theory of 
Electric and Magnetic Fields (Academic, New York, 1971), 
Sec. 30. 
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A second order calculation of the adiabatic invariant of a 
charged particle spiraling in a longitudinal magnetic 
fielda),b) 

R. Chehab 

Laboratoire de I'Accelerateur Lineaire. Universite de Paris-Sud. Orsay. France 91405 
(Received 27 June 1977) 

The change of the action integral of a charged particle spiraling in a slowly varying longitudinal magnetic 
field is investigated. The method used to solve this two-dimensional problem is a generalization of 
Vandervoort's analysis of a one-dimensional system. It is based on a canonical transformation of the usual 
conjugate coordinates and momenta into a set of four variables of the action-angle type. The new 
canonical equations are solved by a method of iteration, and the solution is used to calculate the change 
of the adiabatic invariant. Our results are analogous to those obtained with the approximations derived by 
Hertweck and Schluter and by Chandrasekhar. We have compared our analytic results to those obtained 
by numerical integration of the equation of motion in the case of a magnetic solenoid with a slowly 
decreasing field. 

1. INTRODUCTION 2. VARIATION OF THE ACTION INTEGRAL 

It is well known that an adiabatic invariant is a quan
tity which remains constant during an infinitely slow 
variation of the external parameters of the physical 
system under consideration. Generally, the action in
tegrals are adiabatic invariants for particles under
going periodic motions. 

We consider a longitudinal magnetic field (Fig. 1) of 
axial symmetry and ultrarelativistic particles whose 
transverse momenta are much smaller than their scalar 
momentum. The curvature of the lines of forces is 
neglected. 

The adiabatic invariance of a quantity J to the nth 
order is clearly stated! if a positive constant IvI exists 
such that the change ~ of J satisfies 

IAJI <En0!'vl, 

for all "sufficiently small" E, where the parameter of 
smallness E represents the rate of variation of the ex
ternal parameters. The behavior of adiabatic invari
ants when external parameters vary slowly between two 
constant values has been investigated by several au
thors. 2- 7 Many of these investigations are based on a 
perturbation theory in which the independent variable 
is expressed in terms of a unit that increases in inverse 
proportion to the paramet<::r of smallness E. These 
studies provide results which are asymptotically valid 
but are not sufficient to give the rate of change of the 
adiabatic invariants for finite values of E. 

Hertweck and Schluter, 3 Chandrasekhar, 5 and Parker7 

have developed alternative methods to calculate the 
change of the adiabatic invariants corresponding to 
slowly time-varying magnetic fields in the case of finite 
values of the parameter of smallness. 

We present here an analysis based on the Hamiltonian 
formalism which enables us to evaluate the change of 
the adiabatic invariant of an ultrarelativistic particle 
spiraling in a magnetic field which is time constant but 
which varies slowly longitudinally between two different 
values of the field, 

a)Work supported by the "Instltut National de Physique 
Nucleaire et de Physique des Partlcules du C. N. R. S." 

b)This study is a part of a thesis submitted to the University 
Paris XI for the degree of "Docteur- Ingenieur," June 2, 
1975 and registered by the C. N. R. S. under the number 
A.O. 11504. 

The action integral for the transverse motion of a 
particle in a constant magnetic field is given by 

A == § ~Pi dqi== rrp2jeB, 
i 

(1 ) 

where (q;,Pi) are the conjugate variables (x,P",y,Py), 
P 1 the transverse momentum, and B the field strength. 

If the magnetic field B changes slowly, so does the 
cyclotron frequency eBe/P, where P, the scalar mo
mentum, is constant. It follows that the motion is no 
longer strictly periodic and the contour of integration 
of the integral in Eq. (1) cannot be accurately defined. 
In order to avoid this difficulty, we follow Vandervoort's 
method of solving his one-dimensional harmonic oscil
lator problem and make a canonical transformation of 
the set of conjugate variables (x, Px, y, P~) into a new 
set of variables (Q!, PI, Q2, P 2) of the "action-angle" 
type. 

z 

FIG. 1. System of coordinates. 
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The Hamiltonian associated with the independent vari
able 2 is 

(2) 

where Px,Py,Pz are the conjugate momenta, AX,Ay,AZ ' 

the potential vector components and where H is the 
Hamiltonian associated with the independent variable t 
(time) and V the scalar potential. 

We identify H with energy to obtain 

H2 1(:2 _ IJI~C2 = (1J/1,)2 = p2, 

where /11 is the relativistic mass and P, the scalar 
momentum. 

Taking into account the restrictive hypothesis on the 
relative values of the momenta, we can expand the 
Hamiltonian G around Px=O and /Jy=O, We find 

G(z) = - P (1-~ 0! + P;) - 2~2 [(eAJ2 + (eA)2] 

+~ 0xeAx + pyeA y») , (3) 

Since the magnetic field has an axial symmetry, we 
can write the transverse components of the potel!!:ial 
vector A in terms of the longitudinal component B(z) of 
the magnetic field B ~ 

v- V 2 0-
A = - ~ B (2) + ~ (x- + v")B" (z) + " 0 

x 2 16 - . , 
(4) 

A =~ 13(z) - ~(X2 + v2)B"(z) +'00 
y 2 . 16' , 

where the prime denotes differentiation with respect to 
z, (This notation will be used throughout the article, ) 

The Hamiltonian G can be written as 

G(z) = - P + 2~ (jJ; + p;) +f (~!) 2 (x-2 + i) 

eB 1 (eB) - 2 0 2 
-2P(xPy-VPxl- 16 2P B"(z)(x +y") 

(5) 

if we limJt the expansion to second order in the deriva
tives of Bo 

We shall choose a generating function of the form 

F=F(qi,Q;,h), (6) 

where h=eB/p. In this way we have 

'OF 

c)(ii =P i
, (7) 

'OF 
-.-=-P i , 
aQ; 

of =K _ G 
az ' 

and the new Hamiltonian K is given by 
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The canonical equations associated with the new 
variables are 

p~=_ oK=_ aG _!?,~(OF) 
, aQ/ aQ; aQ/ ak . 

The canonical transformation8 

v = If7kP (/2P j cosQj + (2), 

Py = ~ IkP (- 12P j sinQj + P 2) 

(8) 

(9) 

(10) 

leadS to the new set of variables (Qj, PI> Q2, P2), In our 
case, we use the following generating function: 

IJiJ5 
F(qi' Q;,!?) =-2- (lkP,y - 2Q2)X 

- ta~~(/kP' y - Qd. (11) 

The Hamiltonian K can therefore be written in a simpler 
form; 

!< " 
-16!?P , 2P j [2P j + P:l + Q; + 2v2P j (P2 sinQ j 

+ Q2 cosQj)] x [1 + k (P2 sinQ j + Q2 COSQj)], 

(12) 

where the fourth term contains the second order con
tributions from the Hamiltonian (J, These contributions 
may be neglected in the applications made below, and 
so they will be, 

We may observe that Pj, Q2, and P 2 are constant when 
k is constant, Using Eqs, (1) and (10), we can verify 
that the product of P j by 21T gives the action integraL 
The squares of Q2 or P 2 have the same dimensions as 
action integrals, 

The canonical equations are 

I h hi 1 (P f: Q . f') Qj = I( + 2k f2l5; 2 COS"'j - 2 sm"'l , 

Pi = !l}' f215;: (P2 sinQ l + Q2 COS(1), 
2l 

P ' !?' r2P . f: 
2=2k Y l sm"'I' 

(13) 

From Eq. (13) it is then possible to derive a first ap
proximation by ignoring terms of the order of k'lk, 
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(14) 
QiOI = const, piol = const. 

A second approximation may be obtained by using an 
iteration method: 

Qjll=QjOI+ 1'~~. (2piolrl/2(piOlcosQiol 
'0 

- QiOl sinQjOI)d~, 

Let us define the quantities 

and 

U(a, z) = r.;; sin(Q;OI + 0) dQ;OI 
Jzo 

j Zk' 
V(a,z)= z pcos(Qi01+a)dQiO). 

o 

(19) 

Qij) = QJO) + l' ~~ (2p;OI)1 /2 cosQfO) d~, 
'0 

p(j) - pro) + f. · ~ (2P(01)1 /2 sinQ(OI d~ 

(15) By expanding the exponential term of Eq. (19) and re
taining terms up to (k' /lz 2)2, we obtain 

2 - 2 2k 1 I' 
'0 

Using Eqs. (13) and (15), we can evaluate the quantity 
pr. We thus obtain 

Let us define a quantity ~ by the expression 

Pj = pfO) (1 + .:l), 

where ~ is of the first order in kl/k o 

(16) 

The quantity Pt. conjugate of Qt. coincides with pfO) 
when the movement is strictly periodic. Using Eq. (15) 
and Taylor expansions of sinQP) and cosQj11, we can 
develop the right-hand side of Eq. (16). Retaining terms 
of order no higher than the second one in k'/k, we 
obtain 

From Eqo (17) we deduce 

939 

d~ = k' 0 (2P(O»-1 /2 [pro) sinQ(O) + Q(O) cosQ10l] 
dzk 1 212 I' 
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(17) 

J (Q(01)2 + (P(0)\2)1 /2 1 (Q(01)2 + (P(Ol)<) 
-=1+ 2 - LL xU(a,Z)+- 2 2 
~ ~ 4 ~ 

(20) 

Expression (20) is an expansion of ,J, the action integral, 
to second order in the parameter of smallness 1<' Ik2

• 

Two remarks can be made in order to simplify Eq. (20). 

First, we can write the canonical angular momentum 
as [see Eqo (lOll 

fi" =xP y - Yfi x 

= H(pioy + (QiOl )2 - 2PjOl]. 

This leads to 

(Q(Ol)2 + (p(Ol)2 2fi 
~-~=l+~ (21) 

2Pt J o ' 

Secondly, we can verify that if ,,'1,,2 is constant or is 
a weakly monotonic function of z, the following relation 
holds: 

lU(a, z)F + [V(a,z)]2 = [U(O, Z)]2 + [V(O, z)J2, 

Equation (20) may therefore be rewritten; 

.i..=1+(1+~)!/2. U(a,Z)+.!(l+&) 
J o olo 2 .10 

x {[U(a,z)F + [V(a,z)j2}. (22) 

If we average Eq. (22) over equally weighted values of 
i/!, we obtain 

(J/Jo) " = 1 + ~(l +P<b/Jo) xi[lJ(a,z)J2+ lV(a,z)j2}. (23) 

Expression (22) and (23) are similar to those derived 
by Vandervoort in the case of the one-dimensional har
monic oscillator. Here we take coupling into account 
by including terms which contain /)". 

3. COMPARISON OF OUR RESULTS WITH THE 
APPROXIMATIONS OF HERTWECK-SCHLUTER 
AND CHANDRASEKHAR 

The transverse motion of an ultrarelativistic particle 
in a time constant but longitudinally varying magnetic 
field B is described by the following equation: 

d 2X - dX dB 
p~ +ieB- + ~ie-X=O 

dz dz dz ' (24) 
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The scalar momentum P is constant, and X is a quan
tity defined by X =x + iy, where x and yare the 
Cartesian coordinates of the particle. Following the 
method presented by Chandrasekhar5 for the evaluation 
of the change of the adiabatic invariant, we are led to 
the expression 

In this equation, p represents the mOdulus and X the 
phase of the slowly varying parameter, 

(25) 

(26) 

The quantity S is the ratio of the modula of the two ex
ponential type solutions of Eq. (24). 

In order to compare these results to ours, we use 
the relations 

and 

Jo=p2I X oI2/eBO' 

where * indicates the conjugate value. We can easily 
verify that the ratio S is related to the invariants p ~ 
and Jo according to 

Using Eq. (26), we are led to the relation 

(27) 

p2 = IR(z) 12 =H[U(a,z)F + [V(a,z)]2}. (28) 

Equation (22), which we obtain above, can therefore be 
rewritten~ 

J / J o = 1 + S· U(a, z) + (1 + s2)p2, 

which is quite similar to Eq. (25) derived by using 
Chandrasekhar's method. 

4. APPLICATION TO A MAGNETIC SOLENOID WITH 
A SLOWLY DECREASING FIELD 

Magnetic solenoids with a slowly decreasing field are 

Jr------.------~-----,,-----_r----~ 
J, 

1.5 

CD 

.5 

.25 .50 .75 Z'm: 

FIG. 2. Behavior of the adiabatic invariant for the magnetic 
fieldB7Br/(1+O'z). Curve 1 isobtainedviaEq. (22); curve 2, 
via numerical integration. Bo~ 10 Tesla, <l'=3. 75 m-t , xo=0.41 
mm, Yo=1.13 mm, x~~61 mrd, y~=66.3 mrd, P=40 MeV/c, 
andE=O,05. 
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Jr-----~----~------~----~----_. 
J, 

1.5 

.5 

~-----275------~.~~-----.~75------~------~lm 

FIG. :3. Behavior of the adiabatic invariant for the magnetic 
field B=B o/(1 +O'z). Curve 1 is obtained via Eq. (22); curve 
2, vi.a numerical integration. Eo =2 Tesla, 0' = 12 m-t , Xo = 0.41 
mm, Yo=1.13 mm, xO=101.5 mrd, y~=1l0.5 mrd, P=10 
MeV/c, and E=0.2. 

used to improve the energy acceptance of positron ac
celerators. 9 Usually such systems-called "adiabatic"
have a field B decreasing according to 

-
B=~ 

1 + ClZ' 

- -
where Eo is the initial value of E and C\' is a constant. 

For such a field, the parameter of smallness is given 
by 

This parameter remains constant for any particle of 
fixed energy spiraling in the magnetic field. 

In order to study the behavior of the adiabatic invari
ant, we shall compare the results obtained by direct 
application of Eq. (22) to those obtained by numerical 
integration of the equations of motion. 

Jr-----~-----,------._----_,----_. 
J, 

.5 

.25 .50 .75 Z m 

FIG. 4. Behavior of the adiabatic invariant for the magnetic 
field B = B 0/ (1 + 0' z), Curve 1 is obtained via Eq. (22); curve 
2, via numerical integration. Eo = 2 Tesla, 0' = 12 m- l , Xo ~ 0.41 
mm, Yo=1.13 mm, xO=101.5 mrd, yO=110.5 mrd, P=20 
MeV/c, and £=0.4. 
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Jr-----~------~----____ ----_r----__. 
J. 

.25 .50 .75 z. 
FIG. 5. Behavior of the adiabatic invariant for the magnetic 
field B = B 01 (1 +O'z). Curve 1 is obtained via Eq. (22); curve 
2, via numerical integration. Bo=2 Tesla, 0'=12 m-I, xo=0.41 
mm, Yo=1.13 mm, x~=101.5 mrd, :\'~=110.5 mrd, P=30 
MeV/c, and <=0.6. 

A. Comparison of our analytic approach with direct 
numerical calculation 

Some preliminary remarks may be made concerning 
the zeroth order expression of the invariants using the 
initial conditions of the motion of the particle [xo, Yo, Xo 
=dxo/dz, Yo =dYo/dz, Pl. First we can write 

P q, = P(xoYo - YoXo) + ~eBo(x~ + y~), 

2 p<O) - p2(x/2 + y/2)/eB . I - 0 0 0, 

Q~O) = v koP[yo - xo/kol, 

p~O) = v koP [xo + yo/kol. 

(29) 

Secondly, we observe that the angles <p and a can be 
exactly calculated using Eqs. (10) and (18) and the ini
tial conditions. 

Numerical integration of the equation of motion given 
above (Eq. 24) has been made by the Runge- Kutta 
method of the fourth order. 

The adiabatic invariant J expressed as: 

J = p2(x/2 + yI2)/eB (30) 

has been calculated. The results regarding the quotient 
J/Jo evaluated for various initial conditions and mag
netic field shapes have been compared to the determina
tion given by Eq. (22) in the same conditions. Figures 
2- 5 illustrate these comparisons. As expected, we 
observe that the smaller E is, the better the agreement 
is between our analytic second order approximation 
and the (quasi) exact numerical results. 
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B. Energy acceptance of a solenoid in a transport system 

If we study the behavior of a many-particle beam 
(rather than a single-particle trajectory), we have to 
average the expression of the adiabatic invariant over 
equally weighted values of <P. Since the parameter E is 
constant, expression (23) becomes 

For given initial coordinates x o, x o, Yo, Yo and a given 
magnetic field law, we may deduce from Eq. (31) an 
upper limit on the particle energies, provided that an 
upper bound is put on the growth of the adiabatic invari
ant. Such a limit provides valuable information on the 
band of energies accepted by the solenoid. 

Using the Hamiltonian formalism, we have derived an 
expression of the change of the adiabatic invariant for 
an ultrarelativistic particle spiraling in a longitudinally 
varying magnetic field. Our expression is of the second 
order in the parameter of smallness. The constant co
efficients of this expansion are functions of the canonical 
angular momentum (constant to the order of our expan
sion) and of the initial value of the action integral. 

Our results are in agreement with those of Hertweck 
and Schluter and of Chandrasekhar. We have applied our 
theoretical analysis to the particular case of charged 
particles spiraling along a nonuniform magnetic field, 
and compared our predictions to a precise numerical 
integration of the exact equation of motion. Both re
sults are in close agreement. 
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We study the graded Lie groups corresponding to the graded Lie algebras SU(2,2/I) and OSp(1I4). 
General finite group transformations are parametrized, and nonlinear representations are obtained on coset 
spaces, Jordan and traceless algebras are constructed which admit these groups as automorphism groups. 

I. INTRODUCTION 

Supersymmetry (Fermi-Bose symmetry) has in 
recent years more and more attracted the attention of 
physicists. Ever since Wess and Zumino proposed' 
Lagrangian densities giving rise to action functionals in
variant under the interchange of Bose with Fermi co
ordinates, and noticed2 that field theories constructed 
from such Lagrangians seem to behave better with 
respect to ultraviolet infinities, many authors have 
attempted to explore further the properties and con
sequences of such theories, The most striking of these 
developments has been supergravity, 3 which combines 
the spin-2 gravitational field with a spin-~ massless 
Majorana field in a supersymmetric way 0 

From the mathematical point of view, supersym
metric theories were soon recognized to be intimately 
related to the structures called graded Lie group 
(GLG's) and graded Lie algebras (GLA'sL 4 Indeed the 
algebraic structure of the original Wess- Zumino trans
formations is the one of the GLA SU(2, 2/1), which has 
the conformal algebra times U(I) as its Lie subalgebra 
and a four-component complex spinor as its odd part, 
More recently, MacDowell and Mansouri5 have put into 
light the OSp(I/4) structure of supergravityo 

In most of these developments it has been enough to 
focus one's attention to graded Lie algebras, that is, to 
those elements of the graded Lie groups which are in
finitesimally close to the unit element, Graded Lie 
groups themselves have been considered sometime ago 
by Berezin and Kac, 6 and Salam and Strathdee7 have 
used them to some extent in introducing the notion of 
superfields, 

In this paper we will attempt to study more closely 
two important graded Lie groups, namely SU(2, 2/1) and 
OSp(I/4). General finite SU(2, 2/1) transformations will 
be parametrized in Sec. II, and the subgroup OSp(I/4) 
will subsequently be identified. Having done so, we will 
turn our attention to two important classes of represen
tations of these groups, which may turn out to be quite 
relevant for physical applications. 

In Sec. III we will consider nonlinear representations 
on coset spaces. Nonlinear representations of Lie 
groups are closely related to the theory of spontaneous 
symmetry breakdown in gauge field theories. Indeed, if 
F(c/J) is the Higgs potential to be minimized, with the 
scabr fields rf> belonging to a definite representation R 

a)Research (Yale Report COO-:1075-177) supported in part by 
thc 1.:. S. Eneq.,'Y Research and Development Administration 
under Contract Ko. EY-7G-C-02-:1075. 

of the gauge group G, then V(<p) has its minimum when 
<P = <Po(x), where <Po(x) obeys a certain algebraic rela
tion like the Michel-Radicati relations, 8 These equa
tions are solved by putting <po(x) in the canonical form 
W R(X)<PO, where W R is an element of the representation 
R of G with parameters depending on x, Let H be the 
subgroup of G that leaves <Po invariant. Then <Po(x) takes 
the form 

<Po (x) = W~G / H) (x)<Po. 

Now we can introduce new scalar fields 1]o(x) by putting 

dJ(X) = wkG/ H)(x)[7)o(X) + <Po], (1,la) 

while a field I/J(x), belonging to the representation S, 
can be written as 

Here W s is the S transformation which corresponds to 
IV R- Since gauge theories are invariant under arbitrary 
local gauge transformations, the physics is the same 
whether described by means of the fields dJ and i./J, or 
1]0 and cPo- Moreover, if we make an arbitrary local 
gauge transformation of the fields 1>, ¢ into new fields 
dJ', ~", then the latter can still be written in a form 
similar to Eq, (1, 1), The parameters of the new 
matrices Wk(G/H) and WSW/H) are then fields which form 
a coset representation of the gauge group (;, They 
transform linearly under an element of the subgroup 
H of (;, but nonlinearly under an element of the coset 
C/lI. Should the Lie group (; be replaced by a graded 
Lie group, the parameters of the transformation H' will 
also transform nonlinearly under (;/11, 

It may be remarked, as was originally pointed out, 
that the superspace of Salam and Strathdee can itself 
be regarded as a coset space. 7 Take for instance 
OSp(1/4)/Sp(4), which is the coset of a graded Lie group 
with respect to its Lie subgroup. It has four elements, 
which can be related to the Grassmann elements tJ c< that 
transform like a Majorana spinor under Sp(4), Now 
since the position space x" in a de Sitter universe is 
associated with Sp(4)/Sl(2,c), the superspace (x", U,,) 
IS Just the coset OSp(1/4)/Sl(2, c). Generalizations of 
superspace (extended superspace) obtained by taking 
cosets of extended supergravity groups with respect to 
Sl(2, c)g (,'int «(;int being the internal symmetry group) 
have been considered by Gell-Mann and co-workers. ) 

Another possibility for superspace is obtained by 
taking the coset SU(2, 2/l)/WSe. SO(1, I)IS' U(I), where 
WS is the familiar Wess- Zumino superalgebra of di
mension 14, SO(1, 1) is the dilatation group, and U(l) 
is the one-parameter chiral group. This coset haS 
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dimension 8 and includes the coset SU(2, 2)/ Pe SO(l, 1) 
of the conformal group with respect to the POincare 
group extended by dilatations, which has dimension 4 
and can be identified with the position space x~, Ex
tended superspace can then be defined by starting from 
a graded Lie group G which admits H = WS@ SO(l, 1) 
o U(1)0 G1"t as a subgroup, and identifying the extended 
superspace with G/H, In this way one is again led to the 
study of nonlinear representations of (J on the coset 
space G/H, 

Among the linear representations of the classical Lie 
groups, very important ones are those defined on 
Jordan and traceless algebras, In fact the classical 
Lie groups can be regarded as automorphism groups 
of the Jordan algebras of matrices that are Hermitian 
with respect to the conjugation operation (denoted by a 
bar) in the division algebras of real (JR), complex (cr), 
and quaternionic (Q) numbers, the conjugation being 
trivial for JR, The Jordan product is the symmetrized 
product 

A.B=~(AB+BA) (A=A T
, B=B T

), 

under which Hermitian matrices are closed, The cor
responding automorphism groups for JR, cr, and Q 
are just the orthogonal, unitary, and symplectic groups. 
If we consider 3 x 3 octonionic matrices over JR or <L' 
that are Hermitian with respect to octonionic conjuga
tion, then we get the automorphism groups F4 and E6 
respectively, while the exceptional group (J2 appears as 
the automorphism group of the octonion algebra, 10 

In this formulation the Jordan algebras of Hermitian 
matrices form the starting point Lie groups arise as 
the automorphism groups of the Jordan algebras, Now 
in axiomatic quantum mechanics l1 the Jordan algebra 
has a direct physical interpretation as the algebra of 
observables that are represented by Hermitian 
matrices, Local observables are fields which are as
sociated with infinite dimensional Jordan algebras, Sup
pose that we enlarge this traditional definition of ob
servables by also adding fermion fields as local ob
servables, Integrating over space we obtain nonlocal ob
servables that can be represented by finite matrices, 
A fermionic charge in supersymmetry will be just such 
an operator, It will be associated with a matrix with 
entries that are Grassmann numbers and which is 
Hermitian with respect to the antisymmetrical metric 
C, Such observables will be closed in a generalized 
Jordan algebra, Then, supergroups will arise as auto
morphism groups of these Jordan superalgebras 12 of 
bosonic and fermionic observables, In Secs. IV and V 
we develop the algebras of generalized observables that 
admit the supergroups 8U(2, 2/1) and aSp (1/ 4) as auto
morphism groups, 

II. THE GLG SU(2,2/1) 

We introduce a four-component object <p 

'" (<PI> <P2, <P3, <P4)T and a one-component object q:" which 
we put together in a five-component column X = (:), The 
components of <p are complex anticommuting numbers 
(L e" complex numbers whose real and imaginary parts 
are odd elements of a Grassmann algebra), whereas q:, 
is a complex commuting number (i. e" one whose real 
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and imaginary parts are even elements of the same 
algebra), Let Y = t) be another such five-component 
column, and consider the following bilinear form, 

(X, Y) '" /PY5X + q:,*w '" <ptcx + q:,*w, (2,1) 

Here <pt means (<p T )*, the star acting on the imaginary 
unit, We have introduced a matrix C = yOY5' which is 
real and antisymmetrical. 13 Due to the anticommuting 
character of <p and X it is clear that 

(X, Y) = (Y,X)*, (2,2) 

We want to investigate the most general linear trans
formation acting on X, which transforms X = ~) into 
X' = (::) and which leaves the bilinear form (2.1) in
variant Let us first consider transformations which do 
not mix <p and q:" We have 

(2,3) 

where U is a 4 x4 matrix with complex commuting 
entries, and It is a complex commuting number, Clear
ly then 

(X', Y') = I/J,tcx' + q:,'*w' 

= <pt utCUx + q:, * 1/ *uw. 

Since <p, X, q:" and w are arbitrary, this will be equal 
to (X, Y) as given in (2, 1) if and only ifl4 

utcu=c, (2,4a) 

(2,5) 

Equation (2, 5) means that u is an arbitrary complex 
commuting number of unit "modulus," Defining a uni
tary matrix ;\['" (1/12)(1 + l}5) one can rewrite (2.4a) as 
follows, 

(2.4b) 

Since :HC.1ft = - iP3, Eq, (2,4b) shows that U is unitarily 
equivalent to a generalized U(2, 2) matrix, By "gen
eralized" we mean a matrix whose entries are general 
complex commuting numbers instead of ordinary com
plex numbers, (From now on the word "generalized" 
will be implicit when dealing with such matrices. ) If we 
consider a U which is infinitesimally close to the unit 
matrix, L e" U = 1 + 6U, then (2,4a) and (2,4b) imply 
that 

(OU)tc + C(6U) = 0, 

(.1f6U,\!t)t P3 + P3(.\16U.~t) = 0, 

(2,6a) 

(2,6b) 

Hence ;U6U:Ht belongs to the Lie algebra of U(2, 2L It 
is interesting that any matrix U satisfying Eq, (2,4a) 
can be obtained from an element of the Lie algebra 
[1, e" a matrix satisfying (2, 6a) 1 through exponentia
tions, This is shown in the Appendix, Also, the set of 
all U's of the form exp(o'I), where Q is a purely 
imaginary commuting number, forms an invariant sub
group of (generalized) U(2,2L The quotient group IS 

SU(2,2), the conformal group, Summarizing, Eqs, 
(2.4a) and (2,5) imply that the group of the transforma
tions that leave (2,1) invariant and do not mix <p and q:, 
is U(2, 2)@ U(l), an invariant subgroup of which is 
8U(2, 2)@ U(lL 
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Let us now look at those linear transformations of X 
into X' which leave (2.1) invariant but mix 1/J and cp, It 
is convenient to consider infinitesimal transformations 
first. We write 

( 1/J')_[ I CI](1/J) cp' - [~ 1 CP' (2.7) 

where [I and [2 are four-columns made out of infinite
simal complex anticommuting numbers. From (2.7) we 
get (to first order) 

(X', Y') = (1/Jt + ciCP*)C(x + [IW) + (-1/JtE2 + cp*)([h + w) 

= 1/JtCx + cP *w + 1/Jt (C[ 1- [2)w + cp*([rC + [Dx. 
Again, since 1/J, X, cp, and ware arbitrary, this is equal 
to (X, Y) if and only if - [~=[lC, Thus the infinitesimal 
generator is simply 

[ 
0 [I] 

- [i CO' 
(2.8) 

We are now in a position to evaluate the finite group 
elements corresponding to generators of the form (2.8). 
We write 

e=[_ e~c ~J. (2.9) 

with e finite, The group element generated by e is then 
simply obtained through exponentiation, it is exp(e), In 
evaluating the exponential, one takes advantage of the 
fact that the components of a are anticommuting num
bers. Since there are four components, each one in
volving two anticommuting numbers (the real and 
imaginary parts), no term in the exponential contributes 
which is of degree higher than eight in the components 
of a. Thus we can write 

8 1 
exp(e) = 6 I" en. 

"20 n. 

An explicit computation shows that 

II - aatc(~ (1- cosfli)) (A- Sinra)eJ 

exp(e) = _ 1 ' (2.10) (ra sinra) etc cosra 

wherea=a(a);::atca. By (l/fii)sinra, for instance, we 
mean the series expansion of this function up to the 
eighth power in the components of a, or, equivalently, 
up to the fourth power in a. 

Equation (2.10) gives the group element which cor
responds to the generator (2. 9), On can check directly 
that a transformation of X into X' by means of (2.10) 
leaves the bilinear form (2.1) invariant. 

As is shown in the Appendix, a general element of the 
group of all linear transformations X - X' leaving (2.1) 
invariant can now be obtained as the product of a trans
formation of the form (2.3) (an "even" transformation) 
with one of the form (2.10) (an "odd" transformation). 
From this general group one can extract a "one
parameter" invariant subgroup by taking all the ele
ments of the form exp(a,f(5», where Ci is a purely 
imaginary commuting number and 1(5) is the identity 
matrix in five dimensions. Let A be the 5 x 5 matrix 
given by 
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(2.11) 

The generators of the quotient group are then those 
generators {O} of the general group for which Tr(QA) 
= O. The quotient group has SU(2, 2)0 U(l) for its even 
part, and the same odd part as the general group. It is 
in fact the graded Lie group SU(2, 2/1). 15 The odd 
transformations then coincide with the coset space 
SUeZ, 2/1)/SU(2, 2)® U{l). One can define a representa
tion of the subgroup SU(2, 2)0 U(l) on the coset space as 
follows: 

exp(0) - [~ ~Jexp(e{~-I~*] = exp(e'), 

where, as is easily shown 

0.' = [ 0 a'] a' - *ua v - _ e,t CO' - u • (2. 13) 

Hence a transforms by a phase under U(l), and under 
SU(2,2) it transforms like the four-dimensional spinor 
representation. 

For later use we give another, more convenient 
parametrization of Eq. (2.10). We introduce two ob
jects s and a as 

s = s(a);:: (A- tanra)a, 

a2 =a(s)2;::(1 + stcst 1• 

(2. 14a) 

(2. 14b) 

Here a is the "positive" square root of a2 , i. e., the one 
whose series expansion starts with + 1. A simple cal
culation now shows that (2. 10) can be rewritten as 

exp(0)=K(S)=f/-1:2asstc at]. 

L -astC a 

Furthermore, one easily checks that 

[K(s»)-l =K(- s). (2.16) 

We also introduce a 4 x4 matrix k(s) defined as 

a2 

a(s)k(s)=1- 1+ a seC. (2.17) 

It satisfies the relation 

We close this section by extracting from SU(2, 2/1) 
the important subgroup O8p(1/ 4). We take the odd gen
erator E> appearing in Eq. (2. 9) and restrict the four
component complex spinor e in it by means of a 
Maiorana type constraint, i. e. , 

(2. 19) 

Then e depends on four, rather than eight, anticommut
ing parameters. In the finite group element (2.15), s 
also satisfies the Majorana condition. As regards the 
even elements of SU(2, 2/1), we must restrict them to 
that subgroup of SU(2, 2)0 U(l) which preserves the 
Majorana character of e under (2.12) and (2.13). For 
this to be the case one must have 

11 = 1, (i/)U*(i·l) =U. (2.20) 
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With the help of the matrix M = (1/ f2){I + iY5) introduced 
earlier, one can rewrite the second part of (2.20) as 
follOWS, 

MU~ = (MiYM) (lW"'U*M) (lWiiW) 

= (iY)(WU*JV1)(iY). (2.21) 

For a (finite or infinitesimal) generator oU of U, Eq. 
(2.21) implies that 

Mo ulW'" = (iy)(MoU}ltt) * (ii). (2.22) 

Thus the even generators of the subgroup we are con
sidering must satisfy Eq. (2.22) together with (2.6b). 
The latter means that the generators are arbitrary 
linear combinations, with real commuting coefficients, 
of the following sixteen matrices: 

ii, iI''', ia"v, iY"Y5, 1'5' 

The former restricts these to iI''' and ia"v, i. e., to 
ten matrices. But it is well known that iI''' and ia"v 
generate the de Sitter group SO(3, 2), which has Sp(4) as 
its covering group. Hence we have a subset of SU(2, 2/1) 
whose odd part essentially consists of Majorana 
spinors and whose even part is the group Sp(4). This is 
in fact the graded Lie group OSp(l/ 4). 

It is clear from the foregoing that, with our con
ventions for Dirac matrices, the fifteen matrices iI''', 
ia"v, iY"Y5' and 1'5 generate the conformal group. The 
translation generators correspond to t(I + 1'5) 1'''. In this 
connection it may be worthwhile to point out that 1'5 has 
in fact nothing to do with the pseudoscalar operator. 
The four-component spinor on which the four-dimen
sional representation of SU(2, 2) acts is called a 
twistor and when 1'5 is diagonal it decomposes under 
Sl(2,c) into two two-component spinors. One of these is 
a genuine spinor that is invariant under translations, 
whereas the other one changes under translations. The 
matrix 1'5 leaves the latter invariant, and changes the 
sign of the former. 

III. NONLINEAR REALIZATION OF SU(2,2/1) AND 
OSp(1/4) 

We mentioned in Sec. II, and show in the Appendix, 
that a general SU(2, 2/1) element Q can be written as 
the product of an odd times an even transformation, 
namely 

Q=K(?;)U(U,U) (3.1) 

with K(?;) as in Eq. (2. 15) and U(U, u) as in (2.3) [U and 
u being restricted to SU(2, 2)® U(l)]. The group ele
ments K(?;) parametrize the (left) cosets of the decom
position of SU(2, 2/1) with respect to its subgroup 
SU(2, 2)® U(l). In Eqs. (2.12) and (2.13) we have shown 
that one can define a linear representation of SU(2, 2) 
® U(l) on this coset space. In this section we will con
struct a representation of the full group SU(2, 2/1) on 
the coset space. Such a representation will no longer be 
linear. 

We start by conSidering the following problem. Given 
two elements Q and Q j of SU(2, 2/1) what is the decom
position, analogous to (3.1), of their product Q; = QQ j? 
In other wordS, if Q is given by (3.1) and Q j is equal to 
K(~)U(V,v), find the objects e, V', and v' such that 
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Qj=K(e)U(V' , V') =QQj =K(?;)U(U,u)KWU(V, V). 

(3.2) 

Let us first insert a conveniently written unit matrix in 
the right-hand side of (3.2). We have 

QQ j =K(?;)U(U, u)K(oU-j(U, u)U(U, u)U(V, v). 

Clearly, U(U,u)U(V,v) is equal to U(UV,uv). Making 
use of Eqs. (2.12) and (2.13), together with the fact 
that?; and e [as given in (2.15) and (2. 13)] both trans
form in the same way under SU(2,2)® U(l), we get 

QQ j =K(?;)K(u*UOU(UV,uv), (3.3) 

Define ~ as ~=u*U~. If we suceed in writing the product 
K(?;)Kal as 

K(?;)K(~) =K(~o)U(W, w), (3.4) 

then the decomposition (3.2) of Q; will result with 

e = ~o, V' = WUV, v' =wuv. (3.5) 

So we turn our attention to the decomposition (3.4). We 
write both the left- and right-hand sides of Eq. (3.4) 
explicitly. From (2.15), (2.17), and (2.3) we have: 

K(?;)K(~)=a(?;)aal[_k?;~2 i][~tl~ n, (3.6) 

(3.7) 

Equating corresponding matrix elements in (3.6) and 
(3.7) yields the following relations: 

a(?;)aa){k(?;)k(~) - ?;pC}=a(~o)k(~o)W, 

a(?;)a(~){k(?;)~ + ?;}=a(~oHow, 

a(?;)a(~){- ?;tCk(~) - pC}=a(~o)(- ~6C)W, 

a(?;)a(~){- ?;tc~ + 1}=a(~o)w, 

(3. 8) 

(3.9) 

(3.10) 

(3.11) 

From (3,8)- (3. 11) it is now possible to determine ~o, 
W, and w explicitly. To get ~o, we substitute a(~o)w as 
given by (3.11) into (3.9), and obtain in a straightfor
ward way 

~o = [1 - ?;tc~l-j{k(?;)~ + ?;}. (3.12) 

As regards w we expect that it is a complex commuting 
number of modulus unity. Its phase is then determined 
by Eq. (3.11), As a consistency check, let us verify 
indeed ww* = L From (3.12) we have 

~6qo ={{1- ?;tc~)*-j(1_ ?;tC~)-l} 

x{[~tk(?;)t + ?;t]C[k(?;)~ + ?;]}. (3.13) 

With the help of the following identities: 

k(?;)tCk(?;) = a(~)2 [C - a (n2C?;?;tCl, 

?;tCk(?;) = ?;tc, 

k(?;)tC?;= C?;, 

one obtains, after some algebraic manipulations, 

1 + ~6qo = a(:o)2 
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A comparison of Eq, (3,17) with (3,11) then shows that 
indeed UJU' * = 1. 

There remains to determine Wo This is done most 
easily by means of Eq, (3.8), together with identity 
(2,18)0 We obtain 

W=a(l:)a(~) (1+ l:(!(b ~o~~C;)[k(I:)ld~) - I:~tc], 
(3,18) 

with ~o and a (~o) given in terms of I: and ~ by Eqs, 
(3,12) and (3.17lo 

It is not difficult to check that Was given in (3,18) is 
consistent with Eq, (3,10)0 By means of rather tedious 
algebraic manipulations one can also verify explicitly 
that W indeed satisfies (2,4a), 

So we have obtained the form of the objects ~o, W) 

and 11' appearing in the decomposition (3,4L Thus, 
through Eq. (3 05), the more general decomposition 
(3,2) also results, In the course of doing this calcula
tion, perhaps interesting in itself, we have also 
arrived at what we were looking for at the beginning of 
this section, namely, a representation of the full group 
on the coset space, Indeed Eq, (3,12), written in full, 
reads 

(3,19) 

Equation (3,19) means that under the group action 
n=K(I:)U(U,ll), the coset parametrized by ~ goes over 
into the one parametrized by eo From the way (3 0 19) 
has been constructed, it is clear that it satisfies the 
group product law. This can also be checked explicitly, 
Under a transformation belonging to SU(2, 2)0 U(l), ~ 

transforms linearly as in (2,13), whereas it transforms 
nonlinearly under an element of SU(2, 2/1)/SU(2, 2) 
('9 U(l). 

Equation (3 0 19) can also be arrived at in a somewhat 
different way, Consider the five-component column 
X = (~) which was introduced in Sec, It Under a general 
group transformation n = K(I;)U(U, II), X is transformed 
intoX'=(~:). By means of Eqs, (2015), (2 017), and 
(2.3) we get 

w'=a(I:)[l?(?:)UI/; + l:udJ], 

1>' = a (1:)[- I:t C; U4'+ 71 rb1, 
Now if we define new variables ~ and ~' as 

(3.20a) 

(3.20b) 

we obtain, upon taking the ratio of (3, 20a) over (3. 20b), 

, !?U;)Uw+ 1:110 
~ c= _ rtCUU)+Il¢ 

!«I:)(/t*UO + I: 
= 1- I:tC(u*U~) 0 

This is the same as Eqo (3,19)0 That is, the nonlinear 
transformation properties of the coset space SU(2, 2/1)/ 
SU(2, 2)0 U(l) coincide with those of I/J/rb, where W 
transforms as the fundamental linear representation of 
SU(2,2/1L 

Clearly, all the calculations we have done in this 
section with the group SU(2, 2/1) can be carried to its 
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subgroup OSp(1/4). The spinors 1:, ~, and e are then 
Majorana spinors; u, v, v', and U' are equal to 1; and 
U, V, V', and W satisfy (2 0 20)0 Equation (3,19) then 
provides a nonlinear representation of OSp(1/4) on the 
coset space OSp(1/4)/SO(3, 2), 

IV. JORDAN AND TRACELESS (WEDGE) 
ALGEBRASFORSU~2n) 

We have seen that the action of a general element 
n of SU(2, 2/1) on the five-component column X is such 
that 

(4.1) 

The matrices n form a five-dimensional l6 irreducible 
representation of SU(2, 2/1), Another, inequivalent five
dimensional irreducible representation can be obtained 
by considering the transformation properties of xt 
instead of X, One has 

where, as one easily findS 

2 -; -; [1- ~- Cl:l:t 

h 03l1.(l:) = 1 +a 

ott 

(4,2) 

(4.3) 

K(I:) differs from K(I:)t in the sign of its upper right
hand entry, This comes from the anticommutation 
properties of I: and I/J. We note the following identity, 

K(I:)03K(- (.1:)0 (4.4) 

We now introduce a 5 x 5 unitary matrix C defined as 

- [C OJ (03 0 1 . (4.5) 

Since n is such that it leaves the bilinear form (201) 
invariant, It is clear that 

(4,6) 

From (4.,2) we obtain for the transformation properties 
of xtC 

xtC - (X')t- =xtnc = (xton-I, (4,7) 

the last step following from Eqo (4,6), Clearly the 
transformation properties of xtC are unitarily equiva
lent to those of X t

, 

We can consider the direct product of the 5 and 5 rep
resentations, which we write as follOWS, 

":;' =XX-t /- = [i/JI//C if!<fJ*J - ",-- ¢i/,tc dJ<fJ* 0 

Under the group action (4,1) we have 

;S -;S' =x'(XtC)' = nxxtcn-1 = n;sn-1
, 

Thus :s transforms as a 25-dimensional representation 
of SU(2, 2/1)0 Such a representation however is not ir
reducible, Indeed, recalling the 5 x 5 matrix A defined in 
Eq, (2,11), one easily finds that 

Tr(;SA) = Tr(XXtCA) =XtCX= (X,X), (40 10) 

Hence Tr(;SA) is invariant under the group action (4,9), 
which means that it transforms as an irreducible part 
of ;S, The 5 x 5 matrix ;So, defined as 
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:::0 =::: + t I Tr(::;.\) (4,11) 

then satisfies 

Tr(20.\) = 0, (4,12) 

and it transforms irreducibly like the 24-dimensional 
adjoint representation of SU(2, 2/1), 11 

Let us rewrite the components of Z given in Eq, (4. 8) 
as follows, 

- [1/J1/Jtc 1/Jrp*J [AC BJ .::. = rpl//C rprp* = BtC D ' (4,13a) 

Here we see that A is a 4 X4 matrix made out of com
plex commuting numbers (each entry is the product of 
two anticommuting numbers), D is a commuting num
ber, and B is a four-column made out of anticommuting 
numbers, Furthermore we have 

(4,14) 

(4,15) 

We note however that the matrix (4. 13a) has been 
constructed in a very special way, namely, as the prod
uct of X times xtC, We now consider a general 5X5 
matrix Z, defined as 

(4, 13b) 

the only requirements on A, B, and D being that (i) Eqs. 
(4.14) and (4.15) be satisfied, (ii) A and D be made out 
of complex commuting numbers, and (iii) B be made out 
of complex anticommuting numbers, Such a matrix 
depends in general on 25 (commuting or anticommuting) 
parameters. We denote by /!1 the space of all such 
matrices. 

Let :::1 and :::2 be two elements of /I}. We define the 
following symmetrical product of :::1 and Z2, which we 
denote by a dot, 

Zt·Z2=~(::;tZ2+:::2Z1). (4.16) 

Let us check that this product closes in/l}, We have 

Zt'z2=i{(~1~ ~:)(~~~ ~:)+(~;~ ~:)(~t~ ~:)} 
_.! ((A,CA, + B,Bl + A,CA, + B,El)e (A,CB, + B,D, + A,CB, + B'.D') \ 
- 2 \(BICA, + D,Bl + BlcA, + D,BDe (BICB, + D, D, + BlcB, + D,D')j 

(AC B) 
= B~C D ' 

From the fact that 2t and :::2 are of the form (4,13b) 
with entries satisfying the requirements (i), (ii), and 
(iii), it is not difficult to show that :::t ':::2 is also of the 
form (4,13b) (1, e., Bo = B) and that A, B, and D satisfy 
the three requirements, 

Having defined such a symmetrical product we can 
easily check that it satisfies the Jordan identity, namely 

(4,17) 

That is, we have endowed the space/l} with the struc
ture of a Jordan algebra, 

Let n be an element of SU(2, 2/1). In analogy with 
Eq, (4,9) we define a mapping of In onto In as fOllows, 
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(4.18) 

That such a mapping sends an element of /!1 into another 
element of /I} can be seen by decomposing n as KU and 
verifying explicitly that both UZU-t and KZWt belong to 
In, The fact that the mapping (4,18) is "onto" follows 
immediately from the observation that an element :::t 
in/!1 is obtained through (4.18) from the element n-t:::tn, 

Clearly, the mapping (4,18) is an automorphism of 
the Jordan product (4,16), Indeed we have, for any :::1 

and Z2 in/l} 

= ~(n:::tn-tn:::2n-t + nz2n-tn::: 1n-1) 
= tn(::;t:::2 + :::2Zt)n-t 

= (Zt ':::2)'· (4,19) 

Hence any n belonging to SU(2, 2/1) induces an auto
morphism of the Jordan algebra defined by (4,18), and 
SU(2, 2/1) is a group of these automorphisms, 

One can define another algebra, which is reminiscent 
of the wedge algebra of Gell-Mann, Michel, and Radi
cati,8 that also admits SU(2, 2/1) as an automorphism 
group, We first consider the subspace!flo of the space 

In which is spanned by all the elements :::0 of /!1 for 
which [recall Eq, (4,12)1 

Tr(Zo.\) =0, 

Now for any n in SU(2, 2/1) and any Z in/Y, the follow
ing identity holds, 

(4.20) 

Thus the mapping (4,18) sends an arbitrary element of 
In 0 into some other element of In 0' Let :::01 and Z02 both 
belong to !flo' We define the following product of these 
two elements, which is manifestly closed in!fl 0, 

(4,21) 

From Eqs, (4,19) and (4,20) it is clear that the map
ping (4,18) is an automorphism of this product, Hence 
SU(2, 2/1) is a group of automorphisms of the wedge 
algebra, 

We have seen that SU(2, 2/1) is a group of auto
morphisms of both the Jordan and the wedge algebras, 
Strictly speaking however it is not the most general 
group of such automorphisms, Indeed, as one can con
vince onself of, any automorphism g of the Grassmann 
algebra will also induce an automorphism of the algebra 
defined by (4,16) and (4,21), Moreover, g is different 
from any mapping of the type (4,18), Let G denote the 
group of all the automorphisms of the Grassmann alge
bra, and consider the product of two automorphisms 
g and n of the Jordan and wedge algebras, Clearly this 
product is also an automorphism) and one can show that 
the set of all such products forms a group g, It may be 
interesting to point out that g is in fact the semidirect 
product G@SU(2,2/1), That is, both G and SU(2, 2/1) 
are subgroups of g, The latter is an invariant sub
group with the property that g /SU (2, 2/1) - G, whereas 
the former is not an invariant subgroup. 

The set of all the elements :::0 of the wedge algebra 
spans a space on which the group SU(2, 2/1) is rep-
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resented as in (4.18). That representation however is 
equivalent to the adjoint representationo Indeed, recall
ing Eqo (4. 13b) and the defining properties of :So one 
can see that any object of the form i:So is nothing but a 
generator of SU(2, 2/1) on which the adjoint representa
tion is defined as i:So -i:So=n(i:So)n- l

o This situation is 
very reminiscent of the one encountered in dealing with 
SU(n), when the wedge algebra is defined on those same 
A-matrices that generate the groupo In the case of the 
symplectic or orthogonal groups however, symmetric 
and antisymmetric algebras which admit Sp(2n) and 
SO(n) as automorphism groups are most simply con
structed on different spaces. Analogously, we will 
consider in the next section the example of the 
GLG OSp(1/4) and construct, on spaces different from 
the space of the generators, Jordan and wedge algebras 
which will indeed admit OSp(1/4) as a group of 
automorphisms o 

V. JORDAN AND WEDGE ALGEBRAS FOR 
OSp(1/4) 

We recall the way the subgroup OSp(1/4) of SU(2, 2/1) 
was obtained in Sec, II. For the even part we take all 
the elements of the form (2.3) which satisfy Eq. (2.20) 
in addition to (2.4a) and (2. 5)0 Explicitly 

U = [~ ~J. (5.1) 

(5 0 2) 

On the other hand, the odd part of OSp(1/4) is spanned 
by elements like (2.15), with t satisfying the Majorana 
constraint. In this case (2. 15) can be re- expressed as 

[

I - -{~ tt
T

(iy2C) at] 
J((t) = a 

- atT(ilC) a 
with 

A general element of OSp(I/4) can then be written as 
r:J=J((t)U(U), and it is not difficult to show that it 
leaves the following bilinear form invariant, 

(5.5) 

Here I/J and X are four-component Majorana spinors, 
whereas ct> and ware one-component real commuting 
scalars, 

The adjoint representation of OSp(1/4) can be realized 
on the elements of the corresponding GLAo Indeed the 
odd and even elements of the GLA are respectively 

e = [_ eT~iiC) ~J, L = [~ ~J. 
with e and L satisfying 

fJ=iy2 fJ*, LtC+CL=O, (ii)L*(ii)=L. (5 0 7) 

If 0 stands for an arbitrary element of the GLA one 
obtains a realization of the adjoint representation of the 
group as 

Each such mapping of the GLA onto itself is in fact an 
automorphis mo 
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The Jordan and wedge algebras for OSp(1/4) can be 
constructed in a way very similar to the corresponding 
construction for SU(2, 2/1). We start with the five
component column X = (:), where w is a Maiorana 
spinor and rfJ a real commuting scalar. The group 
OSp(1/4) can then be represented on X as X - X' = DXo 
Introducing a 5 x 5 matrix r as 

r = [i~2 ~J, (5.9) 

one then finds for the transformation properties of 
xTrC, 

xTrc =xtC - xti1c =xtcn-1 = (X TrCln- l
• (5 0 10) 

We now consider the set of all 5 x 5 matrices::: of the 
form 

- [A(ii C) BJ 
::.. = BT(iiC) D ' 

where A and D are made out of commuting numbers, B 

is made out of anticommuting numbers, and A, B, and 
D satisfy 

AT=_A, (ii)A*(ii)=A, 

B =it,2B*, 

D=D*. 

(5012) 

(5.13) 

(5.14) 

We see that a general matrix::: depends on eleven 
parameters. Clearly, the matrix XXTrC is of the form 
(5.11). Given two matrices :::1 and :S2 of the form (5.11), 
their symmetrized product 

is also of that form. The Jordan identity is easily 
checked, which means that we have a Jordan algebra of 
the :::-matrices o One can then define a mapping of the 
set of these matrices onto itself as follows, 

n being an arbitrary element of OSp(1/4lo Clearly, such 
a mapping is an automorphism of the Jordan algebra. 

A wedge algebra can also be defined in this case, 
again by considering the set of all matrices Zo which 
are of the form (50 11) and in addition satisfy the con
straint Tr(ZoA) = 0 0 This constraint is preserved under 
the mapping (5.16), as well as under the wedge product 

ZOl \/ Z02 = ZOl . Z02 + i 1 Tr{ZOl . Z02A}0 (5.17) 

Again, OSp(1/4) is a group of automorphlsms of the 
wedge algebra. The space of all matrices Zo corre
sponds to the ten-dimensional representation of 
OSp(1/4) which occurs in the direct product 
decomposition 

Since the wedge and Jordan algebras have dimension
alities 10 and 11 respectively, it is clear that they dif
fer from the adjoint representation, of dimension 140 
It is interesting to look a little bit more closely into the 
representation defined on the wedge algebra. To do this 
let us first consider the set of all those generators of 
SU(2, 2/1) which are orthogonal to the generators of 
OSp(I/4), 1. e" the generators of the coset space 
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SU(2, 2/1)/OSp(1/4). For the odd part we want elements 
like (2.9) such that 8 does not have any Majorana parL 
Clearly then 8 = - (ii 8*), and we have 

_ - [0 8] 8 __ . 28* e ... - 8T(iy2C) 0' - ly • (5. IS) 

For the even part we want the elements of the Lie alge
bra of SU(2, 2)0 U(I), other than the ones included in 
(5. 6). They are of the form 

(5.19) 

with Land 1 satisfying 

LtC+CL=O, (ii)L*(ii)=-L, l=-l*. (5.20) 

Now take the direct sum of the spaces spanned by ele
ments of the form e~ and L i. It is not difficult to see 
that this precisely corresponds to the set of all elements 
of the form i:=:o. This means that the elements of the 
wedge algebra in fact parametrize the cosets of the de
composition of SU(2, 2/1) with respect to OSp(1/4), and 
the representation of OSp(I/4) on the elements of the 
wedge algebra is in fact a representation on the coset 
space SU(2, 2/1)/OSp(I/4). 

VI. CONCLUSION 

We have shown that groups like SU(2, 2/1) and 
OSp(I/4), which are relevant to supergravity and 
supersymmetric theories in general can be expressed 
as finite transformations in a manifold which one may 
interpret as a coset space. Such supergroups can also 
be related to automorphisms of algebras of extended ob
servables comprising bosons and fermions. It is ap
parent that much of these properties are in fact more 
general than the context in which we have introduced 
them, and can be derived for a large class of graded 
Lie groups. Our results may be used, for instance, to 
obtain nonlinear transformation laws of fields in locally 
supersymmetric gauge theones. We hope to pursue 
these lines in a future report 

APPENDIX 

Let X = (:). We consider a general linear transforma
tion of the type X - X' =(::), which we write as 

X'=nx=[A BJ(IjJ) Et D ¢. (AI) 

Here A and D are made out of complex commuting num
bers, whereas Band Et are made out of complex anti
commuting numbers. Requiring invariance of the bi
linear form (2.1) under the transformation (AI) we get 

IjJtCx + ¢*w 

= ljJ,tcx' + ¢'*w' 

= (1/At + ¢*Bt)C(Ax + Bw) + (- IjJtE + ¢*D*)(EtX+ Dw) 

= IjJt(AtCA - EEt)x + IjJt(AtCB - ED)w 

+ ¢*(BtCA + D*Et)x + ¢*(BtCB + D*D)w. 

Since 1jJ, X, ¢, and ware arbitrary it is not difficult to 
show that one must have18 

(A2) 
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Bt CB+D*D=I, 

AtCB - ED=O =BtCA + D*Et. 

(A3) 

(A4) 

We now try to find the most general A, B, E, and D 
which satisfy these equations. In order to do so we will 
write down several Ansiitze which are suggested by the 
final form we want to reach. 

We know that E is a four-component anticommuting 
object. It is not difficult to see that there always exists 
another four-column I; such that 

(A5) 

On the other hand, A is a 4 x4 matrix with complex 
commuting entries. Again one can show that A can al
ways be written as 

(A6) 

where I; and a are the specific ones appearing in Eq. 
(A5). H is a general 4 x4 matrix with complex commut
ing entries. If we substitute (A5) and (A6) into (A2) we 
now have 

C + (aC l;)(aC I;)t 

= C +EEt =AtCA 

= Ht (I - 1 a: a c(HS)(HI;)t) C (I - /: a (HS)(H I;)tC) H 

= HtCH - -~ (HtCH)l;l;t(HtCH) 
l+a 

+(_~)2 [(Ht CH)I;(l;t HtCHS)l;t (Ht CH)l 
l+a . (A7) 

It is easy to see that a sufficient condition for (A7) to 
hold is that HtCH = C. We will now show that this is also 
a necessary condition. 

Suppose that the Grassmann algebra we are working 
with has 2n generators. That is, there are 2n linearly 
independent real anticommuting numbers which are not 
odd degree polynomials in other anticommuting num
bers. [In the SU(2, 2/1) case for instance, n = 4. 1 Then 
the following holds true~ An arbitrary 111 x III commuting 
matrix H, provided that its complex part Ho is not 
Singular (by "complex part" we mean the part which is 
not the coefficient of any product of anticommuting num
bers), can always be written as follows; 

H = HoH2 H4 ••• H2n , 

H2k =I+hzk , 

(AS) 

(A9) 

where h2k does not contain any product of anticommuting 
numbers whose degree is less than 2k. It is not difficult 
to convince oneself that such a decomposition holds 
true. Indeed if Ho, H2,"', and H2k _2 are known, and 
since Ho has an inverse, one can always find an h2k such 
that the product HoH2 • •• H2k matches H in (2k)th degree 
of products of anticommuting numbers. But then, no 
further contribution in (2k)th degree is produced, so 
(AS) and (A9) follow, We note however that this de
composition is far from being unique. 

The left- and right-hand sides of Eq. (A7) must agree 
in all degrees of products of anticommuting numbers. 
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Independently of the validity of (AS) and (A9), the zeroth 
degree resulting equation is simply 

HriCHo = c, (A1D) 

This shows, among other things, that Ho is not singular, 
which means that (AS) and (A9) now hold, We now 
proceed by induction to show that there exists a de
composition such that H~kCH2k = C for all k, Let this 
hold up to k =l- 1, Substitution of (A8) into (A7) then 
yields 

C + (aC?:) (aC ?:)t 

2a2 
= (H1,', ·~,CH21'" H 2n )- 1 +a (14n" '~ICH2'" ,H2n ) 

x ?:?:t(Ht··· ~ICH2'" .H2n ) + (1 a~ar 
x (?:tHL", H~,CH2/" ,H2n ?:) 

X (~n'" H;,CH21' ,. H2n )?:?:t(~n ••• ~,CH2"" H2n ). 

To order 2l this is equivalent to 

2a2 

C + (aC?:)(aC?:)t =H~,CH21- 1 + a C?:?:tc 

+ (la: aY (?:tC?:)C?:?:tC. 

But this implies that 

~,CH21 = C +O(2l + 2). 

Without loss of generality however one can take 
Hi,CH2/ = C exactly. Indeed, as one can convince one
self of, this simply amounts to a redefinition of H21+2' 
which is consistent with Eq. (A9). This in fact com
pletes the proof by induction. The upshot of all this is 
that A can always be written as in Eq. (A6), H being 
such that 

HtCH=C. (All) 

But this in turn means that 

A= (1- /~aHnt HtC )H=H(I- -{~a ?:?:tC). (A12) 

Having parametrized A and E in terms of Hand?: we 
now turn to Band D. From (A12), (All), and (2.1S) one 
finds that 

A-l=(I+l:a?:?:tC)(-C~C). (A13) 

Making use of the second part of equation (A4) we ob
tain through (A5) and (A13) 

Bt =_ D*EtA-1C-1 

=_ D* (a ?:t Ct ) (1+ _fJ_ ?:?:t c)(_ CHtC)C1 
1 +a 

Hence 
B=H?:D. (A14) 

With the help of Eq. (All) we can eliminate B from 
(A3) and (A14). We get 
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1 =D*D+ D*?:tHtCH?:D 

=D*D(l + ?:tcn 

=D*Da-2, 
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This means that 

D=fJU, (A15) 

where U is an arbitrary complex commuting number of 
modulus unity. We have now parametriz'ed all four ob
jects A, B, E, and D in terms of H, ?:, and u. Equa
tions (A5), (A12), (A14), and (A15) can be written 
together as 

But, owing to (All), this is Simply equivalent to 

a. =K(H?:)U(H, u), (A16) 

with K and U as in (2.15) and (2.3) respectively. This 
completes the proof of the statement that an arbitrary 
transformation leaving the bilinear form (2.1) invariant 
can be written as the product of an odd times an even 
transformation. 

The other result we want to establish here is the fol
lowing~ Given a 4 X4 matrix H, made out of complex 
commuting numbers and satisfying Eq. (2.4a), then it 
can be written in the form ehoe\ where ho is a 4 x4 
matrix made out of complex numbers, h is a 4 x4 
matrix made out of complex commuting numbers of at 
least second degree in products of anticommuting num
bers, and both ho and h satisfy Eq. (2.6a). The proof is 
fairly straightforward, relying on similar known re
sults for ordinary Lie groups and complex numbers, 
so we only outline it. First it is not difficult to show 
that any matrix [not necessarily satisfying (2.4a)1, 
provided its "complex part" is not Singular, can be 
written in the form ehoe h

, with ho and h as indicated 
[but not necessarily satisfying (2.6a)). The matrix h is 
unique. So let H now satisfy (2.4a) and let H = ehoe\ We 
want to show that ho and h satisfy (2.6a), We have 

which implies that 

ehbCeho = C, 

ehtCeh = C. 

(A17) 

(A18) 

From Eq. (A17) and well known results of classical 
Lie group theory, we see that ho satisfies Eq. (2,6a). 
On the other hand (A18) can be rewritten as 

from which we obtain that 

exp(C-1ht c) exp(h) =1, 

Multiplying on the right with e-h we now have 

exp(C-1ht c) = exp(- h). 

From this and the uniqueness of h we conclude that 

(A19) 

EqUation (A19) means that h also satisfies (2,6a), and 
this completes the proof. 
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A Galileian formulation of spin. I. Clifford algebras and 
spin groupsa) 
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By generalizing the concept of spin group to the case where the underlying orthogonal space is degenerate, 
the spin group associated with the homogeneous Galilei group is calculated. In so doing. the Galilei group 
and its spin group are clearly displayed as stability subgroups of the de Sitter group and its spin group. A 
notion of Clifford algebra contraction is introduced in the physical (Galilei) case and its relation to Lie 
algebra contraction is explored. Both the stated generalization of spin group to cases with degenerate 
bilinear form and the idea of Clifford algebra contraction appear to be new. 

1. INTRODUCTION 

Spin groups arise in physics in various contexts. 

In nuclear and elementary particle physics for exam
ple, the group SU(2) (often in connection with isospin) 
is ever present. Of course SU(2) is just the spin group 
associated to the rotation group SO(3). In relativistic 
quantum mechanics and field theory as well as in gen
eral relativity, the group SL(2;<I:) being the spin group 
of the Lorentz group, plays a basic role (for example, 
in the former with respect to representation theory and 
in the latter with respect to the spinor analysis of 
curvature tensors and radiation fields). The theory of 
twistors which has applications to the problem of quan
tizing null fields in general relativity requires for its 
formulation, the spin group SU(2, 2) of the conformal 
group SO(2, 4).1 The de Sitter group SO(1, 4) often turns 
up in cosmology and extended theories of the electron2- 4 

as well as in some possibly unexpected places such as 
the Kepler problem. 5 Its spin group naturally finds a 
place in such applications. 

While not generally the case, the twofold and univer
sal coverings of pseudo-orthogonal groups of physical 
interest quite frequently coincide. In such instances, 
especially involving quantum theory, a knowledge of 
the representation theory of the corresponding spin 
group is essential (for then, one is compelled to admit 
proj ective representations and consequently wants to 
know all about the universal covering'" spin group), 6-8 

lnteres t in the Galilei group is not solely due to its 
role as kinematical group of nonrelativistic physics, al
though this is reason enough. (In the literature, to the 
knowledge of the author, there seems to be no treatment 
of nonrelativistic spin analogous to and as aesthetically 
pleasing as that given for the relativistic situation. ) 
Partly due to the somewhat limited successes and many 
difficulties of relativistic quantum field theory, more 
and more attention is being focused on Galileian meth
ods and notions. Infinite momentum frame9 and light
cone quantizationlO schemes typically involve Galilei
like invariances, With the recent upsurge of interest 
in gravitation as a gauge theory, the Galilei-like in
homogeneous SO(1, n-l) has been suggested as a possi
ble gauge group. 11 

a)Supported in part by a National Research Council of Canada 
Postgraduate Scholnrship. 

Finally, with the current great popularity of relativis
tic super symmetry theories, one may ask what happens 
in the nonrelativistic situation. For this, one would re
quire a notion of Galilei spinors, 

Although the number and type of possible applications 
of a general theory of Galilei-like spinors is likely to 
be rather large and diverse (for example whenever one 
deals with an inhomogeneous pseudo-orthogonal group), 
the aim of this paper is merely to formulate the con
cept in a manner reminiscent of the Lorentz construc
tion. After the completion of this paper, the author 
stumbled onto some old papers of Clifford12 and 
others13 ,11 which contain ideas very close to what is 
presented here. (These references are the earliest the 
author has located and they are concerned only with 
the group of Euclidean motions and its representation in 
terms of biquaternions. In such a form, the route to 
generalization is not at all obvious, but it seems fitting 
that the general theory of the algebras bearing Clifford's 
name should offer such an avenue.) Additionally, the 
newer text15 puts some of the ideas found in the earlier 
papers to use in mechanics. 

In order to better understand the relations between 
relativistic and nonrelativistic theory, various con
cepts of Lie group and Lie algebra contraction have been 
proposed. 16-19 Motivated by calculations pertaining to 
the Galilei spin group, one may also devise a type of 
"Clifford algebra contraction" which it turns out, is 
intimately connected to the Lie algebra contraction 
schemes, and which seems not to have appeared pre
viously in the literature. 

Part I of the paper is organized as follows. Section 2 
deals with arbitrary real orthogonal spaces and em
beddinus20-23 and then introduces the notions of Clifford 
algebr~s and spin groups. 24-30 Sections 3 and 4 motivate 
and elaborate on the Galileian case. Section 5 discusses 
the relationship between the Galilei and de Sitter groups 
(for de Sitter31- 34 and for Galilei-de Sitter35 ,3G). Sec
tion 6 involves Lie algebras and contractions (both Lie 
and Clifford). Section 7 indicates some possible future 
directions of study along with general remarks. 

Part II of this paper is concerned mainly with specific 
matrix representations of the Galilei spin group and 
their relation to the de Sitter spin group representa
tions. As one requires for this the use of matrices 
over noncommutative fields (quaternions) a few of the 
generalities are developed. 
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2. REAL ORTHOGONAL SPACES, CLIFFORD 
ALGEBRAS AND SPIN GROUPS 

By IRT,P,. we mean the space IR", n =p +q + r, together 
with the quadratic form Q (or equivalently its asso
ciated bilinear form): 

Q(a) = _ (aT+1)2 _ ••• _ (aT+P)2 + (aT+P+1)2 + ... + (a")2, 

where a = (a1, ••• , aT, aT
+1 , ••• , aT+P, aT+P+1, ••• , a") 

belongs to IR". 

(2.1) 

The symmetric bilinear form B on IR" associated to 
Q (as a matrix with respect to the natural bases) is 
B = diag(O, ••• ,0, - 1, ... ,- 1, 1, ••• , 1) with r zeros 
p minus ones, and q plus ones. The form B is non
degenerate precisely when r = 0 and in this case one 
writes IRP'. for IRo,P, •• 

A simple argument which will be omitted shows that 
IRP+T, .+T is the nondegenerate real orthogonal space of 
least dimension which contains the real orthogonal 
space IRT,P,. as an orthogonal subspace. For example, 
the degenerate space IR1,O,3 (which is the prototype of 
Galileian space-times) is minimally embedded in the 
nondegenerate IR1,4 (which contains the de Sitter 
space-time as an hyperboloid). 

A real Clifford algebra for the real orthogonal space 
X is an algebra C, generated as a ring by IR and X, 
subject to the conditions: 

x2 + B(x, x)1 = 0, (2.2) 

where x E: X, 1 = unity in C identified with 1 E: JR. In 
addition, C is to be associative and to contain IR and X 
isomorphically as linear subspaces. All Clifford alge
bras are to be regarded as real algebras. A construc
tive definition is the following. Let T be the covariant 
tensor algebra of X and let I be the ideal of T generated 
by the elements x0 x +B(x,x)1, for XE: X. The quotient 
A = T /1 is a Clifford algebra for X and in fact dimA = 2" 
when n = dimX. 

An orthonormal subset of C is a linearly independent 
set {e i }, eiE: X such that: 

(e i )2=_B(ei ,ei )=_1 or 0 or 1 (2.3a) 

(2.3b) 

It is said to be of type (r,p,q) if r of the squares equal 
0, p equal 1, and q equal - 1. When r = 0 we speak of 
type (p, q). 

The following results, stated here without proof, may 
be found in37

: 

(i) If C is a Clifford algebra for an n-dimensional 
orthogonal space, then dimC "" 2". 

(ii) If C is a Clifford algebra for an n-dimensional 
nondegenerate orthogonal space X of signature (p, q) 
then dimC = 2" or 2"-1, and the second case being possi
ble only if p - q - 1 is divisible by 4 (in fact, when n 
is odd and e1e2 ••• en = ± 1 for any orthonormal basis 
{ei} of X). 

(iii) All 2n-dimensional Clifford algebras for an n
dimensional real orthogonal space are isomorphic. 

On account of (iii) Porteous refers to the unique-up-
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to-isomorphism Clifford algebra of dimension 2" for X 
of dimension n, as the universal Clifford algebra for 
X. For X =IRT,P,., we denote the universal Clifford alge
bra by IRT,P,.' Generally Cx will stand for the universal 
Clifford algebra for the orthogonal space X. 

Although not necessary for the present work, (ii) may 
be generalized. A generalization is stated without 
proof as: 

Proposition 2. 1: Let eO, e1, ••• , en be an orthonormal 
basis of type (1,p, q) with (eO)2 = 0 and n = p + q. Let C 
be the Clifford algebra generated by the ei's. Then 

(i) dimC = 2"+1 if n is even or if n is odd and eO, 
eOe l ••• e" are linearly independent, 

(ii) dimC = 3 x 2n-1 if n is odd and eO, eOe1 ••• en are 
linearly dependent. 0 

The orthogonal involution - Ilx of X induces on C x the 
main involution 1\ defined as follows: 

1~ = 1, (eQ! l eQ!2 ••• eQ!T)A= (_l)TeQ! l eQ!2 ••• eQ!T, (2.4) 

with a l < a2 < •.• < aT and {e"'} an orthonormal basis 
of X. 

The orthogonal involution - !I.x of X also induces on 
C x the conjugation anti-involution-defined as follows: 

1-= 1, (eQ! l e"'2 ••• eQ!T)-= (_ 1)TeQ!T ••• eQ!2 eQ!1, (2.5) 

with the a's and e's as in (2.4). 

The main involution provides a direct sum decomposi
tion of Cx into even and odd elements (Ci,C x, 
respectively) 

C;'={ac:Cx:aA=a}, Cx={aC:Cx:aA=-a}. (2.6) 

One calls Ci the even Clifford algebra of X. 

It can be shown that for the universal Clifford alge
bra IRT,P,. 

(2.7) 

For a proof when r = 0 see Ref. 38; the general case 
follows in a similar way. 

Defining r x = {g E: C x : g -I exists and gxg A -1 c: X, 
for x E: X} we can see easily39 that each g E: r x defines 
an orthogonal automorphism Px(g) of X by setting 
Px(g) x =gxg A-1 for XE: X. Furthermore, r x is a group 
uniquely defined up to isomorphism on account of uni
versality of C x. One calls r x the Clifford group and 
ri = r x rl Ci the even Clifford group of X. 

The norm on Cx is the mapping N :Cx -Cx by 

In analogy to the nondegenerate case, we define 
Pin(X) ={gc: r x :N(g) =± 1} and Spin(X) 
={gE: ri: N(g) =± 1}. Of course for nondegenerate 

(2.8) 

X, the mappings Pin (X) - O(X) and Spin(X) - SO(X) by 
g - Px(g) are surj ective homomorphisms whose kernels 
are isomorphic to Z'2 and Pin(X), Spin(X) are the two
fold covering groups of O(X), SO(X), respectively. 

The extent to which we have similar results for 
arbitrary degenerate X is at present unsettled. To ob
tain useful results, it may in fact be necessary to 
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modify the above definitions in the degenerate situation 
(for example, use some proj ective Clifford groups40). 
However, in the degenerate cases of immediate physical 
interest where X = lR1,p, 9 the above definitions do suffice 
as will become clear in the next section. 

3. THE PHYSICAL CASE: SPIN(GALILEI) 

As briefly noted earlier, lRI ,0,3 is the simplest model 
of a Galileian space-time. (To be more precise, one 
requires on lR4 a symmetric twice-contravariant tensor 
field y of rank three and a nowhere zero I-form e in 
the kernel of y.41-43) To see this from a group theoreti
cal viewpoint, let y = (y"'8) = diag(O, 1, 1, 1) so that 

O(y) = {gE GL(4;lR) :gn/ = y} 

= {(~ ~) :O*a real, bElR
3
, REO(3)} ' 

SO(y) t = time-orientation preserving SO(y) 

= {(~ ~):bElR3, RESO(3)} 

~ Go the homogeneous Galilei group. 

Consequently, we identify Spin(Go) with Spin(lRl,0,3) 
which we now proceed to determine. Assume {e"'}, 
0'= 0,1,2,3, is an orthonormal basis of X =lR1,0,3 of 
type (1,0,3) which moreover generates C x =lRl ° 3, 
the universal Galilei Clifford algebra. Thus lRl: 0: 3 
= algebra generated by eO, et, e2

, e3 and lRj,0,3 
- span{1 eOe l eOe2 eOe3 e1e2 e2e3 e3e1 eOe1e2e3} Con-
- ""'" . 
jugation is defined by: 

I" = 1, e"'- = - e"', (e'" e8)" = - e"'e 8 (a * (3), (3.1a) 

(e'" e8eY)" = e'" e8eY (a, (3, y distinct), 

(eOe 1e2e3)"= 00e l e2e3, 

where 0 ~ a, (3, y ~ 3. 

(3. Ib) 

First we determine those s E lRi ° 3 of norm N(s) = ± 1. 
An arbitrary sEmi, 0, 3 may be wriit~n as 

s=a+be, 

with 

(3.2a) 

a = aOl + a 1e2e3 + a2e3e 1 + a3eleZ, (3.2b) 

b = bOl + ble2e3 + b2e3el + b3e1e2, e =eOe le2e3• (3.2b) 

Noticing that ae=ea, be=eb, e"=e, (e)2=0, we have 
s" = a" + b-e so that N(s) = s-s = a"a + (a-b + bOa) e with the 
result that 

N(s) =± 1 <='> a-a=± 1, a"b + b-a=O. (3.3) 

This requires ± 1 = a"a = (aO)2 + (a 1)2 + (a2 )2 + (a3)2 and 
0= a"b + bOa = 2 (aObO + albl + a2b2 + a3b3) with the result 
that only N(s) = 1 is possible. Noting that for such s, 
5 = sand se'" s"1 E span{ eO, et, e2, e3}; and in fact by 
tedious calculation: 

(3.4a) 

se1s-1 = 2(aob1 _ albo + a3b2 _ a2b3)eO 

+ «aO)2 + (a1)2 _ (a2)2 _ (a3)2)e1 

+ 2(a1a2 + aOa3) e2 + 2(a1a3 _ aOa2) e3, (3.4b) 
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Se2S"1 =2(aOb2 _ a2bO + a1b3 _ a3b1) eO + 2 (a 1a2 _ aOa3) e1 

+ «aO)2 _ (a 1)2 + (a2)2 _ (a3 )2) e2 + 2 (a2a3 + aOa1)e3 

(3.4c) 

se3 s-1 = 2 (aOb 3 _ a3bo + a2b1 _ a1b2) eO + 2(a1a3 + aOa2) e1 

+ 2 (a2a3 _ aOa1)e2 + «aO)2 _ (a1)2 _ (a2)2 + (a3)2) e3• 

(3.4d) 

We have therefore 

Theorem 3.1: Spin(Galilei) ={a + be: a"a = 1, a-b + bOa 
=O}, where 

a = aOl + a1e2e3 + a2 e3e1 + a3e1e2, 

b = bOl + b1e2e3 + b2e3e1 + b3e1e2, e = eOe1e2e3 

and 

1 = a-a = (aO)2 + (a 1)2 + (a 2)2 + (a3)2 

o = ~(a"b + boa) = aObo + alb l + a2b2 + a3b3• 

Topologically, Spin(Go) is rather simple: a-a = 1 can 
be interpreted by saying that the vector (aO, at, a2, a3) 

E m4 lies on the unit sphere 53, and a"b + bOa = 0 says 
that the vector (bO, b1, b2

, b3) is perpendicular (in 
Euclidean lR4) to the radius vector (aO, at, a2, a3) which 
means that the pair (a, b) belongs to T53

, the tangent 
bundle of 53. Thus Spin(Go) is homeomorphic to T53 

which is homeomorphic to lR3 x 53 because 53 is also a 
Lie group. 

The group structure can also be analyzed. We have 

(a + be) (a' + b'e) = aa' + (ab' + ba') e, (3.5) 

where of course, 

a-a=l=a'-a' and a-b+b"a=O=a'"b'+b'"o'. (3.6) 

From this, we notice two distinguished subgroups 

H={a: a-a=I}~53~Spin(SO(3» 

and 

K={t+be: b"+b=0}~lR3 as Lie groups. 

It is easy to check that 

Spin(Go) =H' K, 

HriK={l}, 

K <I Spin(Go) [K normal in Spin(Go) 1 
H Il C(K) ={- 1, I}, 

(3.7a) 

(3.7b) 

(3. 7 c) 

(3.7d) 

where C(K) = centralizer of K ={gE Spin(Go):glz = l?g, 
kE K} and therefore44 

Spin(Go)/{- 1, I} 

= (H. K)/(C(K) n H) ~K® (H/(C(K) nH» 

~lR3® (Spin(so(3»/{- 1, I}) ~lR3 ®SO(3), 

(3.8) 

(3.9) 

with the semidirect product being unique up to isomor
phism. In fact, Spin(Go) ~lR3 @Spin(SO(3» with the 
Spin(SO(3» action on lR3 being the obvious one. 

It turns out therefore, that Spin(Go) is precisely the 
twofold covering group of Go as indeed it should, being 
a kinematical group for nonrelativistic fermions. The 
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fact that it is also the universal covering group is some
thing of an accident as the twofold covering group need 
not be simply connected (for example, Spin'(rn.1,2) 
={SE Spin(rn.1,2): N(s)=l} is isomorphic to SL(2;rn.) 
which has 'E as its first homotopy group). 

By way of generalization, one may consider instead 
of rn.1,O,3 the space X=rn.1,I>,o. We only state the results 
here as the proof, which is much like that given for 
IRl, 0, 3, would take us too far afield. 

Theorem 3.2: Spin(rn.l,I>,0) =H 0 K (3.10) 

where H ~ Spin(rn.I>, 0) and K ~ IRn, n = p + q. Furthermore, 

H Ii K ={l}, (3.11a) 

K <J Spin(rn.l,I>,o), (3.11b) 

H Ii C(K) ={- 1, n, (3. Hc) 

and 

Spin(rn.l,I>, Q)/{ - 1, 1} ~IR" ® (Spin(rn.I>,o)/{ - 1, 1}) 

~lRn ® SO(p, q), (3.12) 

with 

{1} - {- 1, 1} -Spin(rn.l,Poo) 2 SOO,p, q) + - {l} 

an exact sequence of groups. 

4. EXPLICIT CORRESPONDENCE BETWEEN 
Go AND SPIN (Go) 

(3. 13) 

o 

Let {e",}, Q' = 0,1,2,3, be a basis of IR1,O,3 the primi
tive Galilei space-time. Let us identify {£I"}, 
(lI = 0,1,2,3, the generators of IRI ° 3 with the corre
sponding basis of (rn.4)* dual to {e,,'}:45-47 More formally, 
one would define a linear mapping y: (rn.4)* -rn.1,O,3 by 

ea -y(e"') =y" (4.1) 

so that y"'ya + yay'" = _ 2yaa instead of eaea + eae'" = _ 2yaa. 

Because Go ~rn.3 ® SO(3), an element g of Go corre
sponds to (ve, R) where v is a unitless vector in rn.3, e 
is a real constant with units of speed (say, the velocity 
of light), and R E SO(3). Of course, v defines the boost 
and R the rotation. Multiplication is as usual: 

(ve, R)(V' e ,R') = «v + RV') e, RR'). 

Each gE Go defines a transformation A(g) = A on 
frames as follows: 

where e a =eaAa",. 

(4.2) 

(4.3) 

Equivalently, it defines a coordinate transformation 

x
a 

- i a = Aa aXa 

(note that xO = et, t = time coordinate). 

Now g= (ve,R) corresponds to 

xO - iO =xo, x A - i A =vAxO +RA
Bxf3 

or 

AOo=l, AOA=O, AAO=VA, AAB=RAB 

with 1""A,B""3. 
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(4.4) 

(4.5) 

(4.6) 

It amounts to the same thing if we regard Go as acting 
on the dual coframe {ea

} instead of the frame {e",}: 

£I'" - ~a =Aa aea (4.7) 

with {e"} dual to {e a } because {£I"'} is dual to {e a }. 

There is however, an obvious action of Spin(Go) on 
coframes: 

By requiring s-le"'s=A(g)a aea, where s is the unique
up-to-a- sign element of Spin(Go) corresponding to 
gE Go, we relate the Go and Spin(Go) coframe actions. 

Explicitly, let s = a + be E Spin(Go) have the represen
tation as in Theorem 3.1. With the customary notations 
for dot and cross product in IR3 we have 1 a 12 = a-a 
= (aO)2 + (a l )2 + (a2 )2 + (a3)2 = (aO)2 + a' a = 1 and ~(a-b + b-a) 
= aObo + al b1 + a2b2 + a3b3 = aObo + a' b = O. 

Let 

R = «(aO)2 - a . a) 11.3 + 2a • aP a + 2ao J a, 

V = 2(- aOb + bOa_ aXb), 

(4.9a) 

(4.9b) 

where a. 3 = identity map of rn.3, Pax = (a • x) / (a • a) a 
= proj ection parallel to a, and J a X = aX x. A straight
forward calculation shows R E SO(3) and that 

oO=s-leOs=eO, 

~A = s-leA s = vAeO + RA BeB• 

(4. lOa) 

(4. lOb) 

Conversely, given (ve,R)E Go, R defines an axis of 
(right-hand) rotation a and an angle of rotation £I that 
can be chosen so as to satisfy along with Ra = a, 

a'a=sin2 (e/2) and (aO)2=cos2(e/2). 

Now setting 

bO=~(a'v) and b=-t{aov-axv) (4.12) 

we find that s = a + be E Spin (Go), corresponds to 
(ve,R)E: Go. 

The 2-1 relationship between the Spin(Go) and Go 
actions on coframes is now apparent and renders the 
generalization to arbitrary (possibly curved) Galilei 
space-times almost trivial. 

5. RELATION BETWEEN Go AND THE 
DE SITTER GROUP 

As noted in Sec. 2, the orthogonal space IRI,4 is the 
smallest nondegenerate space containing IR1,O,3. The 
group preserving the structure of IR1,4 is just the de 
Sitter group S = SO(l, 4), and its associated spin group 
is Spin(rn.l,4). Thanks to the embedding of IRI,O,3 in 
IR1,4 we also have subgroup embeddings of Go and 
Spin(Go) into Sand SpineS), respectively. 

It is well known that the Galilei group Go can be 
thought of as a stability subgroup of the de Sitter group 
SO(1,4)+ (namely, that associated to a de Sitter null 
vector). A similar result holds for the spin groups. 

To describe the situation, we require a representa
tion of Go on IR5, the coordinates of which are identified 
with the physical quantities of energy, momentum and 
mass. For (ve,R)E Go 
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it = E +Ve' Rp +.~ me2v ·v, (5.1a) 

p=Rp + mev, (5.1b) 

m = Ill, (5.1c) 

defines the Go transformation law on IR5. Consider the 
quadratic form V on IR5 defined by 

(E,p,III)-U(E,p,m)=p·p-2mE. (5.2) 

It is trivial to check that this form is Go invariant 

(5.3) 

and that the form when diagonalized is essentially 
diag(- 1, 1, 1, 1, 1), precisely that associated to the de 
Sitter group. Hence Go is seen to be isomorphic to a 
subgroup of SO(l, 4)t which leaves invariant the func
tion on IR5, m(E, p, m) = m. Expressing this slightly 
differently by noticing that 

U =P' p- 2mE= - 2m (E - p' p/2m) 

= - 2 x (mass) x (internal energy). (5.4) 

Go is characterized as the subgroup of SO(l, 4)t co
ordinate transformations which, as far as an observer 
is concerned, leave mass and internal energy constant. 

To see the corresponding situation in terms of spin 
groups, let us suppose that {~a}, a = 0,1,2,3,4, is an 
orthonormal basis generating IRI 4 and that Spin+(IR1.4) 
is the subgroup of Spin(IR1•4) of "hme-orientation" 
preserving elements. 48 Performing the coordinate 
transformation on IR5, 

E = (l/v'2)(E + 111), 

1TA = pA, 

/l = (1/12)(- E + 111), 

(5.5a) 

(5.5b) 

(5.5c) 

we find U=p·p-2mE=_E2+1T'1T+/l 2
• To the 1-forms 

dE, d1TA, d/l on IR5 we associate (see Sec. 4) the IR1•4 
generators ~o, ~A, ~4, respectively, and then define 

eO '" (1/f2)(~0 + ~4), eA 
'" ~A, e 4 '" (l/fi)(~O _ ~4) 

(5.6) 

so that the 1-forms dm, dpA, dE are associated to 
eO, eA

, e\ respectively. 

The thing to notice is that 

eO=(1/f2)(~0+~4), eA=~A, A=1,2,3 

defines an embedding of dual spaces (IR1•O•3)* into 
(IR1•4)*, and in fact 

e'" e S + eSe'" = - 2y'" S, ° "" Q, (3 '" 3 

so in addition we have the embedding IR1,O.3 c IR1,4' 
(Because ~a, 0"" a ~ 4, generate IR1•4 it follows that 

(5.7) 

(5.8) 

e"', ° "" 0' "" 3, generate a 16 = 24 dimensional Clifford 
algebra hence it must, by universality, be IR1•0•3.) In
variance of m becomes invariance of the 1-form dm 
which by association, becomes invariance of eO [a mani
festation of (4.10) when we identify e'" with 0"', O! 

=0,1,2,3]. All this comes about because Spin+(IR1
•
4) 

acts on ffi5 coframes {ea} by e a - ea =s-le·s. Thus 
Spin(Go) =Spin+(ffi1• 4)eO'" stabilizer of eO, is the spin 
analogue of the vector result mentioned earlier. 
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6. LIE ALGEBRAS AND LIE-CLIFFORD 
CONTRACTIONS 

Pseudo-orthogonal Lie algebras are always realizable 
within the associated even Clifford algebra, the Lie 
algebra product being the commutator. The same situa
tion is true for the Lie algebras 4 .. (1,p, q) and in par
ticular for the Galilei Lie algebrafo = 4 .. (1, 0, 3). This 
is made explicit as follows by letting: 

Jt=tEABCeBeC, Kt=teOeA, A=1,2,3 (6.1) 

where E = completely skew tensor on IR3. The Galilei 
Lie algebra relations are: 

[J~,~] =E AB cJg, 

[J~ ,K~] = E AB C Kg, 

[K~, K~] = 0, 

or symbolically 

[Jc , Jc ] =JG, 

[Jc, Kc] =Kc, 

[Kc,Kc]=O. 

(6.2a) 

(6.2b) 

(6.2c) 

(6.3a) 

(6.3b) 

(6.3c) 

A rotation through angle w about an axis n (n' n= 1) is 
represented up- to- a- sign in Spin(Go) by 

s=expw(n'Jc ) =cos(w/2)'1 +sin(w/2)'n, (6.4) 

with n = 2n' J G =n1e2e3 + n2e3e1 + n3e1e2 and a boost by 
ve is represented by 

± S = exp(ve • Kcl = 1 + Ve . KG 

= 1 + (c/2)(- v1e2e3 - v2e3e1 _ v3el(2) (6.5) 

[see Theorem 3.1 and (4.9), (4.11), (4.12)]. 

Turning to the de Sitter Lie algebra 4, we define 

Jt=tEABCL:B~C, 

KSA=t~O~A, 

pt = t ~A~4, 
Es=t~0~4, 

and note that symbolically as before 

(6.6a) 

(6.6b) 

(6.6c) 

(6.6d) 

[Js , Js1 =Js, [Js, Ks1=Ks, [Js , Ps1 = Ps, (6.7a) 

[Ks , Ks] = - J s, [Ks, P s 1 = - E s ([Kt, Ps 1 = - cAB E s), 

(6.7b) 

(6.7c) 

Weare now in a position to study the Lie algebra 
embedding of?,o in 4. As Spin(Go) is the stabilizer under 
conjugation of eO = (l/fi) (~O + ~4) then 70 should be the 
maximal Lie subalgebra .. of 4 satisfying [ca, eOl = O. 
This is easily seen to be the case because 

[ A 01 [A 0] - ~A [pA 0] Js,e =0, Ks,e = v'2 = s,e, 

(6.8) 

with the result that (Js , Ks - P s > c ... But Jt = 
=tEABCo/ec, Kt-pt=teOeA are identified with J~,K~ 
respectively; therefore, 7 ° c ... Dimensional considera-
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tions however, show the reverse inclusion and hence 
fo 3; (Js , Ks - Ps ) displays the embedding in a particular
ly transparent form. [Note: <X, y, •.• > in the foregoing 
and the following means the algebra (Lie or Clifford) or 
group generated by x, y, . c c .l 

Before introducing the Clifford algebra contraction, 
we consider some Lie algebra contractions of a slightly 
modified Inonu, Wigner, Saletan type. 

For real a let 

J t(a) = Jt, Ki(a) = cosha Ki - sinha pi, (6.9a) 

pi(a) = - sinha Ki + cosha pt, Es(a) =Es , (6.9b) 

define a mapping J s ~ Js(a), Ks - Ks(a), Ps - Ps(a), 
Es -Es(a). The Js(a), Ks(a), Ps(a), Es(a) then satisfy 
the Lie relations (6. 7) so that the mapping v(a) so 
defined is an automorphism of 4. Now the Lorentz Lie 
algebra loiS naturally embedded in 4 as a subalgebra 
with generators JL=JS' KL=Ks. Letting JL(a)=JS(a), 
KL(a)=Ks(a), we find that v(a)IO=(JL(a),KL(a» is 
isomorphic to 10• Finally, define a linear map 
Wa: 10 - v(a)/o of vector spaces by 

J L -I'(a)JL , 

KL - 12 e-al'(a) K L . 

A new Lie product l , 1 is defined on 10 by 

[x, y la "" Wa-1[Wax, Wa Y] 

(6. lOa) 

(6. lOb) 

(6. 11) 

and jg = (/0, l, la) becomes a Lie algebra isomorphic 
to 1 o• The limit 

1'0 = lim/S 
0- 00 

can be calculated. In fact 

[JL,JLla=JL, 

[JL , KLla=KL' 

[KL , KL la = - 2e-2aJL , 

showing that 

[J L, JL]oo =JL , 

[JL , KLloo =KL , 

[KL,KJoo =0, 

which says that 

.fo =/0' = 1~~L3. 

(6. 12a) 

(6. 12b) 

(6. 12c) 

(6. 13a) 

(6. 13b) 

(6. 13c) 

The rather peculiar choice for Wa(KL ) is made so that 

Of course we also have 

Considering how one may obtain the Galilei Lie 
algebra from the Lorentz Lie algebra as a limit, the 
question arises whether such a limiting procedure can 
be defined for the Clifford algebras which induces the 
given Lie algebra contraction. While a general dis
cussion of such limits is not carried out here, we do 
treat the physical case at hand, giving an idea of what 
might be done in general. 
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For this purpose let fl(a), for real a, be the linear 
mapping: 

LO - LO(a) = cosha LO + sinha L4, 

L4 - L;4 (a) = sinha L;0 + cosha L 4 , 

LA - L;A(a) = L;A. 

(6. 14a) 

(6. 14b) 

(6. 14c) 

It happens that L;a(a) Lb(a) + L b(a) La(a) = _ 2g ab with 
g=diag(- 1,1,1,1,1) so that /J(a) extends uniquely to 
an automorphism of IRI ,4' Denoting by fl (a) IR1, 3 the 
algebra (L:"'(a): a = 0,1,2,3), we define a linear mapping 
U a: IR1, 3 - fl (a) IR1, 3 between vector spaces by 

1-1, LO-Va(LO)=v'2e-afl(a)LO, 

LA -- Va(L: A) = /l(a) L: A, 
(6. 15a) 

L"'iL:"'2 .•• ~"" -Ua(L"'I) Ua(L:"'2) ••• VaeL""), (6. 15b) 

with 0'1 < Q 2 <-: ••• < 0', and 0 ~ O'i ~ 3. It is important to 
note that Ua is not a Clifford algebra homomorphism 
(for example, 1 = Va(!) = Va(L;°LO) whereas Va(LO) Va(LO) 
= 2e-2a ), but that U a is a vector space isomorphism. 
We define a new associative multiplication: on IR1,3: 

L"'! * 6"'2* ••• * L"""" V-1(V (Y"'I) V (L"'2) ••• V (L""» 
tJ cr (J U (J i-.J (J (J 

with 0 ~ (Y is 3 and calculate 
(6. 16) 

(6.17) 

Thus (IR1,3'~) is a Clifford algebra associated to the 
bilinear form 1Ja=diag(- 2e-2a , 1, 1, 1) and is therefore 
isomorphic by Ua to the usual IR1,3' For convenience 
we let IR\',3 stand for (IRI , 3, :). 

The limit lima _ ooIR'i. 3 = IRi, 3 is now of interest and it 
may be computed by first noting that for 0 ~ O'i ~ 3 

L"'1 * 6"'2 * ... * L""= (12 e-a)2[P/21 L"'lL"'2 .,. L"" o (J a , 

(6.18) 
where p = number of zeros in (Y 1> (li2, ••• , (Y, and 
[p/2l = greatest integer not exceeding p/2. As a result 
of this, 

11'm","'i* ..• *,,"'r=y"'I·'·L"r or 0 
W (J (J ~ i.....I (6. 19) a-oo 

depending whether zero occurs at most once or more 
than once in 0'1> 0'2, ••• , (lir' Thus IRi,3 =IR1,O,3 the 
Galilei Clifford algebra. The choice of Va was made 
to ensure that 

L'" - e"', 0' = 0,1,2,3, as a - 00. 

The point to notice now is that the mapping Wa de
fined earlier is just the restriction of Ua to the Lorentz 
Lie algebra 10, which sits naturally within IR1,3' And 
in fact after a few computations we see that 

[J£, J2la=J£: Jf - Jt: J£ =[J1, J21 =E AB c,lf, 

(6.20a) 

[Jt,Ktla=J£: K2 -~: J£=[J£,Kn=E AB cKf, 

(6.20b) 

[Kt,Kna=K£: Kt -K~: Kt 

= 2e-2a[Kt, Ktl = - 2e-2a 
E A.B C Jf • (6.20c) 
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(A sample calculation follows: 

[KLA, Kf]u= TV;I[TVu(Kt), TVu(KD] 

= u;I[UuH~O~A), UU(~~O~B)] 

= U;l(tUu(:~:;O) Uu(~ A) Uu(~O) Uu(~B) 

- tUU(~O) Uu(~B) UU(~O) Uu(~A» 

=Ki: K~ - Kf : Kt from (6.16) and (6.17) 

=U;I(Uu(t~o: ~A:~O:~B 

_ t~o: ~B : ~o: ~ A» from (6.17) 

= ~e-ZU(~O~ A~O ~B _ ~O~B~O~ A) from (6.18) 

= 2e-2u[Kt, Kf]·) 

Thus [JL,JL]~=JL' [JL,KLJ~=KL' lKL,KL]~ =0 defining 
the Galilei Lie algebra, and the relation between [, ]u 
and: is explicit and shows that the Clifford algebra con
traction ffil 3 - ffil 0 3 induces the Lie algebra contrac-
tion 10 -10: .. 

We make one last remark on the connection between 
the two types of contraction. This involves a contrac
tion of the de Sitter Lie algebra induced by an obvious 
contraction of ffil 4' We define a linear mapping 
Uu :ffi1•4 -/J.(O)ffi;.4 by 

~o -,[2 e-U~O(o), ~4 -,[2 e-u~4(o), ~A _ ~A (0), 

(6.21a) 

(6. 21b) 

with al < az < ••• < aT> ai = 0,1,2,3,4. A new product 
: is defined on ffi1•4 as before: 

~al: ••• : ~aT= U;I(uu(~al) ••• Uo(~aT» (6.22) 

and a new Clifford algebra ffi\'.4 = (ffi1•4,:) correspond
ing to the bilinear form go = diag(- 2e-20 , 1, 1, 1, 2e-20 ) 
is obtained as may be shown by noting that 

~ al * ~az * ... * ~aT _ (,[2 e-O)2[P / 21+2[0/2] ~a! ~ a2 ••• ~ar (6 23) 
(] (J U - , • 

where 0 occurs p times and 4 occurs q times in 
a17 a2, ••• ,ar • We find therefore that ffij.4 = limo _ 00 ffiL4 

=ffiz.0.3 . 
By using the relation [x, y]o =x:y - y:x we find [in the 

notation of (6.7)] 

[Js , Js]o=J s , [Js , Ks]a=Ks, [Js , PS]a= Ps , 

[Ks, Ks]u=- 2e-Za J s , [Ks, ps]o =- E s , 

[ps , Ps ]u=2e-2o J s , 

[JS,Es]a=O, [Ks,Es]0=-2e-20ps, 

[p s, E s ]0 = - 2e-2a Ks , 

so that, taking the limit 0 - 00, 

(6. 24a) 

(6. 24b) 

(6. 24c) 

(6. 25a) 

[Ks,Ks]~=O, [Ks,Ps]~=-Es, [ps, Ps]oo =0, 

(6. 25b) 

(6.25c) 
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This Lie algebra (the so- called Carroll Lie algebra49 

is a generalized contraction50 of 6 as can be seen by 
defining 

TVa (Js ) =Js(o), TVo(Ks) =,[2 e-OKs(o), 

TVa (Ps ) =,[2 e-o Ps(o), TVo(Es) =2e-2oE s (a) 

and noticing that [x, y]o = TV;! (TVa X, TVa Y 1. 

(6. 26a) 

(6. 26b) 

7. CONCLUSION AND PROSPECTS 

In summary, the Galilei group possesses a spin group 
consisting of invertible elements of the Clifford algebra 
corresponding to the degenerate Galilei "metric." This 
group which coincides with the twofold (and in fact the 
universal) covering group ffi3 @'SU(2) was obtained by 
an approach novel at least in its generality and which 
at the same time covers the more usual relativistic 
situation. There is a form of limit or contraction of 
Clifford algebras which induces a Lie algebra contrac
tion between the Lorentz and Galilei Lie algebras. 
This idea which seems to be new, might shed light on 
the various older Lie algebra contraction schemes. 

The present formulation permits one to write down5
! 

a Galilei-covariant Dirac-like equation on a general 
curved Newtonian space-time. One should thereby be 
able to describe a nonrelativistic electron in an exter
nal electromagnetic field within the framework of 
Newtonian relativity, illustrating a close anlogy with 
the situation in general relativity. 

For future consideration there are several problems 
which may be tackled. 

One could study the definition given for Spin(X) and 
determine whether or not it is adequate when X is an 
arbitrary degenerate space. Some preliminary calcula
tions involving O(X) suggest that it is not adequate. 

There is reason to believe that the extended Galilei 
group may find its way into the Clifford algebra formu
lation of the Galilei group. This remains to be 
investigated. 

A complete representation theory of Galilei Clifford 
algebras seems not to have been carried out. Such 
would likely prove informative in its relation to the 
representation theory of the Galilei group. 

It would be of interest to examine in greater detail 
the idea of Clifford algebra contraction especially as 
regards its Lie algebra connections. Questions as to 
what extent one type of contraction determines the 
other remain open. 
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Solitonlike solutions of the elliptic sine-cosine equation by 
means of harmonic functions 

G. Leibbrandt 

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 
(Received 2 November 1977) 

Exact solutions of the elliptic sine-cosine equation 0 'lJi/o x' + 0 'lJi/o y 2 = sin(1Ji + g) are derived in two 
space dimensions with the aid of a new Backlund transformation and by exploiting the properties of the 
harmonic function g(x,y). Two generating formulas are developed which allow us to generate without 
additional quadratures an infinite number of real solutions a and infinitely many imaginary solutions i 13. 
Some a solutions behave like solitons and can be labeled by a topological quantum number. Which 
solutions are solitonlike and which are not depends decisively on the analytic structure of g and its 
domain of harmonicity in the «" plane. 

I. INTRODUCTION 

Nonlinear partial differential equations,,2 continue to 
challenge the imagination and mathematical ingenuity 
of a wide spectrum of physicists both at the classical 
level and in quantum theory and in such diverse 
branches as plasma physics, 3 nonlinear optics, 4,5 

hydrodynamics, 6,7 and particle physics. 8,9 Especially 
prominent among these partial differential equations 
are the Korteweg-de Vries equation, 10 the nonlinear 
Schrodinger equation, 5,11,12 and the sine-Gordon 
system. 9,11,13 

Investigation of these and related equations14 has 
contributed significantly to our understanding of 
solitary waves and solitons2 and has led to the develop
ment of several new techniques, known as nonperturba
tive techniques, 15 such as the inverse scattering method, 
for example. 16 The study of nonlinear dispersive 
phenomena also involves, to a greater or lesser extent, 
the study of Backlund transformations17 and Bianchi 
diagrams, of topological quantum numbers, 18 integrable 
Hamiltonian systems 7

,19 and of the existence of an 
infinite number of conserved currents, 20,21 

Encouraging as recent developments in this field 
have been, one must not forget that most nonlinear 
partial differential equations of physical importance 
have only been solved in one space and one time 
dimension, a stark reminder that exact solutions of 
four-dimensional nonlinear equations of second order 
are hard to come by. 

The purpose of this article is to exploit the powerful 
method of Backlund transformations to derive. in two 
space dimensions exact solutions of the elliptic sine
cos ine equa tion 

V2ij; = sinij; cosg + cosij; sing = sin(ij; + g), 
(1.1) 

where ij;(x,y) is a massless scalar field, g(x,y) is a 
harmonic function, x and yare space variables, and 
0x=o/ax, oy=il/cyc For constant g, system (1.1) 
reduces to the well-known equations 

" {Sin~) 
V~ij;= or 

cosij; 

(1. 2a) 

(1,2b) 

and their hyperbolic versions 

(1.3a) 
V2<p = or 

{

Sinh<P 

cosh<p. (10 3b) 

The case g= 0, Eq. (1.2a), has already been treated 
in Ref, 22 and we shall frequently refer to it for both 
method and content. 

The article is organized thus, After some initial 
comments on harmonic functions in Sec. ll9 we discuss 
the Backlund transformation and associated Bianchi 
diagram for system (10 1), Some simple, but exact, 
solutions of the elliptic sine-cosine equation are derived 
in Sec. m and illustrated there with several examples, 
In the first part of Sec, IV we present, without proof, 
a generating formula for real solutions ()' (x, y); in Sec. 
IV B we prove a second formula which permits us to 
generate without additional quadratures an infinite 
number of imaginary solutions i/3(x,y). The article 
concludes in Sec. V with a brief summary and 
discussion. 

II:.HARMONIC FUNCTIONS AND A 
BACKLUND TRANSFORMATION 

A. Harmonic functions in the plane 

As stated in the introduction, our aim is to find exact 
solutions of the elliptic sine-cosine equation 

V2 d! = sinij; cosg + cosij; sing = sin(ij; + g), 

where 4' is a massless scalar field and g(x ,y) is a 
harmonic junction of the space variables x and y. 

(2.1) 

We recall23
•

24 that a real-valued function 11 (x, y) of two 
real variables x ,y is said to be harmonic in a domain 
f) of the p.. 2 plane, if it has continuous first and second 
partial derivatives in f) and if it satisfies Laplace's 
equation 

V 2u(x,y)=0 (2.2) 

in f), 

There exists an intimate connection between harmonic 
and analytic functions which is expressed in the follow
ing two lemmas. 

Lemma 1: Letj(z)=u(x,y)+iv(x,y) be analytic in a 
domain f), with z = x + iy, Then the component functions 

.u(x,y) andv(x,y) are harmonic inf), 
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Lem rna 2: If two harmonic functions u and v satisfy 
in a domain D the Cauchy-Riemann conditions 

ou = ov and au = _ ov , 
ox ~Y oy oX (2.3) 

then v is called the harmonic conjugate of u. Conversely 
one may call u the harmonic conjugate of - v. 

The importance of these two lemmas will become 
apparent during the course of the discussion. For other 
properties of harmonic functions, which playa signi
ficant role in complex variable theory and in many 
branches of mathematical physics, we refer the reader 
to the extensive literature on this subject. 

B. Backlund transformations and Bianchi diagrams 

It turns out that the most general Backlund trans
formation associated with the elliptic sine-cosine 
equation (2. 1) is of the form 

(2.4) 

or, when complex conjugated, 

(a '0 )(a+U+i(!3+V)) ('cb)' (a+ll-i(p+V)) 
x - l y 2 = exp - l, sm 2 ' 

(2.5) 

where QI and P are both real, u(x ,y) and v(x ,y) are 
harmonic functions satisfying 

V 2u(x ,y) = 0 = V 2v(x ,y), (2.6) 

and cp is the Backlund transformation parameter. 25 

Equation (2.4) represents a transformation from the 
"old" solution (cY + u) to the "new" solution i(!3 + v), 

(2.7a) 

which can, in turn, be represented by the Bianchi 
diagram shown in Fig. 1. B ~ is called the Backlund 
transformation operator and is characterized by cp. 
The "inverse" of (2. 7a) reads 

/l + cY = i (B ~ }"l (p + v), 

where 

(B~tl= (_1)mB~, m = 1,3,5, .... 

(2.7b) 

To verify that (2.4) is indeed the correct Backlund 
transformation for (2. 1), multiply (2.4) from the left by 
(ox - io) and first apply Eq. (2.5), then E,I. (2.6) to 
get 

,-,2 ( .(l) . (cY+U-i(!3+V)) (cY+U+i(!3+V)) 
v cY - If-' = sm 2 cos 2 . 

Separating this equation into real and imaginary 
components, we find that (cY + u) and (f3 + v) satisfy 

(2.8) 

and 

(2.9) 

respectively. As a starter we see that Eqs. (2,8) and 
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(a + u) i(,B+v) 

O--------.;~ ~ 
FIG. 1. Bianchi diagram for the Backlund transformation from 
(oo+u) to i(j3-tv), characterized by the real parameter 0. 

(2.9) possess infinitely many "vacuum" solutions of the 
form 

cY (x ,Y ) = niT - U (x , y ) , n = 0, ± 1, ± 2 , ... 9 (2.10) 

and 

f:J(x ,y) = imrr - v (x ,y), m = 0, ± 1, ± 2, .... (2.11) 

Before finding their general solutions, we should like to 
make the following observation. 

It is known17 that a Backlund transformation may be 
regarded, in geometrical language, as a transformation 
of a surface 5 into a new surface 5', where 5 is a 
solution of a given partial differential equation, but 
where the transformed surface 5' may either be a 
solution of the original partial differential equation 
or of some other differential equation, 26 Suppose we 
elect to call (208) the original equation. Then the 
Backlund transformation (2.4) is seen to generate the 
new surface ice + d which is a solution, nal of (2.8), 
but rather of the different differential equation (2.9). 
We assume, of course, that 11 * 1'. 

III. SIMPLE SOLUTIONS FOR (\' AND (3 
A. First generation of nontrivial solutions 

It is straightforward now, with the help of the 
Backlund transformation (2 0 4), to derive the first 
generation of a and f3 solutions 0 Unless otherwise 
stated, the reader may assume that the harmonic 
functions 11 and v are distinct and different from zero. 

We first decompose (2.4) into two real differential 
equations: 

(a + u) (p + v) . (a + u) (p + v) ax -2- + a, -2- =coscp Slll -2- cosh -2-

(a + u) . (p + v) - sincp cos -2- slllh -2- , 

(3. 1) 

(a+u) (,3+11) (a+u) (f3+r) a, -2- - ax -2- = coscp cos -2- Sinh\'-2-

(
a +u) (p + 11) + sincp sin --2- cosh -2- . 

(3.2) 

1. a solutions: We set P + v = 0 0= Po + 11 (a "vacuum" 
solution) and note that p=O does not solve (2.9). 
Substituting Po = - v into Eq. (3.1), so that 

ax(a + u)/2 = coscp sin[ (a + u)/21, (3.3) 

and integrating partially with respect to x, we obtain 
(call 0'0= aj): 

tan(a j 
; u) =c exp(x coscp + y sincp), c const, (3.4a) 
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or 

O'I(X,y, 1» 

-4 t (c exp(xcos1> +ysin1»-tan[{u(x,y)] ) 
- arc an [I] . , 

1 + c tan 4U(X, y) exp(x cos1> + y sin1» 

where 

V2tl'1 = sin(O'I + 11), v 2u = 0, 

v2f3o = sinh(f3o + v), V 2
1' = O. 

(3.4b) 

(3.5a) 

(3.5b) 

The expression for 0'1 is a genuine two-dimensIOnal 
solution of (2.8), since there is no value of the 
Backlund parameter 1> which eliminates completely, 
for general u, either x or y. 

2. 13 solutions: Setting a +u= 0= 0'0 +u (a "vacuum" 
solution) in Eq. (3.1), we get the first generation of 
nontrivial 13 solutions (call 13 = 131): 

tanh~ (13 1 +1') ~ 

cota:~ (131 + v) ) 

= (constant factor) exp(x cos1>1 + y sin1>I), (3.6) 

or in detail, 

131 (x, y, 1>t) 

4 . t nh(cexP(xcoS1>I+YSin1>I)-tanh(!v») 
= arc a ' 1 - c tanh (tv) exp(x COS1>1 + Y sin<;bl) 

if (x cos<;bt + y sin<;bt) '" 0; (3.7a) 

or 

131 (x, y, <;bt) 

4 t h(
1 - C' cotanh(t v) exp(x cos<;bj + Y sin1>t ») = arcco an . , 
c' exp(x cos<;bt + y sin¢t) - cotanhU v) 

if (x cos<;bj + y sin<;bl)'~ O. (3. 7b) 

Here C, c' are integration constants and 

v 20'0 = sin (a 0 + u), V 2u = 0, 

v 2f3t = sinh (131 +v), V 2v=0. 

(3.8a) 

(3.8b) 

For general values of the harmonic function v(x, y), 
Eqs. (3.7) again truly represent two-space dimensional 
solutions of Eq. (2.9). 

B. Examples 

Since there are infinitely many analytic functions, the 
number of harmonic and conjugate harmonic functions 
is equally large (cL Lemma 1, Sec. IIA). In the follow
ing examples we shall concentrate on a few particular 
cases to illustrate our method, The reader will notice 
that most of the examples deal with solutions of 
v20' = sin(O' + u), for the simple reason that these are 
physically more relevant than the 13 solutions of Eq. 
(2,9).21,28 

Example 1: For the constant function 

u(x,y)=A, f)=fi2, 

where f) specifies the domain of harmonicity, Eq. 
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(3.9) 

(2,8) reads 

'\720' 1 = cosA sinO'l + sinA cosO' 1, 

with the solution [cf. Eq. (3.4a)] 

(3.10) 

0' t (x, y, <;b) = - A + 4 arctanlc exp(x cos<;b + y sin1» J. (3. 11) 

To study its asymptotic behavior, we express 0'1 in 
polar coordinates x = r cose, y = r sine and choose 
c· 0: 

0'1 (r, e, cP) = - A + 4 arctan{c exp[r cos(e - <;b)l}, 

so that 

limal=-A, if ~7T<e-cP<fi,1T. ,...00 

(3. 12) 

(3. 13a) 

(3. 13b) 

It follows from (3.13) that the solution (3.12) can be 
characterized by a topological charge Q, 18 where 

(3.14) 

The system (3.9)- (3. 12) admits, therefore, not only a 
single solitonlike solution, but also multiple solitonlike 
solutions which follow quite readily from the generating 
formula (4.1) in Sec. IV. Finally, a comment on 
terminology:29 We speak, in fi2 space, of "solitonlike 
solutions" rather than "soliton solutions," since the 
asymptotic behavior of a 1 depends, according to 
(3.13), on the polar angle e. 

Example 2: Consider the harmonic function 

u(x,y)=A+Bln(x2+/), A, B constants, (3. 15) 

whose domain of harmonicity is the punctured R,2 plane: 
f) =R,2 - {O}. According to Eqs. (2.8) and (3,4a), the 
differential equation 

v2(}' i = sin[ 0'1 + A + B In(x2 + y2)] (3.16) 

admits first-generation solutions of the type 

O'I(X,y, <;b)=-A - Bln(x2 +y2) 

+ 4 arctan[c exp(x cos<;b + y sin<;b) 1, (3. 17) 

which, it would seem, cannot be labeled by a topological 
quantum number Q. 

Example 3: For the harmonic function 

u(x, y) =arctan(y/x) 

j) = { (x , y) I (x2 + y2) 1 / 2 > 0, 0 < arctan (y / x) < 211}, 

the equation 

'\7 20't = sin(O'j + arctan(y/x)) 

leads to the solution 

a t (x, y, cp) = - arctan(v/ x) 

(3.18) 

(3. 19) 

+ 4 arctan[c exp(x cos<;b + y sin1»], c> 0, 
(3.20) 

or, in polar coordinates, to 

O'j(r, e, cp) + e =+4 arctan{c exp[rcos(e- CP)]}, c> 0, 

j)={(r,e)lr>O, 0<e<27T}. (3.21) 

To determine whether or not this solution carries 
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topological charge, implying a certain solitonlike 
behavior, we examine the asymptotic structure of 
(3.21) in specific sectors of the r-(} plane. 30 Clearly 

lim(a 1 +8)=21T, 
r ~, 

if 

- ~1T <: e - 1> < ° and ° < e - 1> < ~1T, (3. 22a) 

and 

(3. 22b) 

so that the solution [al (r, e, 1» + e], or, equivalently, 
[a 1 (x, \', 1» + arctan(yjx)] can indeed be labeled by the 
topological charge Q = + 1. Some of the solutions of 
Eq. (3.19) are, therefore, solitonlike in nature. 

The next example illustrates the method for f3 
solutions. 

Example 4: Consider the harmonic function 

for which Eq. (2.9) reads 

V 2f3 1 = sinh(f31 + eX cosy). 

(3.23) 

(3.24) 

According to Eqs. (3.6) and (3.7), the solutions are of 
the form 

f31(x,y,1>I) 

= - eX cosy + 4 arctanh[c exp(x cos1>1 + y sin1>I)], 

if (x cos1>1 + y sin1>l) ~ 0, c> 0, (3.25) 

and 

f31 (x, y, 1>1) 

= - eX cosy + 4 arccotanh[c' exp(x cos1>l + y sin1>I)], 

if (x cos1>1 + y sin1>l) > 0, C' > 0. (3.26) 

The behavior of these expressions for large Ix I and 
large I y I is, again, most easily studied in the polar 
representation, but we shall not pursue this problem 
any further. 

In the next section we demonstrate the existence of 
a whole hierarchy of a and f3 solutions. 

IV. TWO GENERATING FORMULAS 
A. Generating formula for ex solutions 

In this section we give a formula for generating an 
infinite number of real solutions of the equation 
v20' = sin(a + u), Eq. (2.8). The result is contained in 
the following theorem. 

Theorem 1: Let (ao+u) be a solution of Eq. (2.8) 
and let f3jO and f3?) be two distinct solutions of Eq. 
(2.9), the three solutions being related by i(f3P) + v) 
=B<1>I(a O+u) and i(f3i 2) + v) = B<1>2(0'0 +u). A new a 
solution, called a 2 , is then given by 

tan(0'2+U); (a o+u )) 

= cot (1)1 ; 1>2) tanh (f3P) + v).; (f3\2) + v)), (4.1) 
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(2) 
i(/31 + v) 

4>, 
. (f3(1) ) 
I 1 + V 

FIG. 2. Bianchi diagram associated with the generating formu
la (4.1), Theorem 1. 

1>2*1>1±1TN, N=0,1,2, ... , 

where a 2 satisfies Eq. (2.8), u and 11 are harmonic in 
a certain domain f) of the /<.2 plane, 1>1 and 1>2 are 
Backlund transformation parameters and f3~J) '" f31 (1)j), 
j=1,2. (See Fig. 2). 

Since the proof of Theorem 1 follows closely our 
derivation of Eq. (2. 12) in Ref. 22, we shall omit it 
here and instead prove Theorem 2 below. However, 
before leaving Theorem 1, we should like to make the 
following remarks about formula (4. 1). 

(a) One can verify, by explicit differentiation of (4.1), 
that 0'2 does indeed satisfy v 2a 2 = sin(~2 + u) for u and 
v harmonic, provided v20'0 = sin(O'o + u) and v 2f3\j) 
= sinh (f3\i> +v), j=1, 2. 

(b) Since (4.1) holds not just for the "vacuum" solution 
0'0 + u = 0, but for any solution (0'0 + u) of (2.8) and its 
Backlund-generated solutions (f3l1> + v) and (f3l 2) + v), 
we can easily generalize (4. 1) to read 

tan (d'2n +u)4- (0'2n_2 +u)) 

= cot( 1>2n_l; 1>2n) tanh (f3i~~l + v) ; (f3i~~l + v)) , 

n = 1, 2, 3, ... and 1>2n * 1>2n-l ± 1TN, N = 0, 1, 2, '" . 

The last formula can be written symbolically as 

(a 2n + u) = (B<1>2n_1B<1>2n) (a 2n_2 + u) 

(4.2) 

(4.3) 

and allows us to generate without additional quadratures 
an infinite number of real solutions 0'. 

B. Generating formula for i3 solutions 

Our next task is to derive a generating formula for 
solutions of the equation v2f3 = sinh(f3 + v), Eq. (2.9). 

Theorem 2: Let (f30 + v) be a solution of Eq. (2.9) and 
let ap) and O'F) be two distinct solutions of Eq. (2.8), 
the three solutions being related by (O'io + u) 
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(I) 
(a l + U) 

(2) 
(a l + U) 

FIG. 3. Bianchi diagram used in the proof of the generating 
formula (4.9), Theorem 2. 

=iBot ({:3o+v) and (aF)+u)=iB02({:3o+v). A new {:3 
solution, called {32, is then given by 

tanh ({32 + v) ~ ({3o + v») 

=cot -- an· , (
Ot- 02) t (al2 ) +u) - (aP) +u») 

2 4 

02t-Oj ±7fN, N=0,1,2,"', 

where {32 satisfies V 2{32 = sinh({32 + v), u and v are again 
harmonic in a certain domain 0, oland 02 are real 
Backlund parameters, and alJ) '" at (0), j = 1, 2. 

Proof: From the Bianchi diagram shown in Fig. 3 and 
the basic Backlund transformation (2.4) we first deduce 
the transformations 

a i 1> + u = iB 01 ({3o + v), 

aj2) + u = iBo ({:3o + v), 
2 

i({32 +v)=B02 (ap) +u), 

i({32 +v)=B
oj

(al 2) +u), 

which are equivalent to the first-order differential 
equations 

(ax + ia)e({3o + v); (al1> + u») 

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

(. ) . (i({3o+v)+aj!)+u) 
= exp ZOj SIn 2 ' 

(4.5a) 

(ax + ia)e({30 + v) ~ (al
2
) + u») 

(. ) . (i({3o + v) + aj2) + u) 
= exp Z02 sIn 2 ' (4.5b) 

(a x + i a) ( ()' P) + U ; i ({32 + v») 

( . ) . (a l1> + u + i({32 + v»), 
= exp Z02 SIn 2 (4.5c) 

(4.5d) 
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respectively. Addition of Eqs. (4.5) according to the 
prescription (4. 5a)- (4. 5b) + (4. 5c) - (4. 5d)] leads to 

° (.)[. (i({3o+v)+a p )+u) = exp zOI SIn 2 

. (a l2 )+u+i({32+ V »)] 
- SIn 2 

(. )[. (i({3o+v)+aj2) +u) - exp za2 SIn 2 

. (a l 1> + u + i({32 + v»)J 
- SIn 2 ' 

or 

( 'a) . (i({3o - (32) - (aP) - aj2»\ = exp Z 2 SIn 4 ) , 

provided 

Noting that 

exp(io j)+exp(i02) . t(at -a2) =-zco -- , 
exp(iol) - exp(ia2 ) 2 

we may manipulate (4.6) into the form 

tanh ({32 + v) ~ (Po + v») 

= cot(aj ~ a2) tan (tl'j2) + u) ~ (ap) + u») , 

02t-a j ±7fN, N=O, 1,2,"', 

which is the desired result. 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Remarks similar to those following Theorem 1 also 
apply to the generating formula (4.9). Thus ({3o + v) may 
be any solution of v 2{3o = sinh({3o + v), with the 
corresponding Backlund-generated a solutions satisfying 
v2alJ) = sin «(]I iJ> + u), j = 1, 2. Moreover, we see from 
the Bianchi diagram Fig. 3 that 

(4.10) 

The generalization of formula (4.9) to multiple f:3 solu
tions is straightforward and yields 

tanh (f:32n + v) ~ ({32n_2 + v») 

=cote2n-t2- a2n) tan(Cl'i~~t +u) ~ «(lIi~~l +u»), (4.11) 

n=1, 2, 3,'" and02nt-02n_t±7fN, N=O, 1,2,"', 

for any harmonic functions u(x, y) and vex, y) defined in 
their appropriate domains. 

V. CONCLUDING REMARKS 

In this paper we have exploited the properties of 
harmonic functions to derive, in two space dimensions, 
exact solutions of the elliptic sine-cosine equation 

v 2<J;(x,y)=sin(<J;(x,y) +g(x,y)], v 2g=0, (5.1) 
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which includes, for g constant, the well-known equations 

V2~=(Simp) and V2rp =(Sinh,rp). 
cos~ coshrp 

(5.2) 

For general forms of the harmonic function g, new and 
truly two-space dimensional solutions of (5.1) are 
obtained. Some of the expressions, such as (3.12) and 
(3.21), behave like solitons or multiple solitons 
[the latter can be deduced from Eq. (4.1), for example] 
in that they carry a topological quantum number Q. 18 
Which solutions of Eq. (5.1) are solitonlike and which 
are not, depends decisively on the analytic structure of 
the harmonic function g(x, y). 

Our treatment of the elliptic sine-cosine system is 
based on the powerful technique of Backlund transforma
tions and Bianchi diagrams which has, in our opinion, 
three distinct advantages. 

In the first place, the Backlund transformation 
(2.4) enables us to replace the second-order partial 
differential equation (5. 1) by a system of real first
order ordinary differential equations, Eqs. (3.1) and 
(3.2), which are easy to solve. 

Secondly, the existence of a Backlund 
transformation-and its associated Bianchi diagram
virtually guarantees the existence of a generating 
formula and through it, the presence of an infinite set 
of solutions. The elliptic case, treated in this communi
cation, is characterized by two such generating 
formulas (in contrast to the corresponding hyperbolic 
equation in 1 + 1 dimensions which possesses only one 
generating formula). The first formula (4. 2) generates 
infinitely many real solutions Q' (X, y), while the second 
one, given by Eq. (4. 11), yields without additional 
quadratures an infinite number of imaginary solutions 
i{3(x:, y). 

Thirdly, the Backlund transformation (2.4) should 
simplify the investigation of conserved currents, 21 
for example, of the equation v 2a = sin(O' + u). The 
search for conservation laws is, in view of the func
tional nature of u, somewhat more complicated here 
than in the case of the sine-Gordon equation in one 
space and one time dimension. 2 It would seem logical 
to expect, however, that those solutions which can be 
labeled by a topological quantum number, would also 
yield an infinite number of conserved currents. But then 
nature is not always logical! 

We remark in closing that the "procedure of harmonic 
functions" is also applicable to the hyperbolic equation 
(c is the speed of light in a vacuum) 

( 
a2 (

2
) a? - c2at2 ~(x, t) = sin[~(x, t) + k(x:, t)], (5.3a) 

where 

(~- );?) k(x:, t) = 0, (5.3b) 

and t is the time variable. Condition (5. 3b) for k(x:, t) 
replaces Laplace's condition (2.2) and is obviously 
satisfied for k=x, k=ct as well as for k=cosxcos(ct) 
and k = In(x2 - c2t2), (x2 - c2t2) > O. Details, including the 
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appropriate Backlund transformation and generating 
formula for system (5.3), will appear elsewhere. 
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The problems of stability and approach to equilibrium of the Weiss Ising model are studied. Our 
investigations are performed in the exact and linear response senses in order to compare both theories. 
The change of a metastable state of the Weiss Ising model is discussed under local perturbations. 

I. INTRODUCTION 

The problem of stability of a dynamical system with 
infinitely many degrees of freedom encountered in quan
tum statistical mechanics has been recently paid much 
attention by several authors. 1-4 Verbeure and Weder3 

have studied this problem in the linear response theory, 
Ohya4 has considered similar problems in the linear re
sponse and exact theories. In this paper, we apply some 
of the general results obtained in Refs. 3,4 to the Weiss 
Ising model (WIM for brevity in the following) formu
lated in the operator algebraic framework. 5 

In Sec. II, we review the WIM briefly. In Sec. III, we 
show that the WIM provides us a nontrivial example of 
the work by Verbeure and Weder3 concerning the sta
bility of a dynamical system in the linear response 
sense (LRS for brevity). In Sec. IV, we study the dy
namical behavior of locally perturbed states of the WIM 
by bounded self-adjoint operators belonging to the 
quasilocal C*-algebra of this model. Namely, we look 
at the time development of the perturbed states after 
removing the perturbations dynamically. The discus
sion of that section is of the approach to equilibrium 
in both linear response and exact dynamics. We also 
discuss the dynamical change of metastable states in 
the WIM in Sec. IV. The change of a metastable state 
to a stable state under some local perturbation is ex
tremely interesting to be investigated in quantum sta
tistical mechanics and quantum measuring process
es. 6

- 8 Although we first have to show the existence of 
metastable states in a dynamical system considered, 
we fortunately know5 that there exist metastable states 
in the WIM, provided that the temperature is below a 
critical point. We are thus at the stage in the WIM to 
consider the dynamical change of the metastable states. 
We want to know whether there exists a local perturba
tion under which a metastable state goes to a stable 
state or not. 

We take the inverse temperature of the WIM i3 = 1 
throughout this paper. 

II. WEISS ISING MODEL 

When we treat a physical system composed of many 
interacting particles, we have a powerful approximation, 
the so-called mean field method, which will be con
sidered as follows: Observe a particle in the system, 
then we can regard the effect to this representative 

a)Mailing address. 

particle from other particles surrounding it as the field 
determined by an averaging procedure over the system 
of interest, Thus the representative particle can be 
statistically treated in the mean field. Conversely, we 
may determine the average field which the representa
tive particle exerts on its neighbors. If all particles are 
identical, then every mean field should be coincident 
(requirement of self-consistency of mean field). This 
self-consistency requirement determines the mean field 
of the system precisely. We can study statistical prop
erties of the system by this mean field. In this section, 
we briefly review one of the mean fields: the Weiss 
Ising model, in the algebraic framework. 

Following Emch and Knops, 5 we consider a one-di
mensional lattice Z (this restriction can be lifted, but 
we take it for simplicity). The quasilocal C*-algebra 
of this lattice system Z is given by 

~ =§iij 

~o= u ~A 
ACZ 

~ A = 0 ~ k (A is a finite region of Z) 
kEA 

~k={A1Ik +A2a~ +A3a~ +A4a~: Aj E C (j =1,2,3, 4)}, 

where a~'Y'Z are the Pauli matrices and Ik is the identity 
matrix at the site k of the lattice Z. The local C*-alge
bra ~ A enjoys two properties, named "isotony" and 
"locality. " 9 

The local Hamiltonian of a ferromagnetic system con
sidered here is given by 

H(A)=-B 6 a~- 6 Jk,i(A)a~a:, 
kEA k, iEA 

where B is an external magnetic field on the system 
along the z axis and J k , i (A) are real coupling constants 
on A with Jk,l(A)=Ji,k(A)=J'k_il(A), Jk,k(A)=O. In or
der to study more about our system, let us introduce 
the following notations: 

H(A)= 6 Hk, 
kEA 

B k(A)=2 6 Jk,i(A). 
lEA 

We can assume B = 0 in the sequel discussions without 
loss of generality. 

The idea of the mean field approximation of the ferro
magnetic system comes from that we replace the above 
volume dependent Bk(A) with some averaged volume in-
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dependent one. Since the above local Hamiltonian H(A) 
is bounded, it defines a time evolution automorphism 
of ~: T~(A) = exp[itH (A)] A exp[ - itH(A)] for any A E ~. 
We then ask whether and in which sense the time evolu
tion T t after taking the limit A - 00 exists. Emch and 
Knops5 have studied this question under the following 
conditions: (i) Stability condition: :::iEA IJk,i(A) I <c±ck for 
any finite A c Z containing k, where ck is a A-indepen
dent constant. (ii) Van der Waals condition: 
limA_~Jk,/(A)=O for alllz,iEA. (iii) Periodic condition: 
J1k_il(A) =Jlk_il+p(A), where P is a period of the lattice. 

It is then shown that the volume infinite limit of T~(A) 
for any A E ~ exists for each representation n such that 
its domain is restricted to the quasilocal C*-algebra~ , 
but its range cannot be in general the representation 
space n(~) but the weak closure n(~)". After taking the 
limit A - 0<), the representation dependent time evolu
tion T t can be extended to the automorphism Tt , the 
canonical extension of T t (see the remark at the end of 
this section), on the von Neumann algebra lI(~ON, Here 
the time evolutions T t and Tt should be written as Tr 
and T~ if we want to show their representation depen
dence explicitly, but we take the former expressions 
for simplicitly. 

We now notice that if the von Neumann algebra n(~)N 
is a factor, then the operator n (Bk ), in the appropriate 
limit5 of n(Bk(A» as A - DC, becomes a multiple of iden
tity because of n(Bk)E n(~)"n n(~)'. We next have to 
construct an extremal KMS state cp in the following 
sense5,10: 

(a) IL,,(~)n II n~(~)' = CI, 

(b) J dt(q;; Tt (n~(A»n~(B»f(t) 

= J dt('CP ; n~(B) T/(n ~(A)))f(t - i) 

for any finit~ regions A, A' of Z, any A C:~A' BE~A" 
and any fE£), ~he set of the Fourier-transforms of 
functions in the set £) of infinitely differentiable func
tions with compact supports, The above IjJ in (b) is the 
canonical extension of cp to n ~ (~)" (see the remark be
low) and n~ is the GNS representation associated with 
cpo This construction can be carried out by the following 
facts: 

(1) cp is a locally normal state; that is, for any finite 
region A of Z 

CP\~ A = exp[ - H(A)]/Tr[ - expH(A)], (2.1) 

where, from rr~(Bk)=Bk,~Ik(Bk,~EC), H(A) is redefined 
as 

H(A)=- 6 Bk,~a~. 
kEA 

(2) cp is a product state; that is, 

(cp;AB) = (cp; A) (cp ; B) (2.2) 

for any A,B in ~A and ~A' respectively with An A'=rfi' 

(3) We have the self-consistency equations such that 

(cp;~)=(cp;aO=O, (2.3) 

(cp ; aZ> = tanhBk,~, (2.4) 

B k, ~ = 2 Jk[(cp; a~)], (2.5) 
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where Jk is the extension of a positive bounded linear 
functional J k on a C*-algebra C(Z) of all bounded func
tions on Z. Here J k is defined on a subspace C J(Z), for 
which JkU]=limA_=ZiCA,Jk,i(A)f(i) exists. The exten-

kEA 
sion from J k to Jk is always possible by the Hahn
Banach theorem. We can thus construct an extremal 
KMS locally normal state cpo For this state cp, the fol
lowing important properties hold: 

(4) 1't is an automorphism of n~(~o. (2.6) 

(5) Tt is an automorphism of n~(~A) for any finite A 
cZ. (2.7) 

Let us finally notice that the canonical extension IjJ of 
cp from ~ to n ~(~) /I is a faithful normal extremal KMS 
state with respect to Tt • 11 

Relllark: (1) The canonical extension Tt of T t to n~(~)N 
is defined by Tt(Q)=UtQU_t for any QE n~(~)", where 
Ut is a strongly continuous one-parameter unitary group 
implementing Tt on nw(~)". 

(2) The canonical extension IjJ of cp to n~(~)/I is de
fined by (cp;Q)=(<P,Q<p) for any QE n~(~)U, where<p is 
the GNS cyclic vector induced by cpo 

III. STABILITY OF WEISS ISING MODEL 

Verbeure and Weder3 have studied the stability of 
dynamical systems in the linear response theory. Let 
a dynamical system be described by iA, 1>, Ci), where A 
is a C*-algebra with an identity operator I, 1> is a KMS 
state with respect to the time evolution Ci t (t E R), a 
strongly continuous one-parameter group of automor
phisms of A, Verbeure and Weder introduced the linear 
response time evolution as follows: For any A EA and 
a perturbation AV = A V* c. A with A E [0,1], 

(3.1) 

for t:o 0, and 

(3.2) 

for t < 0, These are obtained by linearizations W. r. t. A 
of the exact time evolution defined by 

Cii(A)=.0 (iA)n J dt 1 ••• j dtn[Ci t1 (V), 
n~O 

O~t1~·"· ~tn:!i't 

for t? 0, and 

Ci;(A)=6(iA)njdf j ... j dln 
n~O 

X[Ci t1 (V), [ ••• [Citn(V), Cit(A)]···]] 

for t / 0. 

(3.3) 

(3.4) 

The C*-algebraic versions of the definitions of stabil
ity in LRS of the dynamical system (I/,qy,Ci) due to 
Verbeure and Weder are as followings. 

Definition III. 1: A dynamical system iA,qy,Ci) is said 
to be stable in LRS under a perturbation V = v* EA if the 
weak* limits qy>,j =w*-limt_>ooqyoCii,1 exist under V. 
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Definition III. 2: A dynamical system I.A, ¢, a) is said 
to be stable in LRS if it is stable in LRS under all per
turbations V = v* EA. 

As we have seen in the previous section, the WIM 
should be originally treated by the triple (~, <p, T), but 
since T t does not exist as an automorphism of ~ for a 
general state <p on ~, the WIM has to be considered 
through the von Neumann algebraic triple (n~(~)", cp, 1'). 
However, for an extremal KMS state <p, the time evolu
tion Tt can be an automorphism not only of n~(~)" but 
also of n~(~), and hence of ~ (since all representations 
are faithful). We thus define the linear response time 
evolution :rJ~(V).1 by replacing at,A, AV with Tt , II~(A), 
AII~(V) in (3.1) and (3.2). It is readily shown by merely 
extending the von Neumann algebraic results obtained 
by Verbeure and Weder3 to the C*-algebraic dynamical 
system I.A, ¢, a) that the dynamical system I.A, cp, a) is 
clustering [i.e q limt_<oo(cp;at(A)B)=:(cp;A)(cp;A) for 
any A, B c:A] if and only if it is TIt clustering [i. e. , 
Tlt(Cp; at(A)B)=:(cp; A)(cp; B) for any A,Bc:A, where TIt 
is a mean over tc:R] and stable in LRS. This fact im
plies that if a dynamical system is clustering for its 
KMS state (e. g., X-Y model, free Fermi gas), De
finitions III. 1 and TIL 2 become equivalent, Therefore, 
for such systems, the problem of stability in LRS is not 
so attractive. However, the WIM is even not TIt cluster
ing, so that it may be interesting to study the problem 
of stability for this model. We ask a following question: 
Under which conditions on V = V* E A is the WIM stable 
in LRS? In other words, can we determine the set of 
perturbations under which the WIM is stable in LRS? 

Before answering this question, let us introduce a 
C*-subalgebra ~ z of ~ such that 

~z =="ion 
~~ = U ~zA , 

ACZ 

~f.= ® ~zk' 
kEA 

~~={iJ.1Ik+iJ.2a~: iJ.l'iJ. 2 C:C}. 

We then have 

Theorem III. 1: The WIM is stable in LRS under a 
perturbation V=: V* E ~ if and only if V E ~ z. 

Proof: According to Verbeure and W eder, 3 the WIM 
is stable in LRS under a perturbation V=: v* c: ~ if and 
only if UtII~(V)cI> =:exp(itH)II~(V)cI> weakly converges in 
the GNS Hilbert space I-! ~ as time tends to infinite, 
where H is the infinitesimal generator of the unitary 
one-parameter group Ut implementing rt • Let us first 
consider the case when the perturbation V = V* c: ~ is 
local; that is, there exists a finite region A of Z such 
that V = V* E ~ A' As we have discussed, the time evolu
tion Tt is an automorphism of II~(~A)' hence of ~A' The 
restriction Tt of Tt to ~A is generated by the local 
Hamiltonian H(A) = - l.,kEA B k , ~a:. The extremal KMS 
product state (j; is identical to exp[-H(A)VTrexp[-H(A)] 
on the local algebra ~A' Therefore, the restriction 
cpA of cP to ~A is a KMS state with respect to the time 
evolution T? If the WIM is stable in LRS under the local 
perturbation V, (X, UtII~(V)cI» converges to a definite 
value for any X EI-! ~ as time tends to infinite. 
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Moreover, 

U t IJ", (V) cI> =: exp(itH) II~ (V)cI> 

= exp[itH(A)]IJ",(V)cI> = Tt (II~(V»cI>. 

As <p is a product state, the Hilbert space I-! ~ can be an 
incomplete direct produce space denoted by ®kEzl-!k' 9 

where I-! k is isomorphic to C2 generated by four-dimen
sional vectors at the site k. Hence cI> can be written as 
®kEzcI>k by cyclic vectors cI>k for B<f(k)' Choosing X 
=XA:6JkEZ\AcI>k(Z\A={kEZ:k<t'A}) for any XA in I-! A 
=®kEAl-!k' (X,Ut7T~(V)cI» is equal to (XA,exp[itH(A)] 
X IJ",(V)cI>A) , where cI>A=®kE.AcI>k' Since A is a finite region 
of Z and XA is arbitrary element in I-! A, the function t 
ER- (XA,exp[itH(A)]IJ",(V)cI>A) is almost periodic in t. 
This fact implies12 that if the weak limit w-limt_<ooUt 
xn~(V)cI> exists, then Utn~(V)cI> is identical to n~(V)cI>. 
Since Utn~(V)cI>=T?(II~(V))cI> and cI> is separating for 
the von Neumann algebra II.(~)", we have T?(rr~(V» 
= II ~ (V). As the quasilocal C*-algebra ~ is simple, 
the representation II ~ is faithful; hence [exp[itH(A)], V] 
= 0. Thus we immediately conclude that V is in ~ ~ ac
cording to the forms of H(A) and our local C*-subalgebra 
~~. Conversely, if the local perturbation V = V* E ~ A 

is in ~ t, then it is obvious that UtII~(V)cI> weakly con
verges in I-!. as time tends to infinite. 

Next we have to consider for a general perturbation 
V = V* E ~. Namely, we have to show that the weak limit 
w-limt_<ooUtII~(V)cI> exists in 1-1. if and only if V = V* 
E~', The "if" part is shown as follows: For any V 
E ~ z and any E> 0, there exists Vo = vt E ~g such that 
II V - Voll < E. Hence we obtain 

II UtII~(V)cI> - II.,,(V)cI> II ~ II UtII.(V)cI> - UtII.(Vo)cI> II 

+ IIUtII~(Vo)cI>-II~(vQ)cI>11 + I III.(Vo)cI>-II.(V)cI> II 

=:2 IIII.(V)-II.(Vo) II =2 Ilv-Voll<2E. 

Conversely, let us prove the "only if" part. If there 
exists V = V* E ~ such that w-limt_<ooUtII.(V)cI> exists in 
fI~, then as the local algebra ~ 0 = <.~ A=Z~A is norm dense 
in ~, for any V = V* E ~ and any E> 0, there exists Va 

= vt E ~ 0 such that II V - Voll <: E; hence it is easily seen 
that 

Therefore, if w-limt_<ooUtII~(V)cI> exists in fl., then 
w-limt_<ooUtII.(Vo)cI> exists in fI ~ too. Since Vo is a local 
element of ~, this Vo should be in the algebra ~ g as seen 
before. This fact implies that the perturbation V = V* 
E ~ is in the algebra ~ z because ~ 0 is norm dense in ~ 8. 

Q.E.D. 

From this theorem, we can divide the perturbations 
into two classes. The first class is the set of perturba
tions under which the WIM is stable in LRS. Under the 
perturbations of the second class, the WIM is not stable 
in LRS. 

The following theorem tells us that when V = V* c: ~ z, 

the linear response approximation is exact as far as 
the stability of the WIM is concerned. 

Theorem 111.2: For any perturbation V = V* E~" we 
have 
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- = (V).1 
(1) w"'-lim <P0TtW =<p on 

( ) 
- -n (V) 

2 w*-lim ~Q"TtW =<p on~. 
t .. ±oc 

RClllarl,: (a) The above exact perturhed time evolution 
Tiw( V) is given by (3 0 3) and (3.4) under the replacements 
of G't and AV with Tt and Al1w(V)' (b) This theorem can 
be read that if the WIM is stable in LRS under a pertur
bation V = v* c ~, then it is stable in exact senSE under 
the same V. 

Proof: According to Verbeure and Weder, 3 we have 

lim ([p; T~w(V),((l1w(V») 

= (0; n~(A» - A lim (TlIw(A *)1>, T[l - exp(itH)]IJ~(V)1», 
t- ± eX) 

where T=[(Cl-l)jlnCljI/2 and Cl=exp(-H). We have 
seen in the proof of the theorem III. 1 

exp(itH)l1w(V)1> = l1w(V)1> , 

for any V = V* ,co ~lz. We hence have 

(TlJ~(A *)<1', T[ 1 - exp(itH)]n w(V)1» = 0, 

which implies limt •• ~ (0; Ti~( V).I (11 ~(A))) = (0; 11 w (A» 
= (<p; A) for any A ""- ~. Let us prove (2). Simple com
putation tells us 

Hence 
- -n (V) - - -n (V) 

(<p; T t w (l1~(A») = (<p; T.tT t ~ (llw(A») 

= (<p;A) +iA t ds([P; [ll~(V), T~I~(V) (l1w(A»]). 
a 

Therefore, we have only to show that the limits 
limt •• ~ fbds(CP; [Ilw(V), ~w(V)(IIw(A»]) exist for any A in 
~a = U AC-Z~A' Since Tt(l1w(V» = II~(V) for any V = V* 
c~lz, the perturbed time evolution Tiw(V) is given by 

~w(V) (Ow(A» = exp[itIlw(V)] Tt (0 w (A» exp[ - itrJ w (V) j. 

Let us take any Va = vt from~~\ , where Aa is a finite 
region of Z. For a local eleme~t A of ~, there exists a 
finite region A of Z such that A c ~A' According to the 
locally normality of the state <p, we obtain 

(45; [I1w(Vo), T~w(V)(n~(A))]) 

= Tr exp[ - H(A Aa) ][Va, exp(ifVo) exp[ifH(A)]A 

x exp[ - itH(A)] exp(- ilVolVTr exp[ - H(A lJ Ao)], 

(3.5) 

where H(r.?)=-'::,k'-nBk.Wa~ with r.?=A or AU Ao. The 
above (3.5) is equal to zero due to the forms of H(r.?) and 
Va. As ~o is norm dense in ~z, we conclude (2) by 
continuity. Q, E. D. 

IV. APPROACH TO EQUILIBRIUM 

One way of analyzing the structure of statistical 
mechanics is to study the time development of states 
which have been perturbed from equilibrium. If a per
turbed state relaxes to another state as time tends to 
infinite, we may say that the approach to equilibrium oc
curs under that perturbation. In this section, we will 
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study the time development of such perturbed states in 
the WIM. As discussed in the previous section, the WIM 
is described by a triple (l1w(~), [p, T) for an extremal 
KMS state <p. For a perturbation AV = AV* c ~ with A 
E [0, 1], we denote the exact perturbed WIM by a triple 
( ( ) -nw(V) -ITw(V)} • llw ~ , <p , T and the lmear response WIM by 
( ) 

-ITm( V) I -nm( ) I) . 4 13 
llw(~ ,cp ~ " T ~ • • They are given as follows' : 

The exact perturbed and linear response time evolu
tions ?;w( V), Tiw( V), 1 respectively are given in Sec. III. 
Here, let us introduce the exact perturbed state iPn w( V) 

and the linear response functional iPn~( V).I. For any A 
~, 

(0n",( V); Il",(A» = (4:' v, n~(A)q, v), 

1> V = 11 ",(W(d 1>/ I lu", (W(I 2)1> II, 
(4.1) 

(4.2) 

W(12 = 6 (- A)n J dt1 ••• J dtn Titl (n",(V)).. • (4.3) 
n~O O~t1 ~eco~tn~1 /2 

XT it (n",(V», 
n 

(iPn~( V).I; Il~(A» = (45; II",(A» 

- A(iP; l1",(A) f I ds Tis(II~(V))) 
o 

+ A(iP; II",(A»(iP; II",(V», (4.4) 

where [pIT",( V).I is obtained by linearizing CPU",( V) w. r. t. A 
and some computations. 4 

The motivation of this section is the f<;>llowing: 

(i) Under which conditions on V = V* E: ~, do the limits 
~~(V).I =w*-limt_.roiPIT~(V).1 0 Tt exist on 11",(~)? (Ap
proach to equilibrium in LRS under V. l 

(ii) Under which conditions on V = V* E:~, do the lim
its iP~"'( V) = w*-limt •• ro 0IT

",( V) 0 Tt exist on llw(~)? [Ap
proach to equilibrium in ES (exact sense) under V.] 

(iii) Is the linear response approximation useful to 
study some dynamical processes? 

We study these questions through the WIM. The an
swer concerning the first two question is 

Theorem IV. 1: For the WIM initially in equilibrium 
described by an extremal KMS state <p, the approach to 
equilibrium in LRS occurs under a perturbation V = V* 
,C: ~ if and only if the approach to equilibrium in ES oc
curs under the same V, 

Proof: As we have shown4 that for a dynamical system 
satisfying the KMS condition, the approach to equilibrium 
in LRS occurs under a perturbation V = v* belonging to 
the C*-algebra of the dynamical system if and only if 
the dynamical system is stable in LRS under the same 
V, Therefore, for the WIM, when the approach to equi
librium in LRS occurs under a perturbation V = V* 
c ~, the WIM is stable in LRS under this perturbation 
V. According to Theorem III. 1, this perturbation V is 
in the C *- algebra ~ z. As seen in the proof of Theorem 
III. 1, the equality T t (II~ (V» = llw (V) holds for all t E: R. 
It is easily checked that llw(WrI2)1> = exp( - tAllw(V)j1> is 
satisfied for V = V* C": ~z. Thus we obtain 

(iPITw( V); -:;:t (Ow (A))) 

= (exp[ -~All",(V)l1>, Tt (l1",(A») exp[ - tAllw(V) ]1»/ 

II expL - ~AIIw(V)}([) 11 2
, 
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which is equal to (q;n~(v); IT",(A) because of [II",(v)]n 
E IT",(~{Z) for any positive integer nand [Ut,R]=O for any 
R E II~(~Z). Hence the approach to equilibrium in ES oc
curs under V = V* E ~z. Conversely, if the approach to 
equilibrium in ES occurs under a perturbation V = V* 
E~, then the limits limt~.~<cpn",(V); Tt(II",(A))) exist uni
formly in XE [0, 1] for any A E~. According to the defi
nition of iPn",(V) , (cpn"'(V);Tt(II~(A))) is expressed by a 
power series of X. Moreover, it is readily seen that the 
function X E [0, 1]- (cpni V); Tt(II~(A))) is differentiable at 
all X for any A E ~ and each term of the power series of 
X is uniformly bounded in t, Hence 

lim (cpn",(V),j; Tt(n~(A))) - (iP; II",(A) 
t .... :00 

exists for any A E ~, This concludes that the approach 
to equilibrium in LRS occurs under V. Q. E,D. 

The above theorem tells us that the linear response 
method is a good approximation of the exact method as 
far as the approach to equilibrium is concerned for the 
WIM. 

Let us consider the dynamical change of metastable 
states in the WIM. In physical systems, we often en
counter metastable states which satisfy the same equi
librium condition of stable states. A stable state gives 
an absolute minimum to the free energy density of the 
system. On the contrary, a metastable state gives a 
relative minimum to the free energy density. A meta
stable state however easily changes to a stable state 
(or mixture of stable states) by a local external distur
bance, The rigorous interpretation of the existence of 
metastable states and the transition from a metastable 
state to a stable state has not much done yet. In the 
WIM, we, however, know5 that the metastable states 
exist below some critical temperature, These meta
stable states are extremal KMS states as the stable 
state. Let us discuss the above transition of a meta
stable state appeared in the WIM under the effect of lo
cal perturbations. We ask whether there exists a per
turbation which causes such transition. Let cp be a 
metastable state satisfying the KMS condition with re
spect to Tt • The locally perturbed state cpn",(v) of iP 
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under a perturbation XV = XV* E ~ is given by (4,1). We 
then switch off the perturbation at t = 0, that is, we look 
at the time development of the perturbed state cpn~( V) un
der T t. It is interesting to know when the limit cp~~( V) 

= w*-limt~ ~cpn~(V) 0 Tt exists and whether iP and CP:""( V) 
are disjoint. The first question has been answered by 
Theorem IV.l. We are interested in the second question 
here. If these states iP and iP~Ip( V) are disjoint, then 
there is possibility of having the desired transition from 
the metastable state to a stable state. Due to Theorem 
IV, 1, the limit iP~~( V) = w*-limt~ ~iPn", (V) 0 T t exists if and 
only if the perturbation V is in the C*-algebra ~ z. As 
shown in the proof of that theorem, <p~"'( V) is identical to 
iPn",(V). It is easily seen that the state iPnlp ( V) is faithful 
normal on the von Neumann algebra II ~ (~) n. Thus the 
states iP and iP nlp ( V) cannot be disjoint. This fact implies 
that there does not exist a perturbation V = V* CC ~ under 
which a metastable state of the WIM goes to a stable 
state. 
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Irreducible representations are realized on nuclear spaces. Products of certain elements of two such spaces 
can be expanded into an almost everywhere convergent series that possesses rudimentary covariance 
properties. This unique expansion is therefore called "asymptotic reduction." Products of elements of 
three such spaces possess a simultaneous expansion only in an asymptotic sense. We define recoupling 
coefficients for this reduction and give them explicitly. 

1. INTRODUCTION 

Products of unitary representations of a noncompact 
Lie group can be decomposed into a direct integral of 
irreducible unitary representations following a general 
scheme based on the concept of Hilbert spaces. Using 
realizations on L2-spaces of functions, this problem 
is a special case of harmonic analysis for the group un
der consideration. Its solution can be formulated in 
terms of a Plancherel theorem that expresses the one
to-one nature of the mapping of the product Hilbert 
space onto the direct integral of Hilbert spaces each of 
which carries an irreducible unitary representation. 
Technically this mapping is achieved by integral ker
nels ("covariant kernels") and their inverses ("dual 
covariant kernels") that are applied to nuclear sub
spaces first and then extended to the whole Hilbert 
spaces. In the case of the universal covering group of 
SU(I,I), SU(I,I)UC, a detailed description of this prob
lem including a study of the covariant and dual covariant 
kernels has been given by the authors in Ref. 1. The 
method used in that article goes back as far as 
Naimark's investigation of the same problem for the 
group SL(2, CL 2 

In this article we apply the method of "asymptotic 
reduction" to the problem of product representations. 
The general scheme into which this method falls is still 
rather obscure. Let us describe it therefore in techni
cal terms and in the way it has been developed his
torically. The first systematic use of it was made by 
Toller 3 in the analysis of two-particle relativistic scat
tering amplitudes. This scattering amplitude was con
sidered as a function on a homogeneous space of 
SU(I,I). Because of Lorentz covariance it transforms 
as a representation of SU(I, 1) carried by this space. 
However, Toller did not submit it to an L2 harmonic 
analysiS (in fact it is not L2 but rather a distribution) 
but tried instead to derive an asymptotic expansion. 

This idea can best be illustrated in terms of standard 
Fourier transforms, though crucial modifications are 
necessary when dealing with harmonic analysis on non
Abelian groups. Let 

f(x) E [2 (JR) , g(t) = f~ f(x) exp(- ixt) dx, 

1 1+ 00 

f(X)=27T _00 g(l)exp(ixl)rlt. 

If we consider IR as a homogeneous space for the trans
lation group 

T "j(x) =f(x +h), 

then t describes a unitary irreducible representation of 
it, and exp(iht) is the coordinate function corresponding 
to the group element h and the representation t 

T~g(t) = exp(iht)g(t), 

(for almost all t). The Fourier transform g(t) in this 
sense is the L2 reduction of the representation on IR. 

If g(t) is the boundary value of a meromorphic func
tion in the upper half t plane and tends to zero suffi
ciently fast for Ret-±oO, thenf(x) can be expanded 
asymptotically for x- +00, 

N 

f(x) =iL; }'n exp(ixtn) +RN(x). 
n=l 

Here Yn is the residue of g(t) at t = tn, Imtn is assumed 
to increase with nand RN(x) is O(exp(- x' ImtN)). We 
may define nonunitary representations 

T~n) Yn = exp(ihtn) Yn, 

and then regard the asymptotic expansion of f(x) as an 
"asymptotic reduction" into nonunitary representations. 
It is obvious that this procedure can be extended to dis
tributions f belonging to test functions with faster than 
exponential decrease on a half axis. The premises of 
meromorphy and sufficient decrease for the Fourier 
transform g remain essential also in this case. 

In carrying over this idea to noncompact nonabelian 
Lie groups G [such as SU(I, 1)] typical new features 
arise. Consider some homogeneous space IH of G with 
measure drdx) and a function f(x) E: L~ (IH). Define the 
Fourier transform 

where X denotes a principal or discrete series repre
sentation of G and ,\ is some discrete label. Among the 
functions P~ (x) those with a fixed X belong to a repre
sentation X of G, namely these functions satisfy the co
variance constraint 

T hf(x) = a(x, lz)f(xh) , 

a (x, lz) p~ (x h) = L; D~, ,,(h) p~, (x). 
A' 

Here a(x, II) is a multiplier and D~,,,(lz) are the coordi
nate functions, P~ (x) is fixed by this constraint up to a 
normalization. 

The inverse Fourier transform is 
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f(x) = 6 J g~(x)P£(x)d/i(x), 
~ 

where the measure d/i (X) is generally related with the 
Plancherel measure of the group. The Fourier trans
form g~(X) is L2 with respect to this measure and sum
mation over X. Again this L2 harmonic analysis can 
easily be extended to distributions f so that g~ (X) ap
pears as a distribution over a manifold 

X={X,X}. 

Though it is easy to define a subspace X. of X on which 
g~(X) is assumed to be meromorphic and to decrease, 
this is not sufficient yet to derive an asymptotic expan
sion of f(x) from the inverse Fourier transformation for 
x tending to infinity, 

The reason for this lies in the geometry of ill. Typi
cally it has the structure of one shell of a two- shell 
hyperboloid. x - co means any direction on this shell, 
contrary to the two directions x - ± co on lR that were 
treated independently in the Abelian case. There exist 
discrete reflections c in X: Xc - Xc, which if applied to 
X. cover all X and are such that 

P£ (x) = P£c (x), D~~, (II) =D~~, (h) 

and consequently 

The functions P£ (x) have an exponentially increasing 
behavior for x - co and any nonunitary representation X, 
similar as cosxt (contrary to expixt). However, it is 
possible to split them up 

such that Q~ (x) has the desired asymptotic behavior, 
namely exponential decrease for x - co in X •• The Q 
functions are defined by this property and the covariance 
requirement 

0' (x, h)Q~ (Xh) = 6 Dh(ll)Q~, (x), 
10.' 

which, contrary to the P-functions, cannot be satisfied 
for all G but at least for infinitesimal elements. In the 
case of the group SU(I, 1) the P and Q functions are 
Legendre functions of the first and second kind, re
spectively, and the covariance constraint for infinitesi
mal elements reduces to the Legendre differential 
equation. Thus the asymptotic reduction on non-Abelian 
noncompact groups is faced with the problem of de
fining "second kind" functions. Having found them, we 
easily arrive at 

N 

=ki6 6 'Y~.nQ~n(x) +RN(x), 
x n=1 

where k is the order of the group of reflections in the 
space X. 

In this article we extend this method to the decompo
sition of tensor products. Tensor products are studied 
in this context because we have a physical application 
in mind, namely operator product expansions in con-
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formally covariant quantum field theory, 4 Let 1/ (x) de
note a field operator in Minkowski space transforming 
as the representation X of the universal covering of the 
conformal group, 5 Then one wants to derive expansions 

N 

1/t (x) q/2(y) = 6 J Q(x,y,z Ix!> X2' x(n)) 
n.t 

¢x (n) (z) d/i (z )+R N(X ,y), 

that are asymptotic for the arguments x, y approaching 
each other. The conformal group of two- dimensional 
space-time has the structure of a direct product 
SO(2, 1)0S0(2, 1), So product representations of 
SU(I, I)UC are the most elementary examples of interest 
in this context. 

Our notations follow those of Ref, 1. All normaliza
tion constants N,Nd are chosen as (27Tt 3• 

2. THE MAIN THEOREM 

According to the remarks in the Introduction we are 
not interested in Hilbert spaces and thus define repre
sentations on certain nuclear spaces f)" 0 "" r < 1, 

f)1 = {g(cp) c: C(- co, + 00) I g(cp + 27T) = exp(27Tir)g(cp)}, 

(1) 
of complex valued functions. Let a group element g of 
SU(1, I)UC be defined by the matrix 

"o,(:~~:). d'bd, 

and by ~ = argO', g= (v, O. Then we define a continuous 
representation X = (j, r) in f)1 by 

T;g(cp) = 10' + f3 exp(- icp) 12i-t g(cpO') , (2) 

CPO' = cp + 2 arg(Q1 + f3 exp(- icp), (3) 

such that CPO' is C~ ing and CPO' reducing to CPO'=CP at the 
group unit. j may be any complex number. Purely 
imaginary j lead to the principal series of SU(I, I)UC by 
completing f)1 with the sesquilinear form 

112
<- . 

(gl,g2)=27T gt(CP)g2\CP)Q1CP, 
o 

(4) 

and a corresponding extension of (2), (3). The functions 

{gq(cp)lgq(cp)=exp(iqcp), q~r mod n, (5) 

form the canonical basis of f)1 that is orthonormal with 
respect to the form (4). In this article we shall assume 
that f)1 does not possess an invariant subspace of the 
type J~±).I Such subspaces can be made to carry repre
sentation of the discrete series. By a straightforward 
generalization of our results such cases can be included 
(see, e. g., Ref. 4). 

Given two representations Xt, X2 we consider the pro
duct representation carried by the linear span of 
functions 

(6) 

In our main theorem we will establish a formula 

~ iti2 (2. I 
gt(CPt)g2(CP2)=L.J 'Yk Jo Q(Xt, CPt;X2' CP2 X (k), cp) 

k.O 

F(x(ll) , cp)dcp, (7) 
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where y!li2 are normalization constants, F(X, cp) for 
fixed X belongs to a space [)7 and transforms as a 
representation X =X(k) = (j(k), T), j(k) =- t + h + jz - k, 
T ~ Tl + T2 mod 1 and Q is a "semicovariant kernel" in 
the sense that 

xl X2 ( I TgTg QXUCPI;X2CP2X(k),cp) 

= Q(XI, CPI; X2, CP21 X(k), cp) n, (8) 

holds for a certain subset of the group SU(I, 1 )UC. This 
series (7) is asymptotic in the sense of the limit CPI 
- CP2 - 27Tn - 0, the rhs is an expansion in increasing 
powers of CPI - CP2 - 27Tn. Before we formulate the ex
pansion (7) as our main theorem, we describe the quan
tities F and Q in detail, introduce some further nota
tions, and prepare the proof of the main theorem by 
establishing some lemmas. 

(9) 

where p(X (k), cP I Xl, CPI; X2, C(2) is the differential operator 

P(X(k), cP Ixu CPI; X2, C(2) 

iji2 ( . () . a ) =Pk +z-o-' +z-~ - 07 (cp- CPI) 07 (cp- C(2) 
CPI uCP2 I 2 

with the polynomial 

p~li2(1]1' 1]2) = t (_1)m(k\2j 1 -l?)m(t - j2 - q2)m 
moO Ill) 

X (2j2 - kh_m(t - jl - 1]2)k-m' 

and the "T-periodic" delta functions 

(10) 

(11) 

(12) 

Le/JIllla 1: The integral transform (9) establishes a 
linear continuous map of [)Tl X[)T (continuity in separate 
variables) into [)T that is covariint in the sense 

T~(k)F(X(l<), cp) 

x T;2g2 (CP2) dCPI dCP2 

for all gEe SU(1, l)uc. 

(13) 

Pyoof: By construction we have the first part of the 
lemma immediately. It remains to establish (13L The 
most elegant way to do this is to remember1 that for 
the covariant kernels K l , K3 applied to gl E[)T , g2 
('C [)T the integral transforms I 

2 

12, ·2, I 
U Jo K1,3(X, cP Xl> cPj; X2, C(2)gl (CP1)g2(CP2)dCPI dCP2 (14) 

are meromorphic in j if X = (j, T) and, at points of 
holomorphy, exhibit the same properties as asserted in 
the lemma, namely continuity of [)T X[)T - [)T and co-

l 2 
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variance. At j =j(k) the Kl transform has a pole with 
residue 

f 
2r 2. 

=const 0 fo P(x(k), cplXj, CPj;X2, C(2)gj(CPj)g2(CP2) 

Xdcpj dCP2' (15) 

where const has been calculated explicitly. 4 Thus (13) 
follows from the covariance of K j by analytic continua
tion in j. 

However, (13) can also be proven directly. Any ele
ment gEe SU(1, 1)UC can be decomposed as 

g =g3(Aj)gl (3)g3(A2) 

with 

(16 ) 

g3(A)=[exp(-iAU3d, ~=t;\], _00<;\<00, (17) 

gl(3) =[exp(-3uI/2 ), ~=O], -00<3<+00. (18) 

It suffices therefore to prove (13) for these one-param
eter subgroups. The elements g3(;\) are also called 
translatlOns, since 

(19) 

Thus (13) is trivial for this subgroup of translations. 

In order to prove (13) for the subgroup (18), we note 
that by continuity it suffices to prove it for the canonical 
basis elements. A product of basis elements of [)T and 
[)T

2 
goes into ~ basis element of [)T times p~li2 (ql'~2)' 

For these basls vectors 

T~j(~)gq(cp) 

is analytic in 3 for IImSI < 7T/2. It suffices therefore to 
study infinitesimal transformations 

T~I(~) = 1 + ~SAx +0(32), 

Nr;(cp) = [exP[iCP J(i - t + i o~) + exp(- icp) 

X(.i - ~ - i aOcp) Jg(cp). (20) 

Acting on canonical basis elements, (13) and (20) re
duce to two identities 

(~- jl ± 1]1) p~lj2(1]1 ± 1, q2) + (~ - j2 ±q2) p~lj2(q1> fJ2 ± 1) 

= (1 - jl -.iz ± ql ±q2 + k) p!li2(qj) fJ2)' (21) 

One of these can be reduced to the other one by means 
of 

(22) 

The lower sign identity (21) is easily proven inserting 
(11). The relation (22) is a known identity for 3F2-series 
(Ref. 6, Sec. 4.3.3). This completes the proof of the 
lemma. 

We remark that continuity and the covariance con
straint (13) determine p~lj2(ql,q2) uniquely up to a nor
malization factor depending at most on Xl, X2, and k 0 

Next we define the kernels Q which we denote "second 
kind kernel" or "semicovariJ.nt kernel. " ·1 We set 
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x {exp[in(t - h + T2)E( <PI - <P2)] 

xKt(XI' <PI; X2' <p2Ix, <p) 

- exp[in(t - it - TI)E(<PI - <P2)] 

XK~(XI' <PI; X2, <p2Ix, <p)}, (23) 

where 

e(<p) = sgn(sin<p). (24) 

First note that Q maps f)T' T~ TI +T2 modi, into the 
space f)~ T of distributions continuously. Here f)~ T de
notes the

l 
distribution space over test functions g(~;, <P2) 

that are C~ and lie in f)TI ([)T) for fixed <P2(<PI), i. eo , 

J 2~ J2. 
fHcc_f)~ T : (6,g)= 6(<PI, <P2) 

n 2 0 0 

(25) 

Moreover, the operation of Kt and K~ on gEf)T is de
fined by analytic continuation in XI, X2, X: First take 
it, h, j pure imaginary and then continue analytically in 
these parameters, If applied to elements of the poly
nomial subspace PTcf)T that consists of finite linear 
combinations of the canonical basis (5) Kt and K~ both 
behave asymptotically as 

IKd 1- const 1 sint(<pI - <P2) 1-1I2+il+'2-IReJI, (26) 

in the neighborhood of a zero of sint(<pI - <P2)' Other
wise both kernels are C~ in both arguments, Thus 
Q(Xj, <PI; X2' <P2iX, <p) (23) can be defined on PT by (23) in 
the domain 

(27) 

and outside this domain by analytic continuation, The 
image of P T lies in f);1 Y 

Lemma 2: If applied to elements of Pn Q behaves 
asymptotically for <PI - rfi2 - 21m, n an integer, as 
O«<PI- rfi2- 21m)"1I2+i l +'2-i ) and is C~ except <PI- rfi2 a 
multiple of n. 

Proof: Inserting the explicit forms of Kt and K~ into 
(23) yields 

L(XI' rfil; X2, <p2Ix, q) 

= t· Q(Xt> rfil; Xz, rfi21X, <p) exp(iqrfi)drfi 
o 

= (2n)"2 exp[i(t - j2 + T2) S (rfil - rfi2) + iq <PI - iT Z (<PI - <Pz)] 

x {I - exp[i(rfil _ rfiz)]}-1IZ+'I+JZ-J 

x zFI (t +it - jz - j, t - j +q; 1- 2j; 1- exp[i(rfil - <P2)])' 

(28) 

Here S( <p) is the sawtooth function 

lrfi' -n<<p~+7T, 
S(<p)= 

periodic otherwise with period 27T. 
(29) 

Moreover, 2FI (000 ;z) denotes that branch of the hyper
geometric function that is obtained from the hyper
geometric series around z = 0 by analytic continuation 
with cut at 1 ~ z < 00. The power in front of it, 
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Z-I 12+JI+'2-', is defined on the principal sheet with cut 
along - 00 < Z ~ 0, Thus both factors are periodic in rfil 
and rfi2' The assertion of the lemma follows immediately 
from (28), 

We remark that for j =j(k) as in (7) with k 
=0,1,2,000 thecutinz at-oo<z~Ocancels. Qbe
comes C~ except at values of rfil - rfi2 equal to odd multi
ples of 7T. 

We observe that L [(28)] is TI-periodic in rfil and T2-
periodic in <P2 but does not lie in f)T

I 
([)T

Z
) for fixed 

rfiZ(rfil) due to the singularities at <PI - <P2 = 1m, If 

Re(- t +jl +jz -j) ~ l integral, l ~ 0, 

then L is l times differentiable at rfil - rfiz = 21m. Define 

S = {(rfil, rfiz) 1 <PI - rfiz == (2n + 1)7T, n integer}, (30) 

and consider the difference 

ffiz - S = lR2' 
For any (rfil, rfi2) E lR2 we can define an open connected 
subset G(rfit, rfiz) c SU(l, l)uc containing the group unit so 
that 

(<PIg, rfi2g) E ffi2 for all gE G(rfit> rfiz)' 

For example decompose g as in (16) and let d denote the 
distance of (rfil, rfiz) from S. Then G(rfil' rfiz) can be de
fined as the subset with 

1 {) 1 < 2 arth(sind/ IS), (31 ) 

Using the same multipliers and substitutions as in (2), 
(3), we can thus define, for eachgEG(rfil,rfiz)' 

T XI Xz L( I) g XTg XI, <PI;XZ' rfiz X,q 

Lemma 3: The kernel Q establishes a linear map of 
P T into f); T satisfying the covariance relation 

I 2 

T~I X T;2 t" Q(XI> <PI; X2, <Pzl X, <p)g(<p) d <P 
o 

= J2. Q(XI> <PI; X2, <Pzl X, <p) Tig(<p) drfi, (32) 
o 

if g is restricted to G(<p" <P2) and (<pI> <Pz) E ffi2 is kept 
fixed. 

Proof: It remains to prove (32). We replace the func
tions e( <PI - <P2) in (23) by 

[E(<p, - <P2) - (2/7T)a(<p, - <P2)] + (2/Jr)a(<p, - rfi2), (33) 

with a(<p) defined by 

1 
arg(sin[<p/2 - iO]) +42)J 

a(<p) = 
7T/2 for 0 < <P < 27T . 

This function is known' to obey 

(34) 

(35) 

for all g E SU(l, l)uc, The difference E - (2/7T)a can be 
made continuous on ffi2 (see Fig, 1); it is then constant 
on each connected subset of R 2. On the other hand 
exp[ - i~a(<pI - <P2)] Kt, 3 can be expressed each as a 
linear combination of Kf and K~ with constant coeffi
cients as follows from the construction of these ker
nels.' Thus Q is a linear combination of Kf and K~ with 
constant coefficients on connected domains of R 2• This 
completes the proof. 
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FIG. 1. The functions (2/7T)a(cp) and E(cp). 

In turn one would like to use appropriately weakened 
assertions of Lemmas 2 and 3 to prove the uniqueness 
of the kernel Q, This, however, leads us to the core of 
the whole problem, namely to find a mathematical 
framework in which assumptions that guarantee the 
uniqueness of Q are "natural. " Since this is an un
solved problem, we refrain from discussing this unique
ness question here. 

Theorem 1 (the main theorem): Consider gt (cpt) 
EPT , g2(CP2)EPT and construct F(X(k), cp) fromgt ,g2 
as iJ\ (9). Then 2 

t y~li2 102r Q(Xt, CPI; X2, CP2ix(k), <p)F(X(k), cp) d<p, 
k=O 

(36) 

with 
ilJ2 _ (2 )2 (- l)k r(- 2j(k) - k) 

Yk - IT k! r(-2j(k))' (37) 

converges uniformly together with all its derivatives 
towards gl (<PI)g2(CP2) on any compact subset of Rf. 

Proof: Obviously it suffices to prove the theorem for 
elements on the canonical basis, where it assumes the 
form 

(
. . '-- ~ i j i 2 Jj i2( ) exp zqjCPj +zq2<PV--LJ Yk P k qj,q2 

k=O 

X L(Xj, CPI; X2, <p2i X(k), qj + (/2)' 

Inserting the shorthand 

Z = 1- exp[i(cpt - <P2)], 

we have to prove 

(1 - Z )-0 /2-i2+q2) 

_ t (- l)k r(- 2j(k) - k) 
- k=O l?! r(- 2j(l?)) 

P iji2( ) k (1 . . '(k) x k ql,(/2Z2Fj2+1t-}Z-J , 

t - j(l?) +(/1 +q2; 1- 2j(l?);z), 

(39) 

(40) 

The left-hand side is defined on the z plane for all z 
except the cut at 1 ~ z < 00 by analytic continuation from 
the binomial expansion. 

Our proof establishes two things: First uniform con
vergence of the rhs of (40) in all compact subsets of the 
cut z plane; second the equality of the Taylor expansions 
of both sides of (40) around z = 0 (that converge for 
Iz 1 < 1), 
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For the first step we apply a conformal mapping of 
the cut z plane on the unit circle in the w plane by (Fig. 
2) 

(41) 

Using Watson's results on the asymptotic behavior of 
2Fj functions in a parameter, 7 we estimate the 2Fj func
tion for l? - 00 and any I w I < 1. The polynomial 
p~jJ2 (qj, q2) is of the 3F 2 type and can be estimated after 
application of a three-term relation6 with the Lemma of 
Ref, 1, Appendix. It follows that each term in the expan
sion (40) behaves as 

+ ITj/222ij +2J2(1 + W)3 /2-i j-3J2+Qj +q2(1 _ w t j /2-JI+J2-<1I-<12 

which proves uniform convergence for Iw 1 < L 

The second part consists in proving the identity 

(_ I)Z( - t +{2 - q2) 

_ t (_Ok r(- 2j(k) - k) p!I J2(qj, q2) 
- k=O l?! r(- 2j(k)) 

x (t + h - h - j(l?))Z-k(t - j(k) +ql +q2)Z-k 
(1- l?)! (1 - 2j(l?))/_k 

The rhs can be expanded into a sum over 

(t - jj +ql).(t - jz +q2)/-.· 

(43) 

Comparing coefficients of both sides in (43), we need to 
prove only 

0.0 = E (- l)kG,) 

x r(- 2j(k) - k)(l- 2h + k)/_k 
r(- 2j(k))(1- 2j(k))/_k 

xt (_1)m(k)(Z-k\ (2h-l?)k_m(2j2- k )m. 
moO m n - m) 

(44) 

We multiply with (- z)' and sum over n. The resulting 
hypergeometric polynomial 

2Fj(- k, 2j2 - l?; 1- 2j j;z), 

is rewritten in terms of 

by means of one of Kummer's relations. The resulting 

z = 2 + iO FIG. 2. The image of the cut 

z = ex) + i,.:.O+----_---l __ ---.+z=--.= 1 + iO 
z=oo-iO z=1-;0 

z = 2 - iO 

z plane on the unit circle in 
the U! plane. 
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function is expanded in powers of (1 - z), and, com
paring coefficients, we obtain 

OnO = E (- 1)k(~) [(2j(k) - 2l + 3k)k(1 + 2j(k) + 4k - 2l)n_kJ-I 0 

(45) 

One way to prove this elementary identity is by estab
lishing periodicity under the substitution 

2j(k) - 2j(k) + L 

This completes the proof of the second part. 

Our first derivation4 of our main theorem by means 
of contour deformations in the completeness integral 
for the kernels K I , K 3, Kf, K~ is much more imagina
tive and certainly easier to generalize to other groups. 
Nevertheless, completing it to a proof necessitates esti
mates of residual integrals that look rather hard. For 
this reason we prefer to establish the theorem by frontal 
attack. 

As a mere corollary of Lemmas 1,2,3 and Theorem 
1 we have 

Theorem 2: The expansion (36) is termwise infinitesi
mally covariant in the sense 

(A XI +A X2) t y~IJ2 
k=O 

=t y!I J2(AXI +AX2) 
toO 

(46) 

on 1Rf. For the sake of later application and generaliza
tion we need a weaker version of this Theorem 20 Write, 
using notations (39), (41), 

Q(Xl> CPI; X2' CP2Ix(k), cp) 

= (27T)"2 exp[i(i - j2 + T2)S(CPI - CP2) - iT2(CPI - CP2) 

xt wn+kan(k' - i-l-)OT(CPI - cp), Iw 1< 1, 
ncO CPI 

and cut the sum at n =N - k: 

Q(XI, CPI;X2, CP2Ix(k), CP)=QN(XI, CPI;X2' CP2Ix(k), cp) 

+O(wN+I), 

QN(XI, CPI; X2' CP2Ix(k), cp) =0 for N < k. 

Comparison of (47) with (28) yields 

an(k, q) = (-:k) 22k 

1- 2j(k), k, k +i; 1), 

as a polynomial in q of degree no 

We formulate then 

Theorem 2': The asymptotic expansion 
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(47) 

(48) 

(49) 

gl (CPt)g2(CP2) = t y~IJ2 102
• QN(XI, CPI; X2' CP2Ix(k), cp) 

k·O 

XF(X(k), cp)dcp +O(W)N+I (50) 

is asymptotically infinitesimally covariant in the sense 

(AXI +AX2 )(gl(CPI)g2(CP2) 

~ Jli 2 f2. I ) - ~ Yt 0 QN(XI, CPI; X2, CP2 X(k), cp)F(X(k), cp)dcp 

=O(wN+I), (51) 

on 1Rf. 
Proof: We need only to establish 

XI x2 J2. I . (A +A) QN(XI, CPI;X2, CP2 X(k), cp) exp(U/cp)dcp 
o 

- ~2' QN(XI, CPI;X2' CP2Ix(k), cp)AX(k) exp(iqcp)dcp 

=O(WN+I) (52) 

since (51) is obtained by a finite sum of terms (52). On 
the other hand (52) follows by elementary algebra. 

3. THE RECOUPLING OF COVARIANT 
DIFFERENTIAL OPERATORS 

We give three representations XI, X2' X3 and dehne 

XI2 = (j12, T12), 

TI2 ~ TI + T2 mod 1, 

it2=-i+jl+jz-kI2 , kI2 =0,1,2, "'. 

(53) 

XI2 is the result of coupling XI and X2. We couple next 
XI2 with X3 to X: 

X=(j,T), 

T~TI+T2+T3 modI, 

j=-i+it2+j3-kI2' kI2 =0,1,2,"', 

=-I+jl+jz+j3- k , k I2 +k12 =k. 

(54) 

This stepwise coupling of XI, X2, and X3 is achieved by 

F«Xl' X2)XI2· X3)(X, cp) 

P(X, cP; ((XI, X2)XI2, X3) lXI' CPI; X2' CP2;X3' CP3) 

= 10
2
• P(x, cP I X12, CP12; X3' CP3) P(XI2' CPl21 XI, CPI; X2, CP2) dCP12. 

(56) 

The same representation X results if we couple the 
three representations in a different order by means of 

P(X, cP; (Xl> (X2' x3lx23) lXI, CPI; X2, CP2; X3' CP3) 

with 

= ~2' P(X, cP I Xl> CP2; X23' CP23)P(X23' CP23lx2' CP2; X3' CP3)dCP23' 

(57) 
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and 

X23 = (j23' T23 ), 

T23~T2 +T3 mod 1, 

j23 = - ~ + j2 + j3 - 1?23' k23 = 0,1,2, " 0 ' 

X=(j,T), 

T~TI+T2+T3 mod1, 

j =-1 +jl +jz +h - k, k=k23 +I?h. 

(58) 

(59) 

In the first coupling scheme the representation X can 
be arrived at in Il + 1 different fashions depending on the 
values of Ill2 = 0,1,2, ... ,Il. Thus the representation X 
appears (ll + l)-fold degenerate in the product of XI, X2, 
and X3' The same representation X results in the second 
coupling scheme. Therefore, we expect a relation 

P(X, <Pi «XI, X2) X12' X3) I XU <PI; X2' <P2; X3' <P3) 

k 

= 6 «(jj, (j2,j3)j23)j I «(jI,j2)jI2,h)j) 
k23 =O 

XP(X, <Pi (XI, (X2, x3lx23) I XI, <PI; X2' <P2; X3' <P3)' 

whose coefficients are called "6j symbols. " 

(60) 

In fact, such a finite matrix of 6j symbols is typical 
for the asymptotic reduction. In the Hilbert space re
duction of a triple product of principal series repre
sentations a principal series representation appears 
infinitely often; in fact, the degeneracy parameter cor
responding to l?12 or "23 has a continuous spectrum. By 
an analytic continuation in j certain quantities for repre
sentations of SU(1, 1) can be transformed into analogous 
quantities for representations of SU(2). 8 The spin 9 of 
SU(2) corresponds indeed to the analytically continued 
parameter - ~ + j. Thus there ought to be a connection 
between our 6j symbols and the 6J symbols of SU(2). 9 

This is suggested by the following fact. We have for 
SU(2) 

J I2 =JI +J2 -llI2' "12 =0, 1, 2, ... , min (2JI, 2J2), 

J =J12 +J3 - k{z, k{2 = 0,1,2, .. , , max (2J 3, 2J12 ), 

(61) 

These relations differ from (53), (54) solely by the 
upper bound imposed on "12' "{2' We emphasize in par
ticular that the expected relation between the 6j and the 
6J symbols connects representations of any series (not 
only the discrete series) of SU(1, l)uc with representa
tions of SU(2). 

In order to investigate the 6j symbols, we apply (60) 
to elements of the canonical basis exp(iqi<Pi)' i=1,2,3 
and then obtain 

p~lj2(ql' q2)P~:'F,·j3(ql +q2' rJ3) 
12 12 

k 

= 6 «(ju (j2,j3)j23)j I «(jUjz)j12, j3)j) 
k23 =O 

(62) 

To stress on the matrix character of the 6j symbol, we 
use also the shorthand 
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(63) 

Obviously the B matrix is defined by the inverse rela
tion (62) so that 

(64) 

(65) 

Now we make use of the obvious relation 

(66) 

This leads to 

(67) 

and 

(68) 

Compared with the great many of relations for the 6J 
symbols of SU(2), the results (67), (68) look rather 
poor. 

Both sides of (62) can be expanded into a series of 

d -jl - rJI)a(} - j2 - q2h(~ - h - Q3)c> 

with 

a,b,c?O, a+b+c=k. 

Comparison of the coefficients of (69) yields a set of 
equations 

(_ l)b+c+n ( "12 )(1< - kj ~ (ll- Ilt2 - C) 
Ii-I! C J II 

6 
n=max( O. b-k I2 ) 

x ( "23 ) (" - /;;2i\ (" -ll23 - a) 
c-n' a J Il' 

x (2jt - k + k 23 )k-k23 -a(2jz - k 23 )c-n' (2h - k 23h23 -c+n' 

X (2jz3 - " + k 23 )a' 

(69) 

(70) 

('71) 

These are ~(ll + 1)(1< + 2) equations for fixed Ill2 that 
overdetermine the I, + 1 unknowns A!~~i;;j. Nevertheless, 
they must be compatible and we can select!? + 1 appro
priate equations tha t we can solve. We choose b = ° and 
set c = 0,1,2, 000. The resulting simplified equations 
can be solved recursively, and by induction we can 
prove that the solution is 
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x (1 - 2jt + k - k Z3 )n(2j3 - k + kdk-k12-kZ3+n 

X (2j12 - k + k t2 )k -n[(2jZ3 - k + k Z3 )k-kZ +n+t1- t
, (72) 

H 3 

This expression is a finite 4F 3 series. In the cases kZ3 
= 0 or k12 = k it reduces to a single term. For kZ3 = k or 
k lz = 0 it simplifies to a Saalschiitzian sF Z series and 
thus can be summed. We find 

Aili2 i 3i -2' (k \ (2h- k)k-k23(1 +2j +k - k 23 )k23 (73) 
k230 - "23 k 23 ) (2j23 - k + k 23 )k+1 ' 

Aili2i3i _ (1- 2jl)k12(1 +2jh-kI2 (74) 
kkl2 - (1 + 2j23)k 

4. THE ASYMPTOTIC REDUCTION OF A TRIPLE 
PRODUCT 

From the results of the previous sections it is im
mediately clear that we may write 

(75) 

{ 
~ i12 i 3 J2. I x L.J 'Ykiz 0 dC{JQ(XI2, C{J12; X3, C{J3 X, C{J) 

"i2=0 

XP«XI,X2)XI2,X3)(X, C{J)} 

for g I E P Tj where the interior sum has to be supple
mented at the points of divergence by continuity. Re
ordering the double sum and in partIcular introduction 
of the kernel 

Ia2r 
dC{J12 Q(XI' C{JI; X2, C{J2IxI2' C{J12)Q(XI2, C{J12; X3, C{J3Ix, C{J), (76) 

corresponding to the coupling of the covariant differen
tial operators does not make sense: Such an expression 
(76) is not infinitesimally covariant in the sense of 
Lemma 3 any more due to the integration over C{J12, and 
the range of the first kernel does not lie in the domain 
of the second kernel. 

However, we can reorder (75) into an asymptotic 
series, Let us pick out one term with fixed kl2 and 1<{2 
(k t2 +k{2=k as before). If we then replace the exterior 
Q by Q N, this Q N can be applied to any function that is 
C" in a neighborhood of C{J12 = C{JI' Moreover, it concen
trates the function to which it is applied at C{J12 = C{Jt, 
Thus 

Q ~3) (XI' C{JI; X2, C{J2; X3, C{J3){(XI, X2)xt2' X3)x' C{J) 

979 

= 1
0

2
• dC{J12QN(XI, C{JI; X2, C{JZIX12, C{J12)Q(Xt2, C{J12; X3, C{J3Ix, C{J) 

(77) 
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makes sense provided that 

I C{Jt - C{J2 - 2n'IT I ~ 'IT - E, 

I C{Jt - C{J3 - 2n' 'IT I ~ 'IT - E, 

Denote 

(78) 

(79) 

Whereas the factor Q N in the integral is 0 (WI2,v), it 
contains a derivation of maximal order N - k12 that 
lowers the minimal power of the second factor Q. Name
ly, a term lI'12kI2 , 0 ~ V "S N - k12 , contains a derivative 
of maximal degree v, and thus lowers the order of Q to 
o (w133X(k1.z-V, 0»). Thus if 1012 and 11'13 are of the same or
der, say O(w), then each term v gives 

o (w k+v-"l.2) if v> l?{z. 

The second case occurs only if N > 1<, The whole ex
pression (77) is always O(w k

), 

(80) 

Finally we study the covariance of Q~3) [(77)]. Pro
vided (78) holds, we obtain from (52) and Lemma 3 

XI x2 X 3 J 2. I) (A +A +A 0) 0 dC{J12Q,v(XI,C{JI;X2,C{J2 XI2,C{J12 

x Q(XI2, C{J12; X3, C{Jal X, C{J) 

J2. I 
= dC{J12QN(X\lC{JI;X2,C{J2 XI2,C{Jd o 

XQ(X12' C{J12; X3, C{J3Ix, C{J)AX + remainder. (81) 

The remainder is o (U'N+IL The whole expression Q~3) is 
O(w k

), Thus Q.~3) is asymptotically infinitesimally co
variant in the sense of (51), 

We can then reorder (75) into an asymptotic expan
sion with increasing N 

(82) 

for C{JI, C{J2, C{J3 in the domain (78), so that asymptotical 
infinitesimal covariance in the sense of Theorem 2' is 
guaranteed. 

5. REMARKS ON OPERATOR PRODUCT EXPANSIONS 

Explicit calculations for quantum field theoretic 
models have been performed only for the Thirring 
model so far. 4 The variables C{J are related with the 
coordinates x of two-dimensional Minkowski space by 

X
O ±x3= tan(C{J./2), (83) 

where the (+) and (-) variables transform independently 
by a group SU(l, 1 )~c. Instead of functions gj (C{J j) E [)T 
one has to expand products of field operators I 

fl (C{JI .. C{Jt-)f2(C{J2+, C{J 2J· 
Such products are not C., in either variable on a dense 
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domain in Fock space but singular at <PI. =: <P2., <PI-
=: <P2-' However, in the case of the Thirring model one 
can use the conformal covariant normal product of the 
field operators3 instead, which is C~. If this extraction 
of a singular covariant factor were not possible, one 
could still modify the formalism developed in the pre
ceding sections to include such singularities. Whereas 
the expansion (7) can be interpreted as a "covariantly 
reordered" Taylor expansion around <PI - rp2 =: 2mr, 
such modified expansion looks more complicated and 
can only be derived if the Fourier transform (in the dis
tribution sense) of the operator product can be realized 
as a meromorphic (analytic) functionaL 

Expansions of products of two operators are called 
"global" because of their convergence almost every
where in Minkowski space, But this globality is lost in 
simultaneous expansions of three operators as we have 
learned in the present investigation, Nevertheless, in
terpreting these simultaneous expansions as asymptotic 
[such as in (82)] and expressing F«XI' X2)XI2· X3)(X, rp) by 
F(XI' (X2, X3)X23)(X, rp) through the 6j symbols amounts to a 
reordering of the expansion in powers of w1 2 , W13 into 
an expansion in powers of w12' w 23 • In a similar fashion 
the asymptotic reductions of a four-point function in the 
s channel and the t channel are related to a 9j symbol. 

6. CONCLUSIONS 

The asymptotic reduction method is applied to prod
uc ts of representations of the group SU (1, 1 )ue. Taking 
the second kind kernels as in Ref, 4, we prove term-
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wise covariance of the asymptotic expansion (Lemmas 
1, 3 and Theorem 2) and its convergence in a certain 
domain of regularity (Main Theorem). The represen
tations appearing in the asymptotic expansions are ob
tai~ed by a new kind of vector coupling coefficients (the 
p~jJ2(ql' Q2)]' Products of three representations allow us 
to introduce recoupling coefficients that are explicitly 
derived (Sec. 3). These recoupling coefficients are dis
crete matrices as in the case of compact Lie groups but 
contrary to the case of L2 analysis on noncompact Lie 
groups, Their relation with the recoupling coefficients 
of SU(2) is still unknown, The very weak covariance 
properties of simultaneous asymptotic expansions for 
products of three representations are studied in Sec, 4, 
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Local supersymmetry in (2+1) dimensions. II. An action 
for a spinning membrane 

P. S. Howe and R. W. Tucker 
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We present a locally supersymmetric action for a spinning membrane. This is obtained by 
supersymmetrizing the induced volume element action which is reformulated in terms of a three
dimensional field theory. We also discuss more complex actions which are possible due to the nontriviality 
of (super) gravity in three dimensions. 

I. INTRODUCTION 

In a separate paper, we have presented the theory of 
supergravity in three dimensions in some detail. 1 We 
remarked in that paper that owing to the nontrivial 
nature of free (super) gravity there exist several possi
bilities for the action describing two-dimensional ex
tended systems (membranes). In this paper we discuss 
some of these possibilities and, in particular, write 
down a super symmetrized version of the volume action 
for the relativistic membrane. 2 We believe that such a 
theory should serve as the simplest model of a spinning 
membrane and it provides a natural generalization to 
the much studied models of the relativistic string. 3 

Closed membranes (bags) containing surface fermionic 
degrees of freedom have been studied before4 but not in 
the manner described below. By constructing our action 
to be locally supersymmetric we endow our theory with 
a graded gauge structure which we believe is necessary 
for a consistent model. It would be premature at this 
stage to identify the quantized version with the hadron 
spectrum particularly in view of the intricasies involved 
in quantizing the spinless membrane. 2 However, we 
hope to return to an analysis of some of the simpler 
excitation modes of the system supplemented with the 
fermionic degrees of freedom to be described. It would, 
for example, be of considerable interest to charge our 
membrane and re-investigate the extended Dirac-elec
tron' with intrinsic spin. 

The organization of the paper is as follows. In Sec. II 
we reformulate the membrane action as a three-dimen
sional field theory; in Sec. III we supersymmetrize the 
action of the previous section. Finally in Sec. IV we 
discuss various other geometric actions for membranes 
both in the spinless and spinning cases. 

II. THE SPINLESS MEMBRANE 

The conventional action for a spinless membrane is 
given by the volume it generates as it moves through 
space-time2• S 

, r r- 3 S=- v-adx , (......., (2.1) 

where g "V is the metric induced on the sub manifold 
generated by the membrane from the embedding flat
space metric 

(2.2) 

and 

g=det(g"J. 

The coordinates yO< (x") locate the membrane in the em
bedding space-time [0' = 0, 1, 2, 3, 1Jo<~= (-, +++)] as a 
function of the internal coordinates x" (/l = 0,1,2) of the 
internal three-dimensional space. 

As in the case of the spinless string we can rewrite 
(2.1) in terms of a three-dimensional scalar field theory 
providing we regard the set of scalar fields cpO< '" yO< and 
g"v as independent variables. Variation of 5 with respect 
to cpO< then provides the equation of motion whilst the 
metric variation gives the constraints. The action to use 
for this purpose is 

(2.3) 

where we suppress (3 + 1) Lorentz contraction on the 
0' indices. Observe that the only modification necessary 
in comparison with the string case is the inclusion of a 
"cosmological" term 10. The equations resulting 
from varying cPO< and g"v are 

(2.4) 

and 

(2.5) 

Here, ~~ = (1/,,1 - g) a" (g "v -J - g aJ is the three-dimen
sional Laplace-Beltrami operator and t"v the energy 
momentum tensor for the system: 

2 05 
t"v=- -J-g og"V 

= fJ" cpovCP - i g"v {g PPcpcpopcp - 1}. (2.6) 

To prove that (2.1) and (2.3) give identical theories, 
one can pass to the Hamiltonian formalism and identify 
the constraints. 1 Alternatively one can solve for g"v 
from (2.5) 

g "V = 'Ao" cpovCP, (2.7) 

where 'A(x) is a scale factor. Substituting (2.7) into 
(2.3) then yields (2.1) up to a factor which may be 
absorbed by a reparametrization. 

The action (2.3) is the one which, guided by our 
experience with string theory, we believe will furnish 
us with a model of a spinning membrane upon super
symmetrization. In terms of the differential forms 
introduced in Ref. 1, Eq. (2.3) reads 
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s=j A, 

where 

1'1.= Hd¢/\ *d¢ - E} (2.8) 

is a Lagrangian three form. 

III. AN ACTION FOR A SPINNING MEMBRANE 

In order to super symmetrize (2.8) let us first con
sider global super symmetry for a massless scalar 
super multiplet in flat 3-space. The Lagrangian 3-form 
is 

(3.1) 

where I/J is an SL(2, R) spinor-valued odd Grassman 
O-form and Y=Yaea.1 On varying ¢ and I/J we obtain (up 
to an exact form) 

and hence the equations of motion 

d * d¢ = 0, (*1') /\ di/J = O. 

(3.2) 

(3.3) 

The action corresponding to (3.1) is invariant under the 
global supersymmetry transformations 

(3.4) 

where ')'=ya Oa , ea(Ob)==o~ and Ci is a constant SL(2,R) 
odd Grassman spinor. Explicitly, one finds 

OA = - d({ai/J * drp + iCiYI/J/\ drp) 

= {adJ, (3.5) 

where 

(3.6) 

J is therefore a spinor-valued 2-form current and is 
conserved (dJ = 0) when the equations of motion are 
satisfied. 

Our next step is to make (3.1) locally supersymmetric 
(i. e., generate an invariant with Ci an arbitrary x
dependent spinor valued O-form). We first ensure re
parameterization and SO(2, 1) invariance by replacing 
di/J with Dl/! =dl/J + tyawal/J. We then couple the spinor one 
form X to the supercurrent J and, as in the case of the 
spinning string, include a quadratic X term. Our final 
Lagrangian is 

A == ~ drp /\ *d¢ + ti~*Y /\ DI/J - ~hx /\ (I/J* d¢ + Yi/J /\ drp) 

+ -ftlJilPX/\ (*X + I' /\ X). 

(3.7) 

The connection l-form wa appears in the DI/J term and 
since we are not including the free supergravity part in 
our action here we need to specify its structure. We 
choose 

W"=Wa+Aa, 

where wa is the Christoffel connection1 and Aa is 
related to the torsion two form T a by 

TO = Eb 2 /\ Ab , 

where 

Ta = (i/4) X/\ Y"X. 
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(3.8) 

(3.9) 

(3.10) 

We observe that the only difference in structure between 
(3.7) and the corresponding action for the spinning 
string is the presence of the connection. This mOdifica
tion is, however, enough to complicate the proof of 
supersymmetry as we now demonstrate. In varying A 
we change not only ¢ and lP but also the frame ea and the 
field x. The supersymmetry transformations are 

oea=iCiyaX, oX=2DCi, orp=ial/J, 

oi/J = {')' J [d¢ - (i/2)X<J!]} Ci • 
(3.11) 

The proof that (3.7) is super symmetric is somewhat 
tedious. One finds that, after performing the variations 
(3.11), the terms in 01'1. involving no X's sum to give an 
exact form plus a torsion dependent part via the defini
tion T a =Dea

• Then, utilizing the explicit form (3.10) 
for T a one can compensate these pieces precisely by 
the terms involving two X's in 61'1.. A similar situation 
obtains for the one- and three-x terms. The final result 
is 

(3.12) 

Consequently we conclude that (3.7) is supersymmetric 
provided 

DX=O. (3.13) 

The last term in (3.12) is a direct consequence of the 
variation of the connection in (3.7). The condition (3.13) 
does not need to be interpreted as a gauge restriction. 
Indeed, if we demand that it be supercovariant we have 

0(Dx)=D2Ci=±pa/\Yao (3.14) 

from Eq. (2.20) of Ref. 1. Hence Ci is unrestricted if 

P"=o. (3.15) 

It appears, therefore, that the action corresponding to 
(3.7) is locally supersymmetric if the background 
supergravity satisfies (3.13), (3.15), and (3.10). (It 
may be possible to formulate the theory with the aid of 
auxiliary variables in a space without "background" 
constraints. A similar proposal for four-dimensional 
supergravity has recently been studied in Ref. 6.) 
Precisely these equations were derived in Ref. 1 to 
describe free supergravity. 

To obtain the action describing a spinning membrane, 
however, we need to supersymmetrize (2.5). Thus in 
addition to (3.7) we are required to supersymmetrize 
the" cosmological term" E. Just as with the matter free 
action discussed in Ref. 1 where the "super cosmologi
cal term" includes a mass-type term for X, in this 
case we find that it is necessary to include a mass-type 
term for ~'. The Lagrangian three form for the spinning 
membrane is therefore taken to be: 

A = ~dcp /\ ,.dcp + ~i~*Y /\ DiP - ii~<J! E - ~ixj, [dJ*drp + 1'</) /\ dcp] 

+ 1161P;}JX /\ [*X + I' /\ xl- * E+ ~iX>\ Y /" X. 

(3.16) 

The supersymmetry transformations (3.11) remain un
changed with the exception of the X transformation which 
becomes 

(3. 17) 
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We also choose the connection as in the previous case 
and (3.17) implies that there is a corresponding 
alteration in owa• The calculation of oA is slightly 
modified now and we find 

We conclude, therefore, that (3.16) is invariant pro
vided that 

DX +~y A X = o. (3.19) 

As before, the requirement that (3.19) be a super
covariant statement imposes the condition 

Fa=Ea_T a• (3.20) 

Thus, we find once more that the action corresponding 
to (3.16) is only super symmetric if the background 
supergravity satisfies (3.10), (3.19) and (3.20). These 
equations are just the equations of motion that we de
rived for free supergravity with a cosmological term in 
Ref. 1. 

The equations of motion for the spinning membrane 
obtained by varying (3.16) with respect to ¢, 1/J, X, and 
ea are 

d * d¢ - hd[iP*X + ~y A X] = 0, (3.21) 

*y A D1/J + D(*y) 1/J - i1/JE - iX/'I*d¢ + iy A X A d¢ 

+iiXA[*X+YAX]1/J=O, (3.22) 

1/J*d¢ + y1/JA d¢ + hiP1/J*x + 'h1P1/Jy A X - iy A X = 0, (3.23) 

and 

ta =0, (3.24) 

respectively. In (3.24), ta is the total energy-momentum 
2-form for the system. If we write A = LE, then L is 
the conventional Lagrangian and 

(3. 25) 

where 

t:=a(~~) aa¢+a(~~1/J) aa1/J-o~L. (3.26) 

The equations (3.21)-(3.24) appear as a complicated 
nonlinear set and unlike the spinning string there does 
not seem to be an obvious gauge that will linearize any 
of them. We may interpret (3.21) and (3.22) as equa
tions of motion for ¢O< and 1/J0< and we expect (3.23) and 
(3.24) to provide us with the constraints of the theory. 
Work on the clarification of these equations is currently 
in progress. 

IV. OTHER THREE-DIMENSIONAL SYSTEMS 

As we have remarked in the introduction and dis
cussed in Ref. 1, the actions for matter-free (super) 
gravity in three dimensions are nontrivial unlike their 
counterparts in two dimension where at most they 
may modify the boundary conditions. In this section we 
enumerate a number of other possible geometric 
actions for both spinless and spinning membranes. 
We consider first a spinless self-gravitating membrane, 
described by the action 
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(4.1) 

Equation (4.1) can be interpreted in two ways: one may 
choose the frames and connection to be those induced 
from the embedding space [as in (2.2)] or one could 
choose to vary ea and wa independently. In the first case 
(4.1) may be written 

5 = - J d3xv'_ g {1 + iR}, (4.2) 

where R is the curvature scalar calculated from the 
Christoffel connection of the induced metric (2.2). In 
the second case, the Euler-Lagrange equations for the 
connection tell us that there is no torsion but the frame 
equations of motion become second-order differential 
equations and consequently acquire a dynamical status. 

Another possibility is of course to use the "free 
gravity" part of (4. 1) alone, i. e. , 

5 = J ea A Fa. (4.3) 

In this case, we have no alternative but to regard e" 
and wa as those induced from the embedding space. 
[As we have seen in Ref. 1 the solution that renders 
(4.3) extremal for independent ea and wa variations is 
trivial.] 

We have, therefore, three actions in addition to (2.3) 
that may describe a spinless membrane-type system. 
To endow such systems with intrinsic spin it seems 
likely that the corresponding supersymmetrized version 
of (4.1) and (4.3) should be considered. However, 
whilst it is clear how one interpretes the induced metric 
the corresponding interpretation of the X variable is not 
so obvious (It would of course be extremely elegant if 
one were able to settle this question by tackling the 
entire problem in superspace. 1) This is also an inter
esting question which one could ask about the spinning 
string. Hence we shall simply contemplate here the 
super symmetrized version of (4.1) (both with and with
out a cosmological term) where the gravity and matter 
variables are treated independently. The appropriate 
actions are 

and 

51 = J ~ ea A Fa + tix A DX + ~d(/l A*d¢ + hiP*y A D1/J 

- iiXA (1/J*d¢ + y1/JA d¢) + 1~ iJj<J;XA (*X + y 1\ X) 

(4_ 4) 

(4.5) 

where 52 incorporate the super "cosmological term." 

We mention that, although in Sec. III we were forced 
to impose conditions (3.13), (3.15) or (3.19), (3.20) on 
the gravity variables to ensure super symmetry in this 
case there is no such need. (:IN e point out that for both 
these actions the connection equations give a contribu
tion to the torsion from the 1/J variable. This in turn 
implies that the variation of the connection involves 
the" matter" fields. ) With the extra variables (4. 4) 
is invariant under the transformations (3.11) and (4.5) 
is invariant under the transformations (3.11) amended 
by (3. 17). 

To summarize, we believe that the Lagrangian (3.16) 
adequately describes an extended two-dimensional 
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system with intrinsic spin and may help to supply an 
answer to the question left unsolved by Dirac. 5 In 
addition we have discussed a variety of more complex 
geometric actions for both spinless and spinning sys
tems, although in some of these cases there are prob
lems with interpretation at present. 
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S matrix 
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Generators of symmetries constructed from nontranslationally covariant currents are defined on scattering 
states and commute with the S matrix. 

1. INTRODUCTION 

As in Ref. 1, we consider the general case of a sym
metry transformation generated by a translationally 
noncovariant current. There it was shown that the 
corresponding generator Q can be extended as a qua
dratic form to two forms on the asymptotic in and out 
states, resp. These forms belong to operators Qln and 
Qout which have a number of restrictive properties 
(Theorem 8.5 of Ref. 1). In the following we show that 
Q itself can be extended as an operator to smooth 
asymptotic multiparticle states (with disjoint support in 
velocity space), and there commutes with the S matrix. 

We work within the Wightman framework of quantum 
field theory. For the reader's convenience, we sketch 
the assumptions of Ref. 1. Since in the present note we 
will consider powers of Q, some of the domain assump
tions are slightly more restrictive: 

The field theory is assumed to be given by a finite set 
of fields {¢i(X)} with common dense domain D, stable 
and Lorentz invariant. PSL denotes the polynomial alge
bra of the ¢i(j), fED(1R4) (test functions of compact 
support), n denotes the vacuum vector, and U(a) the 
unitary representation of the translations. The non
covariant current density j'-'(y, x), iJ.= 0,1,2 is assumed 
to have the following properties: 

(i) U(a)j"(y, x) U-1(a) = j"(y +a, x); 

(ii) j"(x,x) is an operator-valued tempered distribu
tion such that [ j"(x, x) f(x) dx maps D into D, for allf 
in D(R4

); 

(iii) j"(x, x) is Hermitian; 

(iv) j"(y,x), in its dependence on y, is local and rela
tively local with respect to PSL for all x; 

(v) o,,/'(V,y)=(ojay")j"(y,y)=O. 

(iil, (iii), and (v) immediately generalize, by 0), to 
j"(y,x). 

We now enlarge P SL to P~L by adding 

{jj"(y + a, y) f(y)d 4y 1 fEi)(R 4
), a E R4} 

to the generating elements of the strictly local poly
nomial algebra (this is convenient for defining powers 
of Q). The generator Q(a) is defined by 

Q(aln: = 0, 
(1. 1) 

Q(a)An: = lim[Qr(a), A In, A E P SL r- oo 

with 

Q r(a) : = J l(Y + a, y )lJr(y) 17(Y°) d4y, 

IJr(y) :=,9(I~ I), ,<) ED(R1),')(s): ={~: 
17 E D(R1

), In(y°)dyo=1. 

s ~ 2, 

Q(a) is well defined on '')Q (al : = PSLn and maps it into 
itself. [Note that Q(a + b) = U(b) Q(a) U-1(b). ) Hence 
powers of Q are also defined on p~Ln. 

We now assume invariance of the vacuum under the 
symmetry 

~~~(nl[Qr(a),AJn)=O forallAEPsL ' (1.2) 

(In Ref. 1, it was sufficient to assume this for A E P SL 
only. ) (1. 2) implies that all powers of Q are symmetric 
and hence closable. 

2. SOME TECHNICAL PROPERTIES OF Q 

The statements of Sec. 3 in Ref. 1. can be general
ized as follows: 

2.1 Lemma: Let T be a closed operator with domain 
,') T> ep(x) a function from R" to ,9 T such that ep(x) and 
Tep(x) are weakly continuous, and lIep(x)lI, IITep(x)11 are 
bounded by polynomials in [x [2 = z:" [xv [2. Then 

fep(x) f(x) dnx E9 T 

and 

T f ep(x) ((x) d"x= f Tep(x) f(x) d"x (2.1) 

for fE y(lR") , as weak integrals [y(R") are the Schwartz 
test functions of rapid decrease l. 

Proof: Both integrals exist by assumption and can be 
approximated by finite sums. The statement follows by 
(III, 5.12) of Ref. 2. 

Lemma 2. 1 can be used to enlarge the domain of 
powers of Q. We denote by P~ the polynomial algebra 
spanned by {fA(x)f(x)d4x [ A E PSL ' fE y(R4)}. 

2.2. Lemma: (i) P~n is in the domain of the closure 
of the product Q(aJ· .. Q(a n); 

(ii) p~n is in the domain of Q(a)* Q(a) C denotes 
closure, * the adjoint). 

Proof; (il By definition, for A E PSL 

Q(a t )' •• Q(an)At(xt ) •. ·Am(xm) 

=lim···lim[Q (a ),["'[Q (a) A (x)l'" 
T1-OO Tn"" cO TIl Tn n' 11 

• 

(2.2) 
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By locality, the limits are reached for finite r" '" ro 
= C(A 1> ••• , Am; a l ... an) + Z '::=11 Xm I. Putting r= ro and 
using the temperedness of the Wightman fields and of 
the current, we see that the norm of (2.2) is bounded 
by a polynomial in Ix 11, ... , I Xm I and thus bounded on 
any compact set. The scalar product of (2.2) with any 
vector in P~L is continuous. Hence (2.2) is weakly con
tinuous and polynomially bounded as is A 1(Xl ) ••• 

Am(xm)O. Lemma 2.1. implies (i). 

(ii) Stability of P~L 0 = 9Q under Q and hermiticity of 
Q imply_(Q)*Q:::J Q2. [Remember (Q)* = Q*. 1 Hence 
Q*Q:::JQ2. • 

In the next section, we extend Q to Haag-Ruelle 
scattering states. 3 For their construction, we assume 
a mass gap and consider time -dependent states 

B:1' t ••• B~n.IO = : </J(t) 
1 n 

(2.3) 

with 

B~' t = [ B,,(t, a)j(t, a) d3a 

and with Bv E P~ chosen such that B"O is in the subspace 
of one-particle states of type lJ and mass m". f is a 
smooth positive frequency solution of the Klein-Gordon 
equation for mass nlv' The scattering states are limits 
of (2.3) for t_±oo. 

2.3. Lemma: (i) Q and Q*Q are defined on </J(t). 

(ii) IIQ<J!(t)II, IIQ*Q</J(t)II are polynomially bounded in t. 

ProoF: Consider 

B,,(a)=[A,,(x)h,,(x-a)d4x, AvEP~L' h"Ey(R"). 

Then, by Lemmas 2.2 and 2. 1, 

QmB" (a 1)" 'B" (an)O 
1 n 

= ["QmAv (."1)" ·A" (xn)Oh" (xl-al) . 1 n 1 

"'li" (xn-an)d4"1"'d4xn (2.4) 
n 

is polynomially bounded in a since hVi E y(R4) and 
IIQmA (Xl)" ·A" (xn)OII is polynomially bounded in x as 

"1 n 
shown in the proof of Lemma 2.2. Weak continuity of 
(2.4) follows again as in Lemma 2.2. Of course 
IIBv (a 1) ..• B" (an)OII is polynomially bounded and weakly 

1 n 
continuous, too. By Lemma 2.1, </J(t) E .30 proving (i), 
and 

Qm Bfl· 1 ••• Bfn. t 0 
VI "n 

(2.5) 

For smooth solutions f of a Klein-Gordon equation, 

J I a I N I f{t, a) I d 3a '" C(l + I t I )N +3/2 

(see, e. g., Lemma 6.5 in Ref. 1). Combined with (2.5), 
this proves (ii). • 

3. Q ON SCATTERING STATES 

In the Haag -Ruelle scattering theory it is shown that 
states of the form (2.3) converge strongly for t - 'f 00, 

s_limBfl' t ... Bfn' 10 = : rpoiu~ .. 
t~Joo VI vn VI vn 
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to asymptotic n-particle states with wavefunctions deter
mined by fl .. ·fn. The convergence is faster than any 
inverse power of t if the fl' . 'fn have pairwise disjoint 
support in velocity space. 3 The sets of these limits, 15in , 
150U!, are dense in the asymptotic Hilbert spaces. 

_In 
3. 1. Theorem: Dout c .'lo. 

Proof: We adopt the proof given in Ref. 3 for enlarg
-I~ ing the domain of Wightman fields to Dou . Consider 

</J(t) : = B~l.t • •. B~n.t 0 
1 n 

and d</J(t)/dt which is a linear combination of expressions 
of the same type. ljJ(t) and dljJ(t)/dl are in ,'}o and 'lQ*o 
by Lemma 2.3, 

IIQ~f W =(~; I(Q)*Q~n 

~II d;L(t) 1IIIQ* Qdl?) II 
The first factor decreases faster than any inverse power 
of t for states with pairwise disjoint support in velocity 
space as a result of scattering theory. Since the second 
factor is polynomially bounded by Lemma 2.3, 
IIQ(dliJ/dt)11 is integrable. Hence "Q(t) is a Cauchy se
quence for t - + oc as well as for t - - 00. Since Q is 
closed, the statement follows. • 

Now we can show 

3.2 Theorem: QS = SQ on 150ul U Din. 

Proof: In Ref. 1 Q was extended as a form to two 
forms on Di n XD i nand Do ut XDout. These forms are given 
by operators Qin, Qoul leaving DIn, DOlil invariant. They 
obey 

Qin 5 = SQOUI 

on DOlil
• [See (7.2) of Ref. 1.1 From (3.1) it follows 

that Qi \. QOu~ coincide with Q on Di n, DOlil
• Hence Q 

leaves Din, D oul invariant and 

on DOlil. The statement for Dl n follows by starting from 
5 'lQin= QO"IS'l. • 

We remark that the results of Ref. 1. for QMI hold 
for Q, too. 

lW.D. Garber and H. Reeh. "Non-translationally covariant 
currents and associated symmetry generators," J. Math. 
Phys. (in press). 

2T. Kato, Perturbation Theory jar Linear Operators 
(Springer, Berlin, 1966). 

3K. Hepp, "On the connection between Wightman and LSZ 
quantum field theory," in Axiomatic Field Theory, Brandeis 
University Summer Institute 1965, Vol.!. edited by M. 
Chretien "and S. Deser (Gordon and Breach, New York, 
1966). 
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Electromagnetic solutions of Brans-Dicke theory of 
gravitation from Einstein theory 

V. B. Johri and G. K. Goswami 

Department of Mathematics, University of Gorakhpur, Gorakhpur-27300J, India 
(Received 18 July 1977) 

A class of static and nonstatic solutions of the Brans-Dicke theory of gravitation is obtained in the 
presence of an electromagnetic field. The metric coefficients and fields (both scalar and electromagnetic) 
are supposed to be functions of any three independent variables. The major result of the paper may be 
stated as follows: "Corresponding to any diagonalizable solution of Einstein's vacuum field equations in 
which fields and metric coefficients are functions of not more than three variables, we can generate a 
solution of the coupled Brans-Dicke Maxwell field equations with nonzero electromagnetic field." 

1. INTRODUCTION 

This work is a continuation of our previous studyl of 
the BD theory2 of gravitation in which we have obtained 
a class of static and nonstatic solution of the BD vacu
um field equations by transforming them into the Eins
tein vacuum field equations. Here we have considered 
the energy-momentum tensor due to source-free elec
tromagnetic field, and have obtained a class of static 
and nonstatic solution of the coupled BD- Maxwell field 
equations by transforming them into Einstein vacuum 
field equations. The metric coefficients and fields (both 
electromagnetic and scalar) are taken to be functions of 
not more than three variables. Such type of work has 
been done by B. Kent Harrison3 in which he has obtained 
solutions of the Einstein-Maxwell field equations by 
transforming them into the Einstein vacuum field equa
tions. Recently Tiwari and Nayak4 have also obtained 
a class of solutions of the BD electrostatic field equa
tions by reducing them into the Einstein electrostatic 
field equations but here we have considered both static 
and stationary BD-Maxwell fields. 

In Sec. 2, we have set up the BD-Maxwell field equa
tions in a suitable form by assuming a functional rela
tionship amongst g33' scalar field <P and potential C; 
then we have established the main result of the paper. 
In Sec. 3, BD solutions are obtained corresponding to 
some well-known solution of Einstein theory. The last 
section contains some concluding remarks. 

2. DERIVATION OF BD-MAXWELL FIELDS FROM 
EINSTEIN VACUUM FIELD 

The BD field equations for source free electromag
netic field are 

87T W <Pi"" 
Rij = - ~Tij -ll<P,i<P ,j - ¢, 

<P~k = ° (w * - ~ ) , 
[ijkl]~Fjk =0, 

and 

a [r---= 'j-ll/ ] 
a;(i V - g g' ~ FjI = ° 

with 

Tij = (Fill'} - igjjFzmFm) 

(1) 

(2) 

(3) 

(4) 

(5) 

and 

[ijkl]=(+ 1, -1) for (even, odd) permutation of i,j, k, I, 

= ° if any two of i, j, k, I are equal. 

Where Rij is the Ricci tensor, Tij is the energy mo
mentum tensor due to source-free electromagnetic 
field, Fij is the electromagnetic field tensor, <P is the 
scalar field, and w is the coupling constant. 

If we put <P = ff, 

then Eq. (1) is transformed to 

R jj = - (87T/e
A
)Tij - (w + 1)A,iA,j - Ai;j' 

Now we consider a general line element 

(6) 

(7) 

ds2 = exp(2V)(dx3)2 - exp[ - 2(V + EU)][ear aa (dx" )2], 

(8) 

where ct, (3, y take the value 0, 1,2. r a8 = ° for ct *f3, 
eo = - 1, el = e2 = 1 and U, V, and r aa are functions of 
only three variables XO, Xl, and X2, and E is an arbitrary 
constant. 

The metric coefficients being independent of coordi
nate x3

, Eqs. (3) and (4) can be easily satisfied with the 
help of potentials as shown by Harrison. We define 
A, B, and C by 

p8 = ..; _ g E,,(!r A r 
, ' 

F4a =B,a, 

and C is connected to A and B by 

A =C cosD, B =C sinD, 

(9) 

(10) 

(11) 

D being a constant and E
aBr being an alternating three

index symbol. 

The transformation (11) may be looked upon as the 
duality rotation of Misner and Wheeler (1957). If the 
fields were independent of x O instead of x3, B would be 
the electric potential and A would be the magnetic po
tentiaL We may also take the electromagnetic field to 
be purely electric or magnetic by chOOSing B or A to 
be zero, respectively. 

Computing the components of energy-momentum ten
sor Tij and Ricci tensor Rij with the help of metric (8) 

Ta8 = exp(- 2V)(A,a B ,8 +A,8 B ,,,,) = exp(- 2V)C ,,,,C ,8' 

(",~8 ) (12) 
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T33 = exp[2(V + EU)je",f''''''' (A:", + B;",) 

= exp[2(V + EU) je",f''''''' C;"" (14) 

Ra~ = Pas - EU",;B + 2V,a V,B - E
2

U,,,, U,a, (15) 
(",#B) 

R",,,, =P",,,, - e",f' "'''' (V:a + E[Jl,B) - EU""a + 2 V2", , , , , 

-E2U;a +E2ea r",a'V1(U) + Ee",raa 'V1(U, V), (16) 

R 33 =exp(4V+2EU)[v<;'a -E'V1(U, V)], (17) 

where 

'V1(U, V) =e",f''''''' U'''' V,'''' 

'V1(U) = e",raa U2
a . 

(18) 

(19) 

Pas is the Ricci tensor formed with respect to the 
three metric r as and covariant deviatives are also taken 
with respect to the three metric r as' 

Therefore the field equations (1) to (4) become 

P aB - EUa;B + 2V,a V,s - E2U,a U,S 

= - (81T/e 2v e
X
)C ,,,,C,a - (w + 1)\01. \a - \.;B 

- E(\,. U,a + \aU,a) - (\'" V,s + \8 V,,,,), (20) 

P",,,, - ear 01.01. (V:S + Elf':B) - EUa .", + 2V2,. - E2U2
a , , t , , 

+E2e",raa 'V1(U) + Ee",r",a'V1(U, V) 

81T (2 1 aB C2) ( ) 2 =-~ Col. -2eaeSr",,,,r a - w+ 1 A a e e ' , , 

-(2\",V,a-e",ear",,.rs~V,a\,,,)' (21) 

~'" - E'V1(U, V) = - (41T/e 2V eX)'V1(C) - 'V1(V, A), (22) 

with 

(23) 

and 

(24) 

Now we assume the functional relationship amongst 
C,¢,U, and Vas 

V=V(¢,C), U=U(¢) 

then it can be proved with the help of Eqs. (22), (23), 
and (24) that 

e2V = _ ¢-1(41TC2 + GC + H) 

A=EU, 

where G and H are constants. 

Therefore adjusting constants we may write 

exp(2 V) = - exp( - A)41T( C + L)2 = - 41T exp(2 /1 - A) 

= - 41T exp(2/1- EU), 

where 

(25) 

(26) 

(27) 

Now applying transformations (26) and (27) in Eqs. 
(22), (23), and (24), we get 

/1~a - EU:", == 'V1(/1) 

/1~a ='V1(/1) 

which combine together to give 

U;a =0. 

Equations (20) and (21) reduce to 

Paa + 2F2 U,,,, Us = 0 (a," 13) 

Paa + 2F2U;a = 0, 

where 

F2 = (E2 /4)(3 + 2w). 

Putting 

W=FU, 

Eqs. (31) and (32) take the form 

~,.=O 

Pol.'" + 2W:a =0 

POlS + 2W,a W,B = 0 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

which are Einstein vacuum field equations for the metric 

(37) 

Thus we have established the following result: 

Corresponding to any diagonalizable solution of the 
Einstein vacuum field equations in which fields and 
metric coefficients are functions of not more than three 
variables, we can generate a solution of the coupled 
BD-Maxwell field equations with nonzero electromag
netic field. 

Mathematically, suppose the metric 

with r 01.'" and W as functions of xO, Xl, and x2 satisfies 
Einstein's vacuum field equations; then the metric 

ds 2 = exp(2/1- EW /F){dx3)2 

+ exp(- 2/1- EW /F)[eaf' 01.01. (dx'" )2] (38) 

will satisfy the BD-Maxwell field equations with scalar 
field given by 

¢=exp(EW/F), E,F arbitrary constants (39) 

and /1 related to potential C through Eq. (28). The po
tential C may be obtained from Harrison's result 

C =K[exp(2W) - 1j/[exp(2W) + 1j, (40) 

k being constant. 

The metric (37) shows that the solution obtained here 
is conformal to the metric 

(41) 

C+L=e" (28) Through the conformal transformation 

and L is a constant. g"v(BD) = ¢-tg"v • (42) 
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3. SOME PARTICULAR SOLUTIONS CORRESPONDING 
TO WELL-KNOWN VACUUM SOLUTIONS OF 
EINSTEIN'S THEORY 

In this section we have applied the result obtained 
in the previous section to some well known static and 
stationary vacuum solutions of Einstein's theory viz. 
the static plane symmetric solution of Taub, 5 the con
formastat solution of Das, 6 and the nonstatic solution 
of Mishra and RadhaKrishna7 of type II according to 
Pirani's criterion. 8 

A. Static solutions 
I. Static plane symmetric solution 

The static plane symmetric solution due to Taub is 
given by the metric 

ds2 =_ (k1x + k2)_1/2(dx2 _ dt2) _ (k1x +k2)(dy2 +dz2) 

= (k1x +k2)_1/2 dl2 _ (k1x + k2)1/2[(k1x +k2)_1 dx2 

+ (k1x + k2)1 /2(di + dz 2) l. (43) 

The corresponding BD-Maxwell solution will be 

{ [
(1- mx)-2 _ 1] } 2( )E /2F 

goo=. k (1_mx)-2+ 1 +L 1- mx 

(48) 

gll = g22 = g33 

={k [(1- mx)-2 - IJ + L} _2 (1- mx)E /2F-2 
(1 - mx)-2 + 1 ' 

with scalar field 

¢ = (1 _ mx)_E /2F (49) 

{ [
(1- mx)-2 - 1J } 

magnetic potential A = k (1- mx)-2 + 1 cosD 

(50) 

and 

electric potential B = {k [i~ = :;~~~: iJ SinD}. 

This solution also has a singularity at x = l/m. Thus 
there is again one-to-one correspondence between the 
singularities of metric (47) and solution (48). 

B. Stationary solutions 
I. Solution of type II according to Pirani's criterion 

Let us consider a stationary metric of type II accord
ing to Pirani's criterion 

ds2 = exp[(m2r2 / 4 + mt) ](dt2 - d Y) - Y exp(mt)d¢2 

- exp( - mt) dz 2 

= - exp(- mt) dz 2 
- exp(mt)[exp(m2r2/4) dY 

+ ~d¢2 _ exp(m2~ /4) dt2 l, (51) 

(44) where m is a constant. 

with scalar field defined by 

(45) 

{ [
(k x + k )_1/2 - 1J } 

electric potential B = k (k:X + k~tl}2 + 1 sinD (46) 

{ [
(k x+k )_1/2_ 1] } 

magnetic potential A = k (k~X + k~)_172 + 1 cosD . 

This solution is due to an infnite charged plane paral
lel to the (y, z) plane. Like metric (43) this solution also 
has a singularity at x = - kdk1 • Thus we see that there 
is a one-to-one correspondence between the singulari
ties of the Einstein vacuum solution and the BD
Maxwell solutions in this case. 

II. Conformastat solution 

The empty space conformastat solution of Das is given 
by the metric 

ds2 = (1- mxt2 dt2 - (1- mx)2[(1_ mx)2(dx2 + di + dz2) l. 
(47) 

This is due to the gravitational field of an infinite plane 
parallel to the (y, z) plane. This metric has a singular
ity at x = l/m where m = constant. The corresponding 
solution of BD-Maxwell field equations is given by 
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This metric was obtained by Mishra and Radha
Krishna. The corresponding solution of the BD
Maxwell field equation will be 

{ [
[exp(- mt) -1lJ }2 

g33= k [exp(-mt)+l] +L exp(E/4Fmt) 

gll = - goo 

{ [
[exp(- mt) - llJ } _2 (/ 2 .2/ 

= k rexp(-mt)+l] +L exp E 4Fmt+m r 4), 

{ [
[exp(-mt)-llJ }_22 

g22= k [exp(-mt)+l] +L rexp(E/4Fmt), 

(52) 

with ¢ given by 

¢ = exp(- E/4F mt) (53) 

and 

. { [[exp(- mt) - IJJ} 
potentIal C = k [exp(- mt) + 1] . (54) 

C. Conclusion 

The immediate use of the result derived in this paper 
is in obtaining exact solutions of the BD- Maxwell field 
equations, which are otherwise quite intricate, from 
the known solutions of Einstein vacuum field equations. 
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Besides, these solutions furnish examples of singular
ities occurring in the BD theory. It is found that there 
is a one-to-one correspondence between the singulari
ties of Einstein vacuum solutions and BD-Maxwell 
solutions in the cases we have examined. 

In conclusion, we at least hope that our investiga
tions will lead to deeper understanding of the Einstein 
and BD theory. We also hope that some physical insight 
can be gained from the solution obtained in this paper. 
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gauge theories 
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We exploit dilatational invariance and some inequalities for the stress tensor to derive constraints for finite 
energy solutions in sourceless non-Abelian gauge theories. The results extend known no-go theorems 
considerably and provide some hints on what nondissipative finite energy solutions could look like. 

In classical sourceless electrodynamics the complete 
set of finite energy solutions is given by the vacuum and 
the square integrable wavepackets, For non-Abelian 
gauge theories our knowledge on classical finite energy 
solutions is much poorer, 1 This ignorance can be a 
serious drawback if one is looking for a treatment of the 
quantized theory which goes beyond ordinary perturba
tion expansion, 

In this paper we use dilatational and conformal invar
iance of sourceless non-Abelian gauge theories, supple
mented by some inequalities for the gauge invariant, 
symmetric stress tensor to work out general constraints 
on finite energy solutions in physical Minkowski space. 
Although these conditions are not strong enough to set
tle the question of genuine non-Abelian finite energy 
solutions, they extend known no-go theorems3•

4 and may 
provide useful hints where to search for them. 

The theory we are delaing with in this paper is the 
sourceless Yang-Mills theory in (1 + 3)-dimensional 
Minkowski space with a given compact gauge group. The 
gauge invariant, symmetric stress tensor for such a 
theory can be written in the form 

e"V - "" [ Fa" FavK + ..lg"V F"K~ F" J -'--I -" 4 K~ • 
(1 ) 

Here F""v denotes the Yang-Mills field strength tensor. 
The latin index a labels the members of the adjoint 
representation of the gauge group algebra. 

The stress tensor is traceless, which simply reflects 
dilatational and conformal invariance of the theory, 

(2) 

From expression (1) one can read off some inequalities 
which are important to us: 

(3a) 

(3b) 

(3c) 

Vanishing energy density eoo means vanishing field
strength tensor and this implies that the potentials van
ish in some gauge. 3 

For any solution of the equations of motion the 4-
momentum is locally conserved, 

ateOV(x,t)+~eiV(x,t)=O, (4) 

We restrict ourselves to finite energy solutions, 

(5) 

Without any further assumption on surface terms, Eqs. 
(3), (4), and (5) together imply the time independence of 
"the total energy (5). The relations (2)-(5) form the 
starting point for our considerations. Contraction of the 
continuity equation (4) with the tensor gvixi and integra
tion over a finite time interval (f1> (2 ) and a compact 
space region G leads to the virial formula, 

f dvj tZdt eOO(x t) 
G t1 ' 

= f dVxi[eOi(x, (2) - 1I0i(x, (1 )J 
G 

+1 djit2dtxieii(x,t), 
aG t1 

(6) 

We now evaluate Eq. (6) in the limit (t2 - tJ - 00, The 
result is the following: 

Theorem: For any finite energy solution of the equa
tions of motion the energy density satisfies 

(7) 

This theorem has some immediate applications. 

Corollary: For any finite energy solution of the equa
tions of motion the energy denSity vanishes for large t 
in the sense 

lim eOO(x, t) = 0 (xER 3 ). 

~ 

Corollary: The vacuum is the unique finite energy 
solution with an almost periodic time dependence of the 
energy density, 

The proof of the second corollary uses some elemen
tary facts on almost periodiC functions, For such solu
tions lim in Eq. (7) can be replaced by lim, Because of 
positivity (3a) eOO(x, t) has to vanish, 5 This means the 
solution was the vacuum, The last corollary covers the 
cases of static and ordinary periodic solutions. 

Now we prove the theorem, Inequality (3b) provides 
us with a time independent bound for the volume integral 
on the right-hand side of Eq, (6), 

If dVXi[B"i(X,t2) - eOi(x, tl)]1 
G 

,:; 2sup Ix I fIR3dV eOO(x, f). 
UG 

The time average of Eq, (6) therefore becomes 
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[J 
1, t +T 

lim 'dV T J a dt eOO(x, t) 
T~ oc G to 

(8) 

It is not guaranteed that one can interchange the time 
limit with the space integration. Nevertheless we can 
conclude from "Fatou's lemma" that 

J dVlim ~ J to+T dt eOO(x, t) 
G FOO to 

.; lim I dfi ~ I to+T dt xieij(x, t). 
T~ 00 aG T to 

(9) 

For the compact region G we now choose a ball with 
center at the origin and radius r. Then we use (3c) and 
continue inequality (9), 

1 j i 
lim r I dQ, - I to+T dt x eij(x, t) ~ 
T~~ Ixl.r T to r r 

, 1 J' to+T .;rlimJ dQ,- dt eOO(x, t). 
T~oo Ixl_r T to 

(10) 

We apply "Fatou's lemma" once more in order to show 
that 

r lim I dQ, ~ J
t 

t o
+ T dt eOO(x, t) 

T~oo Ixl.r ° 
is an integrable function of r, 

J~~ drrlim I dQ, ~ I to+T dt eOO(x, t) 
T~oo Ixl=r to 

Because lim r~'" rf(r) vanishes for any integrable func
tion f(r) one gets the relation 

lim[r.lim J dQ, -T
1 J to+T dt eOO(x, t)] = 0 

n" oc ~ Ixl=rn to 

for some sequence rn - 00. 

If one reads Eqs. (9), (10), and (11) in one line, one 
obtains 

J . 1 J to+T OO( ) 3dVhm -T dt e x, t =0. 
IR ~ to 

Because of (3a) this proves the theorem. 

(11) 

A complementary way to look at Eq. (6) is to hold the 
time interval (t lO t2 ) fixed and to extend the compact re
gion to the whole space lR3. The resulting formula ex
presses the time independence of the dilatational charge. 

Theorem: For any finite energy solution of the equa
tions of motion there exists a sequence rn> 0 with 
rnn::t 00 such that 

f 3dV eOO(x, t) 
IR 

= Ij!12 {J\ xkrn dV ~i [eOi(x, to + T) - eOj(x, to)]}. (12) 

Proof: Due to (3c) the surface term in Eq. (6) is 
bounded by 

II dfi J t2dtxjeij(x,nl 
lJ'i.r t, 
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" r'l ~ dQ, J' t2dt eOO(x t) 
Ixl.r t, ' • 

Because of 

an argument similar to that used in the previous proof 
shows the existence of the wanted sequence rn - 00 with 

limlr~J d[~J t2dtxitlii(X.t)]=0. 
~ Ixl;;rn tl 

Corollarv: For any finite energy solution of the equa
tions of motions which satisfy in addition 

J dVxifJOi(X t)<oc (tclR), 
IR3 , 

one has the following relation for the total energy 

J' dVeOO(x tl=limJ' dV~ eOi(x t +T). (13) 
IR3 'T~ '" m3 T ' ° 

This corollary can help to decide whether a given ansatz 
for a finite energy solution has a chance or not. For 
example we look for "lumplike" solution. 3 Let us as
sume that the lump has something like a center moving 
on a trajectory y(t) such that, relative to this center, 
the energy density dissipates only weakly. In more pre
cise terms: let us assume that there is an integrable 
function f(x) with a finite first moment which bounds 
the energy density in the following way, 

tJ°O(x,t)<f(x-y(t))(I+t) (/>O). (14) 

With Lebesque's theorem on dominated convergence one 
can now calculate the limit in Eq. (13). The result is 

(15) 

Because of inequality (3b) the total 4-momentum can be 
timelike or lightlike. For timelike 4-momentum the 
solution has a rest frame and in this frame it is obvious 
that only the vacuum satisfies Eq. (15),. The interesting 
case is lightlike 4-momentum (which is impossible for 
Abelian finite energy solutions). The center of the lump 
then moves asymptotically with the speed of light in the 
direction of the total momentum. 

We therefore reach the following alternative for finite 
energy solutions of the sourceless Yang-Mills equa
tions. Either the energy density dissipates more than 
weakly [in the sense of Eq. (14)] or the total 4-momen
tum is lightlike. Unfortunately our definition of "weakly 
diSSipative" does not exactly fit with what Coleman calls 
a dissipative solution. 3 

A hint in the same direction comes from our first 
corollary. Assume limT~",lsupx<m3000(x,t)1 is not zero. 
Then there is a constant c> 0 and for every time I (t 
sufficiently large) there is at least one point xo(t) such 
that eOO(xo(t), t) > c. The corollary tells us it is impossi .. 
ble to find a Lorentz frame where this point is at rest. 

If one is willing to make stronger assumptions on the 
energy density, one can derive identities which involve 
second moments, e. g. , 

M. Magg 992 



                                                                                                                                    

We think that the essential points are already contained 
in the equations we have used. 
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On the inverse problem of transport theory with azimuthal 
dependence 

N. J. McCormick and J. A. R. Veeder 
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The infinite medium inverse problem with an azimuthally dependent plane source leads to integral 
moments of the intensity over all space and angle. A new relationship has been derived between the 
moments and the coefficients of the expansion of powers of v in terms of the gk'(v) polynomials which 
arise in transport problems without azimuthal symmetry. This relationship has been used to obtain an 
improved method for determining the moments. 

I. INTRODUCTION 

The study of plane -symmetric one -speed neutron 
transport, with the anisotropic scattering kernel ex
pressed in terms of the first (N + 1) Legendre poly
nomials of the scattering angle, involves a decomposi
tion of the azimuthally dependent equations into a set of 
(N + 1) azimuthally independent equations. For the mth 
azimuthal Fourier component of the finite series solu
tion for the particle field strength, a set of orthogonal 
g;(v) polynomials arise. For a historical perspective 
it is worth noting that these g;(v) polynomials were 
introduced by Chandrasekhar l in his treatment of the 
same transport equation in the theory of radiative ener
gy transfer. Furthermore, these polynomials are those 
required in the solution of the transport equation by the 
spherical harmonics technique. 2 

For an inverse problem the neutron angular flux or 
the angular distribution of radiation in the body and on 
the boundaries may be assumed to be completely known, 
and from this the scattering properties of the medium 
are desired. 3 In the simplest inverse transport prob
lem, corresponding to an infinite medium containing a 
localized azimuthally symmetric plane source (i. e. , 
the Green's function problem), a method equivalent to 
the "method of moments" has been utilized to extract 
the scattering coefficients in terms of spatial and 
angular moments of the angular flux throughout the in
finite medium. 4,5 Such a procedure involves use of a 
recursive set of moment equations of increasing com
plexity; for example, for the nth scattering coefficient 
it is necessary to solve a determinant of order 
2n + n(1l -1)/2 for I/::C 1. 6 Solutions of the azimuthally
independent inverse problem also have been worked 
out for the energy-dependent" and time-dependent 
cases. B 

The inverse problem with an azimuthally asymmetric 
source has also been solved, where it has been shown 
that a single moment of the azimuth -dependent Green's 
function can be related to a single scattering coeffi
cient. n Both these moments and those moments for the 
azimuth-independent problems are special cases of a 
generalized family of moments which may be related to 
the anisotropic response of a detector in an anisotropi
cally scattering medium, as will be shown. 

The purpose of this work is to provide a relatively 
simple technique for determining these generalized 

moments and to illustrate their use for calculating 
even powers of the distance of travel of particles from 
the source. As a by -product of the analysis a new 
relationship between the moments and the coefficients 
of the expansion of powers of II in terms of the g;:(v) 
polynomials is derived. 

II. THE INVERSE PROBLEM WITH AZIMUTHAL 
DEPENDENCE 

For a plane source in an infinite medium, the radia
tion intensity (or neutron angular flux) I(r, /J., cp) depends 
upon one coordinate (r), on the cosine of the polar 
angle with respect to the positive r axis (/J.) and on the 
azimuth (CP). In the absence of all but localized sources, 
the equation of transfer may be written as l 

where anisotropic scattering of finite order N is 
admitted. 

N 

p(COSO) =,0 wnPn(coso), 
n=O 

(1) 

(2) 

and where some absorption is assumed (0 < wo<l). The 
prescription for the infinite-medium Green's function 
is completed with the conditions that I(r, /J., cp) stays 
bounded as r - ± ao and that 

1(0., /J., CP) -/(0-, /J., 1» = /1-~l 0(/1- - /1-)o(CP), -1 ~ /J."; 1. 

(3) 

By an established procedurel
,9 the cP dependence in 

Eq. (1) can be eliminated by a finite Fourier expansion 

+I)r, /1-, cp), 

where III( r, /J., 1» is a portion of the uncollided 
distribution, 

I,,(r, /1-, 1» = Jl~/ o(Jl - Jl) exp( - r / Jl) 

x[O(CP) - 2~ fo (2 - omo) cosmcpJ. 

The resulting (N + 1) independent transport equations 
are 

(4) 

(5) 
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(/l o~ + l)1"'(T' /l}=t f I dm(/l'}pm(/l, /l'}r(T, /l'). 

-I (6) 

Here 

m( '} ~ - (k - m)! m(} m ( ') (7) 
p /l, /l = £!m W k (k + m)! p k /l P k /J. , 

p~(/J.}= d~ Pk(/J.}=(1_/l2tm/2p~(/l}, (8) 

and, for brevity, 

For a monodirectional plane source in an infinite 
medium, the function which must be considered is 

K7 n= 21T I ~ dT Tnr dm(/J.}pr;' (/J.}l"'(T, /J.), m $C N, 
I -01) -1 

=0, m>N. (10) 

Symmetry considerations4
,B reveal that K7,n= 0 for 

(n+l+m) odd and for n <l-m. 

From Eq. (6) we derive the identity 

f ~ d /1 
21T(2l + I} dTTn fiT dm(/J.}1"'(T, /J.} /J.P';'(/J.} 

_GO -1 

+ h zK7,n= 0, 1 "" m, 

where 

(11) 

(12) 

Use of the recursion relation for the modified asso
ciated Legendre polynomial, followed by an integration 
by parts, gives 

(1 - m + l)K7.I,n-1 + (l + m)K7-I,n-1 = ~ K7,n' 1 "" m. 

(13) 

For m = 0 Eq. (13) reduces to the recursion equation of 
McCormick and Kuscer6 once we correct their result 
for a typographical error. 

TABLE I. Table of m values for nonvanishing KT,n and m ~ N. 

1 
7 7* 6* 5* 4* 

7 6 

6 6* 5* 4* 3* 
6 5 

5 5* 4* 3* 2* 
5 4 

4 4* 3* 2* 1* 
4 3 

3 3* 2* 1* 0* a 
3 2 

2 2* 1* 0* 
2 

1 1* 0* 0 

1=0 0* 0 

n=O 1 2 3 

From Eq. (11) and the appropriate source condition, 
we find the starting conditions for the sets of equations 
are 

(1 2\m/2 m 
K m = - /lol f1 (2n + 1). 

m ,0 h
m 

n=O 
(14) 

Equation (14) relates a single moment of the azimuth
dependent Green's function to a single h value, and has 
been derived previously. 6 Since Eq. (14) forms a closed 
set of equations from which the scattering coefficients 
of the medium can be determined in terms of the K 
moments, it represents a solution to the inverse prob
lem. Alternatively, Eqs. (13) and (14) may be used to 
obtain the scattering coefficients in terms of a different 
set of moments. 

If the angle of incident radiation from the plane source 
is normal to the plane so that /lo = 1, then all K7, n values 
for m *0 will vanish as a consequence of the azimuthal 
symmetry. 

III. CALCULATION OF THE K~n 

In developing a scheme to facilitate the calculation of 
the K7,n it is useful to look at an array ordered by those 
1, n, and m for which K7,n exist and do not vanish. 
Remembering that K7 n vanishes for n <l -m, for 1 <m, 
and for (n + I - m) odd, we construct Table I which is 
valid for m $C N. 

For a particular m, the table shows that the non
vanishing K7,n are located in the lower right diagonal 
portion of the array. The elements of this lower diago
nal portion are confined by an uppermost boundary of 
elements defined by the general term K;:; +p,p' for aU 
P "" 0 and m $C N. These "boundary" or "upper diagonal" 
elements follow immediately from recursion relation 
(13) since in this case the first term of that recursion 
relation vanishes, i. e., K;:;+P+I,P -I = O. Thus 

K;+m,p= (p(p + 2m)/hp..,,)K;.m_l,p_u (15) 

from which it follows that K;+m,p for m $C N is 

3* 2* 1* 0* 
5,7 4,6 3,rJ,7 2,4,6 

2* 1* 0* 
4,6 3,5 2,4,6 1,3,5 

1* 0* 
3,5 2,4 1,3,5 0,2,4 

0* 
2,4 1,3 0,2,4 1,3 

1,3 0,2 1,3 0,2 

0,2 0,2 

1 0 0 

0 0 

4 5 6 7 n 

a This means that Iq',3 vanishes for all m '" 0.2 and the asterisk on m = 0 indicates that the element should be calculated by use of 
Eq. (16). 
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K m = K": ri 11(11 + 2m) , 
m+p,fJ m,D 71=1 hn+m 

(16) 

where K:.o is given by Eq. (14). 

The calculation of the remaining nonvanishing K7 in 
Table I would be cumbersome with the use of Eqs. 'C13) 
and (14).6 Hence it is desirable to develop an improved 
procedure. To do this, it is necessary to introduce the 
set of functions which satisfy the recursion relation l.9 

hkvg;(v)=(k+m)!t:-l(v)+(l~-m+1)g;+1(V), k?:om, (17) 

where the starting equation islo 
m-l 

g,::(v) =p;::(v) = n (211 + 1). 
n=O 

(18) 

The R'!'(v) are polynomials of order (Z - m), alternatively 
even and odd, and hence may be used in an expansion 
such as 

m+n 
vn=~ A7.nJt;'(v). (19) 

l=m 

A convenient means for calculating the g;'( v) is the 
determinant ll 

g,;:(v) 
K;:(v)= (k -mil 

hmv 

2m + 1 hm"V 

x 
o 
o 

o 

2m + 2 

o 

o 
2 

o 
o 

o 

(20) 

which was derived from Eq. (17) by an inductive proof 
and which generalizes a result of inonu 12 to the case 
for m *0. Bya straightforward expansion of Eq. (20), 
an alternative expression is 

k-m 
!t;(v) = ~ C7 k

vj , 
1=0 • 

(21) 

where C7.k= ° if (k + 1 - m) is odd. Here 

C;:'..m-2s.k= (- 1)' C;-m.k S;-m-2s,k' (22) 

where we define the factors 

=1, s=O, (23) 

C;-m.k=[:tr (2n + l~[E, hJ[(k - m) I] -1 (24) 

and where cg. o = 1 in order to satisfy Eq. (18). The 
coefficient of the lowest power of v in Eq. (21), for 
example, is given by 

x 

if (k - m) is odd, and 
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(25) 

(26) 

if (k -m) is even. In Eqs. (23), (25), and (26) the term 
W j is defined as 

(27) 

Equations (22)-(27) reduce to those given by Inonli12 and 
earlier by Mika'3 for the case m = 0. 

In a manner similar to the proof of inonii, 12 it may be 
shown that the g polynomials satisfy the orthogonality 
relations 

f 
v 2(k+m)1 

o N"'(v) g;(v)g';;(v)dv= hk(k -mil onk' (28) 

where Nm(v) denotes the normalization functions defined 
in Ref. 9. Here the integral over the eigenvalues spec
trum a is actually a summation in the Stieltjes sense 
over -1'" v'" 1 and the set of discrete eigenvalues. 
From Eqs. (19) and (28) it follows that 

f Vn+l 2AT)l+m)1 
Nm(v) >(,'(v)dv= hj(Z -mil . 

o 

(29) 

Equation (29) may be used to show that the A7.n and the 
K7. n are related by 

K7. n = A 7. n n I (Z + m) I (1 - fl ~)m /2 

x n (2p+1)2[h j (Z-m)1 (2m+1)lr l
. 

p=o 
(30) 

Equation (30) is verified by using Eq. (17) in Eq. (29) 
and then USing Eq. (30) to recover Eq. (13), and by then 
using Eqs. (18) and (28) to check that Eq. (29) for 1 = m 
and n = ° reproduces Eq. (14). 

To determine the A7.n needed to obtain K7.n from Eq. 
(30), we use Eq. (21) to rewrite Eq. (19) as 

m +n j-m 

v" = E A 7 ":0 C7 j v j • 
j=m I 1=0 ' 

(31) 

Interchanging the orders of summation gives 

(32) 

from which we obtain a set of (n+ 1) equations for A7.n 

in terms of C7. n' 

(33) 

and, for l=O to l=n -1, 
n 

~ A7+m nC7 j+m =0. 
i= 1 ' • 

(34) 

From Eqs. (33) and (34) it can be shown by inductive 
logic that the coefficient A 7.n can be expressed in the 
following determinant form, 14 where use has been made 
of Eqs. (22) and (23): 

A7-2j.n= Cm 1 
n-2j, t-2j 

sr::-2. t 1 

x 

S~_2j. t sr::-2j. t-2 

° 
.... . .... 

'1 

sr::-2j.t-2{j-l 

(35) 
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He re i > 1 while I has been defined as 1= n + m to sim
plify the notation. 

The calculation of I\7." thus requires determination of 
A';' n from a determinant of order (Ill + n -1)/2, followed 
by' use of Eq. (30). To demonstrate the facility with 
which [(7." can be found using this technique, we display 
the result 

(36) 

which follows with a fourth-order determinant from Eq. 
(35) plus use of Eqs. (23), (24), and (27); a determinant 
of 14th order would have been required had the proce
dure using Eqs. (13) and (14) been used. 6 Equation (36) 
also can be obtained from a result of Siewert el a1. 7 

IV. POSSIBLE INTERPRETATIONS FOR K'(n 
A fami.ly of moments has been defined and determined 

Wllich encompasses earlier results as special cases. 
These moments are suggestive of applications involving 
a general spherical harmonics expansion. The question 
remains as to how these additional moments might be 
utilized. 

A possible use of the gene ralized moments K7." is as 
a representation of higher -moments of the even powers 
of the distance of travel of particles from the source. 
That is, if we define 

(37) 

then \T";m is the 11th order distance of travel for parti
cles for the IJIth azimuthal component. For example, 

(T2)o=2/1I o Tl u 

(T',,, = 24(1/11~ IIi + 4/110 1Ii 1IJ, 

\T 2
:, = 6iTI,li 2 , 

(T 4/ 1 = 72(3/11; Ii; + 811,1i~ 11), 
(38) 

(T")2 = 10 i 1l 2 li 3, 

(T 1)2= 120(5/1I;1I~ + 12/112 11;11 4 ), 

Equation (38) demonstrates that the 11th order distance 
of travel tends to decrease as III increases, as may be 
verified for various special scattering laws. 

The additional moments also may be used to incor
porate the effects of anisotropy of a detector response 
when determining the scattering properties of a medium 
from experimental measurements with the detector. 
From a set of measurements along the T axis, we can 
construct the moments 

Mn'~ r ~ T"tlT ('2< dcp r' D(/l, cp)I(T, /l, (6) d/l. (39) 
• -DC • 0 . -1 

For convenience we postulate that the detector response 
function can be expanded in spherical harmonics as 

L I 

D(fl; (p) = B B D7 P7(fl) cosmcp (40) 
[=0 m=O 

about the same reference azimuthal angle cp = 0 defined 
by the Green's function I(T, fl, cp). Here D7 are the 
[(L + l)(L + 2)/21 coefficients which are assumed known. 
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If D( fl, cp) does not rapidly change with variations in fl 

and cp, L will be small (i. e., ~ 2). 

When I(T, fl, cp) in Eq. (39) is replaced by the expan
sion of Eq. (4), and after use of Eq. (40), it follows 
that 

L II,N] 

M" = B .0 D7 K7,", 
1=0 m=O 

(41) 

where [a, Ii 1 means minimum value of the elements a 
and Ii. Of course, the constraints on nonvanishing K
moments that II' (I - III) and (n + 1 -11/) be even are still 
applicable. 

For each 1/ there is a single equation involving at 
most (N + 1) unknown iii's. To solve for these unknowns, 
we must produce the same number of independent equa
tions as we have unknowns. The prope r set of M" mea
surements depends upon the D7 for the detector. In the 
simplest case, when L ~. N, then taking the set of equa
tions with II = 0 to N suffices provided D~ = 0 for all 
1 < N. Other situations may necessitate a more compli
cated unfolding algorithm. 

The reverse use of Eq. (41) may also be envisioned, 
where now we wish to characterize the anisotropy of a 
detector response from a knowledge of the scattering 
properties of the medium. That is, the [(L + l)(L + 2)/21 
values of D7 are unknown while the K7.n values are 
given. To solve for the D7 when L <N, the best proce
dure is to make measurements for a single flo and to 
then group the results according to whether 1/ is even 
or odd. In this way we obtain two uncoupled sets of 
equations, 

and 

(42) 

(43) 

Here Ke has matrix elements K7,n with II even, Me has 
elements 1'vln with 1/ even, and De has elements D7 with 
even (l + m). The subscript 0 is for the odd elements. 
Thus the D values are obtained as solutions of the 
equations 

(44) 

Dn= K;,' Me; (45) 

unless difficulties arise because of an ill-conditioned 
Ke or Kn' 

To illustrate the calculational procedure, 
elementary case of L = 1 and N'> 1, where 

Ke=fKZ,o K~,oJ 
LKZ,2 K~,2 

and 

while 

we take the 

(46) 

(47) 
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(48) 

and 

(49) 

In the event that L > N, then the procedure in Eqs. 
(44) and (45) will not lead to a determination of all the 
coefficients, but only to those D7 for which In <N. For 
example, for L = 1 and N= 0, Eqs. (48) and (49) are 
still valid; but now D~ cannot be determined, so Eqs. 
(46) and (47) become 

and 
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Asymptotic behavior of group integrals in the limit of 
infinite ranka) 

Don Weingarten 

Physics Department. Indiana University. Bloomington. Indiana 47401 
(Received 20 June 1977) 

We show that in the limit N-.oo integrals with respect to Haar measure of products of the elements 
of a matrix in SO(N) approach corresponding moments of a set of independent Gaussian random 
variables. Similar asymptotic forms are obtained for SU(N) and Sp(N). An application of these results to 
Wilson's formulation of lattice gauge theory is briefly considered. 

Let 1p be defined by 

1p= {dJl Vi J' ••• Vi i' 
• lIP P 

(1) 

where (Vij) is a matrix in SO(N), dJl is Haar measure 
on SO(N), and for convenience we have suppressed the 
dependence of 1p on the indices iI,ju •.• , ip,jp' For 
arbitrary Nand p, 1p is a complicated function of 
iuju" ., ip,jp' In the present article, however, we will 
show that the asymptotic behavior of 1p as N - DO with 
iu jI' ••• ,ip, j p fixed is rather simple. For even p = 2q, 
120 is given by 

120=N-oL6ikli/I6ikliII' • • 6ikoil06ikoilo 

(2) 

where 6ikil and 6ikil are Kronecker deltas and the 
summation in (2) is carried out over all distinct parti
tions of the integers 1, ... , 2q into pairs (ku 11), ••• , 

(k o' 1
0
), For odd p, 1p is identically ° once N> p. In 

other words, our result is that as N - DO with q fixed 
the moments with respect to Haar measure of the set of 
random variables {fNVii}, 1"" i, j "" q, approach corre
sponding moments of a set of independent Gaussian 
random variables {Vij} with (Vij) = 0, «(Vii):!) = 1, 
1 "" i, j "" q. Asymptotic forms similar to (2) will also 
be given for integrals over SU(N) and Sp(N). 

An application of our results to the g-2 expansion of 
the Green's function of Wilson's lattice gauge theoryl 
will be briefly discussed toward the end of this paper. 

Consider the dependence of 1p on the indices iJu ••. , 
i~p as N - DO. The invariance of 1p with respect to 
translations in SO(N) implies that once N> p, 1p can be 
expressed as a linear combination of products of 
Kronecker deltas.of the form 6ikil or 6 imin ; the alternat
ing index [ikI ••• ZkN or [j 11 0 •• itN has N arguments and 
therefore cannot occur if N > p. To find the asymptotic 
behavior of 1p as N - DO, we will expand 1p as a linear 
combination of products of deltas, then find the asymp
totic behavior of the coefficient of each product which 
occurs in this expansion. Notice that since the alternat
ing index cannot appear once N>p, 1p must vanish if 
N > p and p is odd (as we already mentioned). Through-

alWork supported in part by the United States Energy Research 
and Development Adm inistration. 

out the following discussion we will assume p is even 
and N> p. 

Now any product of deltas which can contribute to 1p 
must contain each of the indices iuju ••. , ip,jp exactly 
once. This makes it possible to construct a convenient 
diagramatic representation of each product. Choose p 
points on a surface and number them from 1 to p. Let 
6iki I be represented by a solid line from k to 1 and let 
6i mi n be represented by a dashed line from rIl to 11. Each 
product yields a set of closed loops with each loop join
ing an even number of points, For example, a term 
which can contribute to 16 is 6ili26hh6i3i46i4iI6i5i66i6i5' 

The corresponding diagram is shown in Fig. 1. For 
Simplicity we will not distinguish between diagrams and 
the products of deltas which they represent, both of 
which will be called numbered loop diagrams. 

But 1p is unaltered by any exchange of index pairs of 
the form 

(3) 

Moreover, any set of distinct numbered loop diagrams 
is linearly independent as a set of functions on the vari
ables iuju ••• ,ip,jp' Thus when 1p is expanded as a 
linear combination of numbered diagrams, any pair of 
diagrams which can be converted into each other by 
permutations of form (3) must occur with the same 
coefficient. The sum of all distinct diagrams which can 
be gotten from a particular diagram by permutation can 
be represented by the original diagram with numbers 
removed. Diagrams of this sort and the corresponding 
symmetrized combinations of deltas will be called (un
numbered) loop diagrams. 

A loop diagram is uniquely specified by a sequence 
of nonnegative integers rill! ••• , m k' • •• in which 111 k 

gives the number of loops passing through 2k points. 
Since any diagram which contributes to 1p must include 
a total of p points we have 'iflrllk=p/2, and the largest 
number of points which can appear in a single loop is 
p. The sequence of integers specifying a diagram can 
therefore be terminated with rIl p / 2 • The P/2-component 

5 

:~) 
6 

FIG. 1. A numbered loop 
diagram which can contribute 
to II;' 
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vector (lII p ••• , Jn p / 2 ) will also be written m, and the 
loop diagram specified by m will be written Lp(m) with 
dependence on ij,jp ... , ip,jp suppressed. 

We can express lp as a sum 

lp= ~ Jlm)Lp(m) 
me Sp 

(4) 

for a certain unique set of coefficients Jp(m). The set 
Sp in (4) consists of all sequences of nonnegative inte
gers (m p ••. , lIl p / 2 ) such that 'jftm k =p/2. For any value 
of p and for all but at most a finite set of N > p, the 
coefficient Jp(m) for each m'c:Sp can be determined by 
using the equation 

for each even q, 2 c: q :s p, where fa is defined to be 1. 
Eq. (5) follows from the normalization of Haar mea
sure and the orthogonality relations for the matrix 
(Uij) in (1). To prove that (5) determines eachJp(m) 
the first step is to convert it to a set of equations 
directly on the collection of J.(m), 2 <; q <; p. 

Consider the effect of 

(5) 

on a loop diagram L.(m) which contributes to f •. The 
result will again consist of a linear combination of 
products of deltas. Each product will include one factor 
of the form Oi.ik and one of the form Oi._Iil but Oi.im and 
OJ .-lin will not appear. If we represent one of these pro
ducts by a numbered diagram using the rules introduced 
before, we obtain a set of closed loops plus one chain 
joining point q to point q - 1. Since 

L: 0i i _ILq(m) 
iqi

q
_

1 
q Q 

is unaffected by any permutation of form (3) which does 
not act on (i.,j.) or (i._pj._l), any pair of numbered 
diagrams which can be converted into each other by a 
permutation of this sort must contribute to 

.L 0 j.i._IL.(m) 
J qJ q-l 

with the same coefficient. The sum of all distinct 
diagrams which can be gotten from a particular diagram 
by allowed permutations can be represented by the 
original diagram with numbers removed. Unnumbered 
symmetrized diagrams consisting of a chain plus some 
set of loops will be called chain diagrams. Each is 
uniquely determined by q/2 integers Jnlo" t11 k• • ,111./ 2 , 

where m k , 2 <; k <; q/2 - 1, gives the number of loops 
through 2k points, and m./2 gives half the number of 
points included in the remaining chain. The vector 
(1I1p ••• ,m./2 ) will be written m as before and the 
chain diagram determined by m will be written C .(m). 

The preceding definitions yield the expansion: 

L 0u L (m)= L NC.(m-c k +kc./ 2 ) 
iqiq_l q q-l q k 

1~k~q/2 

+ L 2l(ml + l)C.[m - ck + c 1 
l,k 

1"'" l<k~q /2 
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+ L 

+ 

k 
2~k~q /2 

k,l 
1" k.l:S; Q. /2-1 

(6) 

where the kth component of ck is 1 and all other compo
nents are 0 and C .(m) is defined to be 0 for m ¢: S •• If 
L.(m) is expanded as a sum of numbered loop diagrams, 
the first term on the right side of (6) is generated by 
diagrams in which points q and q - 1 appear in the same 
loop joined by a dashed line; the second and third terms 
are generated by diagrams in which q and q - 1 appear 
in the same loop but are not joined by a dashed line; 
and the fourth term comes from diagrams with q and 
q - 1 in different loops. 

The right-hand side of Eq. (5) can also be expanded 
as a sum of chain diagrams. USing (4) we obtain 

o i i f._2 = LJ f _2(m)C (m), 
q q"l q q 

m 

(7) 

rn. /2=1 

where J._2(111) for the q/2-component vector m is J._2(m') 
with 1/1' given by the first q/2 - 1 components of m. But 
the set of C .(m) for all distinct m is linearly indepen
dent as a collection of functions on the variables 
ipjp •.. , i.~2,j._2,i._l> iq. Therefore, the coefficient of 
each C .(m) on the right side of (5) must equal its coef
ficient on the left side. Consider first the coefficient 
of Cq(m - c1 + c./ 2 ) with m l ? 1. Combining (5)-(7) 
yields 

Nt.(m) + 1:: (2k - 2)(m k _1 - 0k2)J.(m - c I - C k _1 + c k ) 

k 
2:$c~ /2 

= J._2(m - c l ), (8) 

where J.(111) is defined to be 0 for m ;ES •• Now consider 
the coefficient of C.(m - c1 + lc.), where m l =m2 
=."m1_1=0, /JIl?l, Equations (5)-(7) give 

(N + 1- 1)J.(m) 

+ 
k 

l~k~ q/2-1 

+ L J.('m-c1+c1_k+Ck)=0. 
k 

l~k~l-l 

(9) 

Equations (5)-(7) also imply other constraints in addi
tion to (8) and (9), but as we will show, the set we have 
chosen is sufficient by itself to determine Jp(m) for each 
m ~ Sp. Moreover, the equations for Jp(m) which we 
will not use must be consistent with (8) and (9) since we 
know from the derivations of (5)-(7) that at least one 
solution to the full set does exist. 

If we introduce the rescaling 

J.(m)=N.-r.kmkf.(m), (10) 

Eqs. (8) and (9) become, respectively, (11) and (12) 

J.(m) +N-2 L (2k - 2)(m k_1 -0 k2 ) 
k 

2"k"q/2 
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[1+Wl (l-1)]J.(m)+N-2 L 2k(m.-O k1 ) 
• 1",."'./2-1 

+ L J.(m-e1+e/-k+ek)=0. 
k 

1~ k~l-l 

(12) 

Equations (11) and (12) hold for all even q?- 2 if we 
adopt the convention Jo = 1. Thus to prove that (11) and 
(12) for each even q, 2"" q "" p, together determine Jp(m) 
for every m ESp, it is sufficient to show that (11) and 
(12) can be solved for J.(m) if J._2(m - el ) is known. Now 
for each mES., Eqs. (11) and (12) can be rewritten in 
the form: 

L [A(m, m') +WlB(m, m') 
m'ES q 

L D(m,m")J ... 2(m"). (13) 
mU ES'4_2 

Equation (13) can be solved for J.(m') if J._2(m") is 
known and det(A +WlB +W2C)*0. det(A +N-lB +W2C) 
is a polynomial in N- l and can vanish for at most a 
finite set of values of N-2 if detA * 0. On the other hand, 
detA * ° if (11) and (12) can be solved when Wi is re
placed by 0, (11) immediately determines aUJ.(m) with 
m l * 0. Equation (12), meanwhile, determines each 
L(m) with m l =m 2 = ... =m1_l =0, m l *0 from the set of 
f.(m) with at least one m k * 0, k < l. By induction on l, 
~1l) and (12) determineJ.(m') for all m'ES. from 
f._ 2 (m"). Thus detA *0. It follows that (11) and (12) for 
each even q, 2"" q ""p, together determine J p(m) for all 
m ESp except possibly at a finite set of values of N. 

In particular, (11) and (12) determine Jp(m) for all 
mE S p if N is sufficiently large and imply the existence 
of the limit 

limJ p(m) =Fp(m). 
N-~ 

Equations (10)-(12) yield the asymptotic form 

Equation (11) implies 

F p[(P/2,0, •.. ,0)]=L (15) 

Finally (4), (14), and (15) give our main result, Eq. 
(2). 

Equation (2) has an interesting corollaryo 2 Consider 
the set of random variables {/Nu lj} for 1"" i, j "" qo 
Equations (1) and (2) imply that as N - 00, each moment 
of this set of variables approaches the corresponding 
moment of a set of q2 independent Gaussian variables 
{Vij}, with (Vij) =0, «Vjj )2)=1, l<Si, j<Sq. Then by 
standard methods in probability theory3 it can be shown 
that the joint cumulative distribution function of the set 
{.[Nu jj} approaches the distribution function of {VIj} 
pointwise everywhere, 

Results similar to Eq. (2) can also be derived for 
integrals over SU(N) and Sp(NL For SU(N), let I~. be 
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defined by 

1
2
' = [dJ.l U . . 00 0 U . . U~ j' •.• U*", (16) 
q, tlJl tqJ q 1 1 l-qJ q 

where (UiJ) is a matrix in SU(N) and dJ.l is Haar mea
sure on SU(N). Integrals which do not include the same 
number q of Uij .and q' of UTj vanish identically if 
N> q, q'. For I~., if N> q the invariance of dJ.l with 
respect to the action of elements of SU(N) implies If. 
can be written as a linear combination of products of 
Kronecker deltas of the form O;ki'l and OjmJ~' The be
havior of the coefficients of these products as N - 00 

can be determined by nearly the same method used for 
f.(m) in the case of SO(N). We obtain 

where the sum is over all choices of kl •• • 1<. as a 
permutation of the integers 1, ... , qo 

The group Sp(N) can be represented as the subgroup 
of U(2N) which fulfills 

LUjjUkIJi.=Jjl , 
ik 

where J j1 is -Ojl-1 if j is even and O}!+l if j is odd. 
Define UL = Uij, I:P;j = UTj, and let I: be 

J k k 
1"= d/J.U.1 o··U.p. p 'ljl 'plp , 

(17) 

where dJ.l is Haar measure on Sp(N)o For N > p, I; 
vanishes if p is odd. Let M'!:t be J o1 if m =n and 0. 1 if 
m *n. Then the invariance of dJ.l with respect to Sp(N) 
implies, for N > p, I; can be written as a linear com
bination of products of M::~;;: and MJ~J~o Calculating the 
behavior of the coefficients of these products, we find 

+ O[(2Nt·- l
] 

as N - 00 with i1>j1> 1<1' •• 0 ,i2.,j2.' 1<2. fixed. The sum in 
this relation is over all distinct partitions of 1, ... , 2q 
into pairs (l1> mJ . .. (l., m.). 

In conclusion, it is perhaps worth mentioning that the 
method we have described for evaluating (1), (16), and 
(17) can probably be adapted to calculate the connected 
multistring vertices which appear in the g-2 expansion 
of the Green's functions of Wilson's formulation of gauge 
theory on a lattice. 1 The present results, for example, 
imply that for SO(N), SU(N), and Sp(N) as N - 00 the 
connected m-string vertices with m > 2 fall faster than 
the 2-string vertex by at least one power of N. 
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An indeterminacy criterion is proven for the moment problem associated with the coefficients of a Borel 
sum mabie power series of Stieltjes type which diverge faster than (2 n)!. As an application we show that 
the Stieitjes type continued fraction corresponding to the Rayleigh-Schriidinger perturbation expansions 
for the energy eigenvalues of the anharmonic oscillators (x 2(m f I) and in any finite number of dimensions) 
does not converge to the eigenvalues if m> 2. In particular, this implies the nonconvergence of the Pade 
approximants to the eigenvalues of p 2 + X 2 + Ax 2(m + I) if m> 2. 

I. INTRODUCTION 

The Borel summability to the actual solution of the 
divergent perturbation expansions occurring in quantum 
theories, first proved for the anharmonic oscillators 
(Ax2(m+1l and in any finite number of degrees of free
dom)1 has been later extended to field theory [Simon2 

for the ground state eigenvalue of the spatially cutoff 
(¢4}z; Eckmann, Magnen, Seneor3 for the Schwinger 
functions of the infinite volume (¢4}z 1. 

In all the above cases the proof rests on the verifica
tion of three conditions: 

(i) a certain estimate on the behavior of the coef
ficients of the perturbation expansion, 

(ii) analyticity of the solution in sonie sector 0 < [X [ 

<B, [arg(X)[<1T12+E, B>O, E>O, 

(iii) a "geometric" bound on the remainder terms, 
valid uniformly in the above sector (for a more precise 
statement of these conditions, see belowL 

The aim of the present paper is to show that, when 
applied to a series of Stieltjes (see below) whose coef
ficients diverge faster than r{2n + En), E> 0, the above 
conditions yield an indeterminacy criterion for the 
Stieltjes moment problem associated with the coef
ficients. This result implies, as is known, the diver
gence of the Stieltjes type continued fraction associated 
with the power series. This means that the even and 
odd approximants sequences of the continued fraction 
[i. e., the (N IN) and (N - liN) Pade approximants se
quences) converge to different functions, meromorphic 
in the whole complex plane except at the origin. 

Applying in turn this result to the perturbation ex
pansions of the eigenvalues of the one-dimensional an
harmonic oscillators p2 + x 2 + Xx2<m+1), which are known 
to be of Stieltjes type,4 we can conclude that their as-

a)Supported in part by C.N.H. 
b)Present address: Istituto Matematico "G. Vitali," Universit:l 

di Modena, Modena, Italy. 
clSupported in part by I. N. F. N., Sezione di Bologna. 

sociated sequences of Pade approximants do not con
verge to the eigenvalues for m > 2. This settles a ques
tion left open in the paper by Loeffel, Martin, Simon, 
and Wightman, 5 where the convergence of the Pade 
approximants was proven for m "" 2. It also rigorously 
confirms the indications of a numerical analysis of 
the problem performed some years ago. 6 

As far as the multidimensional anharmonic oscilla
tors are concerned it is not known whether or not the 
eigenvalues are Stieltjes functions, and in any case we 
still have the general result that the perturbation expan
sions of the eigenvalues are not Stieltjes summable for 
m> 2 [here 2(m + 1) is the maximum degree of the inter
action term J. 

The exposition proceeds as follows: in the next sec
tion we state our hypotheses and prove some prelimi
nary technical lemmas; in Seco III we state and prove 
the indeterminacy criterion, and in Sec. IV we present 
and discuss the applications to the quantum mechanical 
systems. 

II. HYPOTHESES AND PROOF OF LEMMAS 

Let f(z) be a function of the complex variable z = x + iy , 
and 2:0' cn(- z)n a power series such that 

(2.1) 

The symbol - means that the series L;;;'cn(-z)n is the 
formal Taylor expansion of j(z) around z =0. 

Throughout the rest of this paper, the function j(z) 
and the power series 2:;cn(- z)n will be assumed to ful
fill the following conditions: 

(n.1) Let m > 2. For every E > 0 there exists B> 0 
such that f(z) is analytic in the domain D: {[ z [ < B, 
I arg(z) I < (m + 2)rr /2 - E; I z [ < 00 for I arg(z) I < 1T} on the 
Riemann surface of log(z). 

(n.2) There is i3, 0 < f3 < + 00, such that If(z)1 
= O( Iz II) for I arg (z) I ~ 1T. 

(n.3) For larg(z)1 <71', fez) has the Herglotz property 
Imf(z)/Im(z) > O. 
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(110 4) Let RN (z) = f(z) - 'Z~-lCn (- z)n be the remainder 
after N terms of the expansion (2,lL Then there exist 
positive constants C, a such that: 

IRNI(z)l<caNr(mN+OlzI N, N=1,2,'" (2.2) 

uniformly on compacts in D (m is as above). 

Remarks: 

(a) Condition (n.4) trivially yields 

cn=O(CaNr(mn+l», n=0,1,2,'H. (2.3) 

(b) Conditions (11.2) and (n.3), together with the 
analyticity on the whole first sheet 1 arg(z) 1 < rr [Condi
tion (11.0] imply that the Stieltjes moment problem 
corresponding to the sequence {cn};+!"]+l is solvable, 
i.e., there is at least one positive measure dM on 
[0,00) such that 

Cn+!B]+l=J~~xndM' n=0,1,2,"" (2.4) 

(c) A less restrictive version of Condition (n.1), 
i. e., analyticity of f(z) in the sector D1: {I z 1 < B, 
1 arg(z)1 < mTf/2 +€; B > 0, € > O} of the Riemann surface 
of log(z) and Condition (11.4) [which implies (2.3)] 
represent the precise statement of conditions (i)-(iii) 
listed in Sec. I. They are sufficient to ensure the Borel 
summability of 'Z~cn(- z)n to f(z) in the whole sector 
{Izl <B, iarg(z)1 <E} [see, e.g., (0]. 

The meaning of such a statement, let us recall, is 
as follows, Let us define 

~ 

F(z) =~ C (- z)n/r(m,z + O. 
o n 

(2.5) 

This function, which by (2.3) is analytic in the circle 
1 z 1 < 1/ a, is called the mth Borel transform of f(z), 
and has an analytic continuation into the whole sector 
1 arg(z)1 <E, so that the representation 

f(z) = llm (" exp(-al/m)F(za)a-l+1/mda (2.6) 
'0 

holds for {I z 1 < B, 1 arg(z) 1 < €}, the convergenc e of 
the integral being uniform with respect to z. 

As already emphasized, our aim is to prove the in
determinacy of the Stieltjes moment problem corre
sponding to the coefficients of the expansion in (2.1). 
We have thus to show that (11.1) and (n.4) imply the 
nonuniqueness of the measure dM in (2.3) for m > 2. 

Let us begin by stating an elementary remark under 
the form of a lemma (without loss of generality we can 
take [i3] = - O. 

Lemma 2.1: Let the Stieltjes moment problem 

C = r~ xn d M, n = 0,1, ", n )0 

have at least one solution dlJl . 

(2.7) 

Let M > ° be an arbitrary positive number Then, if 
the Stieltj es moment problem 

C' = j'~ xn dlJl (x + M) n = ° 1 ", 
no' '" 

(2,8) 

is indeterminate (i. e" has infinite solutions), the same 
is true for (2,7), 

Pyoof~ Let dT(X)*-d'I!(x+M) be a solution of (2,8), 
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Then the measure d'I!1 with dlJl1 (x) = fJ(M - x) d'I!(x) 
+ e(x - AI) dT(X - M) is a solution of (2.7) and d'I! 1 *- dlJl , 
The lemma is proved, 

Now let d¢(x)=lime~o(l/rr)Imf(-x+iE), O<X<+00, be 
the discontinuity off(z) across the cut at arg(z)=rr. 
[Such a limit exists as a measure by a theorem of 
Herglotz, on account of (11.1) and (11.3), and let dr(x) 
=dcp(l/x).] In view of (11.1), the derivative cp'(z) exists 
and is analytic in the sectors i i z 1 < B, I arg(z) 1 
< m"7./ 2 - E} so that T (z) will be analytic in the s ecto r 
{Iarg(z-M)I <mrr:2; ° <1'v!<c0}. Let ~(x)=dr(x)/dx, 
x>11,1. We have the following lemma. 

Lemm a 2.2: As x - + 00, the following asymptotic 
estimate holds, 

!;"(x)=O[exp(-kx1/ m)], x-"", k>O. (2.9) 

Proof: Within our assumptions we can write, as is 
well known, 

f(z) = r d¢(t) (z + t) = r x dT(x)/(l + zx) 
-0 '0 

J
'tI ,~ 

= . xdr(x);(l+zx)+ I \"~(x) (l+zx), 
'0 .y 

I arg (z ) I < 17 , (2.10) 

with 
cn = (_ l)n/n) (O)/n! 

= (0'.11 xn+l dr(x) + r~ x"+ 1 (,(x) dx ), j,// 

=o[r(lI1n+1)], 11=0,1,'" 

by (2.3). 

Since of course there is an A .' 00 such that 
f~\lxn dT(X) < A:l!", the assertion follows. 

Next we prove that the asymptotic behavior (2.9) 
holds uniformly in the sector {I arg(z - :11) I: IIIrr /2; 
0< JI< oO}. 

LE'IIIIlW 2.3: As z - 00 within the sector { 1 arg(z - M) I 
< IlIrr/2; 0< ,11< oor, one has 

~(z)=O[exp(_!,z1!m)], kO. (2. 11) 

Proof: Let us define 

G(z) = J~~ (,(11 +:1I) du/(l + ZIl). (2. 12) 

By (2.9), the integral (2,12) defines G(z) as an analytic 
function of z in the whole z plane cut from 0 to - 00. 

Now it follows from (It 4) that cp'(lI) vanishes for II - 0 
more rapidly than any power of 11, uniformly for 
larg(u) 1< IJ1rr/2, and hence ~(11) vanishes as 11- 00 more 
rapidly than any power of l/u, uniformly in the same 
angular sector. Then by a well known result, 7 G(z) will 
be regular on the whole sector larg(z) I: (III +2)1T/2 on 
the Riemann surface of log(z), and within this sector 
we have 

c;(n)(O)/n! = (_1)" .r un ~(II +11) rill = ()(r(lIIl1 + 1» 
(2.13) 

by Lemma 2. 2. 

Now in view of the uniform decay property of ~(u), 
we can replace lice. IR in (2.12) by exp(iev)lI, 11'~ IR, with 
- 1l11T/2 <" (li < IIIrr/2, and by (2.13) we get 
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c(nl (O)/n! = (_1)n exp(iO') r (exp(iO')u)n s(exp(iO')u + M) duo 

(2.14) 

By Lemma 2.2, this implies that s (exp(ia)u + M) is 
O(exp(- ku1/ m», k> 0, as u - 00, and hence the result. 

As we will see in Sec. IV, these preliminary results 
allow the application of the indeterminacy criterion 
stated in the next section to the case of the anharmonic 
oscillators. 

III. THE INDETERMINACY CRITERION 

Let us begin by stating the indeterminacy criterion 
for the Stieltjes moment problem whose proof is the 
obj ect of this section. 

Them'em 3.1: Let p(x) be the derivative of the abso
lutely continuous part of a solution of the Stieltj es mo
ment problem, 

C -lro 
da(x) n-O 1 ... (3.1) n- 0 ,- , , 

i. e., p(x) =daac(x)/dx. 

Let p be an analytic function of z =X + iy on the 
sector D: {z I larg(z) I ~ rr/O', a> 2/m} on the Riemann 
surface of log(z), and let p(z)=O(exp(-l,zl/m)), I?> 0, 
uniformly in any direction contained in D. Then the 
Stieltjes moment problem is indeterminate if m> 2 and 
a<1. 

To prove Theorem 3. 1, we will show that the stated 
hypotheses allow the application of a well known in
determinacy criterion for the Hamburger moment prob
lem, with a suitable modification to account for the 
fact that (301) is a Stieltjes problem and not a 
Hamburger one. 

Theorem A (See AkhiezerS): Let a'(lI), the derivative 
of the absolutely continuous part of a measure a(u) on 
R, be a solution of the following Hamburger moment 
problem, 

j +ro 
II - 1In da(u) n-O 1 co' """n- .. 00 ,- " • 

The problem (3 02) is indeterminate if 

1= l:ro log(a'(u))/(1 +u2)du > - 00. 

(3.2) 

(3.3) 

The modification for the Stieltjes problem is easy, and 
is given by the following: 

Lemma 3.1: The Stieltjes moment problem, 

Cn = foro un d\(r(u), n = 0,1,· . (3.4) 

is indeterminate if 

J = .r [log(\(r'(u2)/(1 + z?)] du > - 00, (3.5) 

where \(r' (x) is the derivative of the absolutely continuous 
part of \(r(x). 

Proof: As is known, a solution of a Stieltjes moment 
problem may be always obtained through the solution 
of the Hamburger moment problem I1n = f_: un datu), 
n = 0,1, ... , with a(u) = - a(- u). This last condition 
yields 112n = 2 foro u2n datu), 112n+l = 0, so that the even mo
ments 112n may be identified as the moments cn of a 
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Stieltjes problem with solution \(r(u) = 2a(u 1/ 2), u> O. 
Hence the derivatives of the absolutely continuous part 
of the solutions are related by a'(u) = lu 1\(r'(u2 ), UE IR. 
Hence criterion (3.2) becomes: 

1= .cro [log(u\(r'(u2)/(1 +u2)]du 

=2 foro[lOg (u\(r' (u2))/(1 +u2)]du> - 00 

which is of course equivalent to (3.5). 

By Lemma 3.1, Theorem 3.1 will be proved once we 
show 

(3.6) 

The proof of (3.6) relies upon the following represen
tation theorem due to Nevanlinna: 

Theorem B (Nevanlinna: See Boas9): Let F(z) be regu
lar and exponentially bounded in the half-plane 
Im(z) > - E, E> 0; F(z) 'f- 0 and bounded on the real axis 
so that 

(3.7) 

[Here log+(x)=log(x), if x?c 1; log+(x) =0, if x< 1.] Let 
in addition {zn};.O be the sequence of the zeros of F(z) 
on the upper half plane. 

Then the series LoIm(l/z n) is convergent, and the 
following representation holds, 

log I F(z) I 

= log I B(z) I + yrr-1 r {log I F(u) 1/«(11 - X)2 + y2Hdu + Ci' 

(3.8) 

(z =x + iy, Y> 0) where - 00 < C < + 00, and the Blaschke 
product 

(3.9) 

converges uniformly on compacts in the half plane. In 
addition, if we define 

cp(z) = yrr- 1 l:ro {log I F(lI) 1/((11 - x)2 + y2Hdll + cy 

(3.10) 

we have 

lim.p(z)/Izl =Co sine, 0< e< rr. Z_ro (3.11) 

Next we prove the following. 

Lemma 3.2: Let F(z) be as in Theorem B. Then, if 
0'-:: a < 1, one has 

(3. 12) 

Proof: By the Nevanlinna representation (3.8), con
sidered on the positive imaginary axis, we have 

log I F(iu Oi
) I = log I B(iu") 1+ cp (iu"), 

where .p(z) is given by (3.10). 

Now there is c', _oo<c'< +00, such that 
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f {rp(iua )/(1 +u2)}du 

=.r {rp(iu")/(ua + l)(u'" + 1)/(1 +u2)}du 

(3.13) 

since rp(iua)/(u'" + 1) is of course bounded for u? ° and 
by (3.11) approaches the finite limit c. sin(1T/2) 
= c > - 00 as u - + 00. 

Next we consider the contribution of the Blaschke 
product defined by (3. 9): 

.r {log I B(iu"') 1/(1 + u2 )}dll 
00 

= .r {~ log I (1 - iulzn)/(I- iulzn) 11(1 + u2)}du 
o 

00 

= - ~ fooo {~ >Irn(u)/(1 + li)}du, (3.14) 
o 

where >Irn(u) = log(1 + fn(u» - log(l- fn(u»? 0, because 
fn(u) = 2anu'" (1 +u2'" IIZ n 12)-1? ° for u? 0, since an 
= - Im(l/z n) > 0, n = 0,1,· ... We have 

(3.15) 

by the uniform convergence of the Blaschke product 
and the monotone convergence theorem. 

Now let 0 < E < 1 and an> E; then, putting for u> 0: 

w = an u"', f(ld = 211)/(1 + w2
), 

>Ir(w) =log(1 + few»~ -log(l-few»~, 

one has 

(3.16) 

because fn(u) "'f(w) '" 1, if w? 0, andf(w)"* 1 for IV"* 1. 
Let us now define 

F1(x) = 1000 

{>Ir(w)/(x2/", +w2/"')}w1/ a - 1 dw. 

We have Fj(an ) "'F1(E) and hence by (3.16) 

100 

{>Irn(u)/(1 + u2)}du '" a-la~/ '" Fl (E) < 0() • 

o 

For an < E we have 

fooo {>Irn(u)/(l + u2)}du 

(3. 17) 

(3. 18) 

where C(E) = maxo< w<' (>Ir(w)/w) and F 2(E) = !;>Ir(w)w-1
-

1/"dw 
are bounded functions on (0,1). 

For the complete evaluation of the integral (3. 18) 
we use the following inequality, 

1o'{wl/"'I(a~/'" +w2 / a )}dw 

(3.19) 
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Let F(E) = max(Fj (E), F 2(E». We can now state the result: 

1000 

{log I B(iu"') 1/(1 + u2)}du 
00 

? {- C(E)/(I- (2)}~ an - {F(E)/(2a)}l.: a~/'" > - 00, 
o 

(3.20) 

because 2: 0' an is a convergent series with positive terms 
and 11 a > 1. Weare now in position to prove our 
criterion. 

Proof of Theorem 3.1: Let p(z) be as in Theorem 
3.1. Set p(z2) =F(z'), where z' =iz"', 2/m < a < 1, and 
larg(z) 1·'( rr/(2a). F(z') will then fulfill all the assump
tions of Theorem B. Therefore, we have 

fooo {log p(u2)/(1 + u2)}du:= 1000 

{logF(iuOl)/(l + u2)}du > - 00 

by Lemma 3.2. Hence, in view of (3.6), Theorem 3.1 
is proved. 

Corollary 3.1: Letf(z), z =x + iy, fulfill all the con
ditions (IL 1)- (II. 4), with m> 2. Then the Stieltj es 
moment problem (2.4) is indeterminate. 

Proof: By Lemma 2. 1, we can apply Theorem 3. 1 to 
p(x) =da(x)ldx and this proves the Corollary. 

IV. APPLICATION TO THE ANHARMONIC 
OSCILLATORS 

Consider first the one-dimensional anharmonic 
oscillators with interaction x 2(m+O, L e.) the quantum 
mechanical systems whose Schrodinger operator, 
acting on L 2(R), is given by 

111=1,2,·'·, (4.1) 

(For an exhaustive mathematical treatment of such 
operators, the reader is referred to Simon. 10) Let us 
denote by E~(A), n = 0,1,000; 111 = 1, 2,··0, the eigen
values of (4. 1), and let us, from now on, drop the 
index n, because the present discussion does not depend 
on the particular eigenvalue. If we denote by 

(4.2) 

the Rayleigh-Schrodinger perturbation series for 
Em(A), it is known that Em(A) and 2:0' A~(- A)n verify all 
the conditions (II. 1)- (II. 4) [(II. 1) is proved in (7) for 
the analyticity on the whole first sheet, and in (7) for 
the analyticity on {I z I< B; I arg(z) 1< (111 + 2)rr 12 - E}; 
(II. 2) and (II. 3) are proved in (7), with {3 = 1/3; (II. 4) 
is proved in (1) J. 

Therefore, by Corollary 3.1, we can apply directly 
the indeterminacy criterion of Sec. III, and conclude 
that the Stieltjes moment problem, 

(4.3) 

is indeterminate for In> 2. 

In this case it is well known that the corresponding 
Stieltjes type continued fraction diverges (see, e. g. , 
Ref. 11), i. e., the even and odd approximants of the 
continued fraction corresponding to the series (4.2) 
[i. e., the (NIN) and (N/N - 1) Pade' approximants se-
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quences on the series (4.2)1 converge to different func
tions, meromorphic in the whole complex iI. plane ex
cept for a nonramified essential singularity at iI. = O. 
The same is true for any other (N + j/N) Pade" approxi
mants sequence, j = 1, 2, •. 0 • 

Since by the already mentioned analyticity results of 
(4) and (7) [condition (II. 1)] the eigenvalues En(iI.) are 
not meromorphic in the whole iI. plane except at the 
origin (as a matter of fact they have a discontinuity 
across the cut 00 < iI. "" 0 which is analytic for I iI. I < B), 
the convergence of the Pade" approximants to the eigen
values cannot take place. 

Hence on account of the convergence result for m "" 2 
proved by Loeffel, Martin, Simon and Wightman, 4 the 
following statement holds. 

Thcorcm 4. 1. The divergent Rayleigh-Schrodinger 
perturbation expansions of the eigenvalues of the anhar
monic oscillators {)2 + x 2 + il.x2( m+l) are Stieltj es sum
mabIe to the eigenvalues if, and only if, In "" 2, i. e" the 
diagonal Pade" approximants on the perturbation expan
sions converge to the eigenvalues if, and only if, m "" 2, 

Let us come now to the multidimensional case, If d is 
the space dimension, the Schrodinger operators, acting 
in L2(lRd

), are now given by 

Ifm=IfO+il.Vm; 

where 
d 

If 0 = 'E ( - d2 
/ dx~ + x7) , 

i=1 

d 

Vm =.2:. Xi 1 ••• X i2(m+l) 
lj •• "2(m+l) =1 

(4.5) 

(4.6) 

Vm being everywhere positive on the unit sphere of Rd. 

Denoting again by Em(iI.) the eigenvalues of Hm and by 
2:;=0 A';: ( - i\)n their perturbation expansions, properties 
(II. 1), in the weaker version of analyticity in the domain 
DI:{zl Izl<B, largzl«m+2)1T/2-E;E>0, B>O} 
(see Remark b in Sec. II), (II. 2) and (II. 3) have been 
proved by Simon, 10 who in addition proved analyticity 
also near the whole positive real axis, and property 
(II. 4) has been proved in Ref. 10 Now two alternatives 
may occur: Either the energy values are analytic on the 
whole first sheet I arg(iI.) I .~ 1T, or there is some singular
ity. In the first case all the above considerations apply 
again; if there is some singularity [which by (II. 3) can 
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be only a ramified essential singularity 1 the Stieltj es 
moment problem associated with the sequence {A';:}~=I 
has no solutions, since the cut plane analyticity is a 
necessary condition for its solvability. In this case 
therefore the StieUjes type continued fraction corre
sponding to the perturbation expansion does not exist. 
Hence 

Theorem 4,2; The divergent perturbation expansions 
of the eigenvalues of the multidimensional anharmonic 
oscillators (4.4) are not Stieltj es summable to the 
eigenvalues if m> 2, 

Remar!?: In general, the nonsolvability of the Stieltjes 
moment problem does not prevent subsequences of 
diagonal Pade" approximants from existing, since they 
may be uniquely defined as those rational functions 
QN+j(\)/PN(\) whose Taylor expansions around iI.=O co
incide with the given power series up to the (2N + j + l)th 
order. In this case they may still be interpreted as the 
approximants of some continued fraction, which simply 
is no more of Stieltjes type. Since there are no conver
gence (or divergence) statements under the present con
ditions, their convergence in some region of the com
plex \ plane cannot be a priori excluded. We feel that 
also in this occurrence there is convergence to the 
eigenvalues only for III "" 2 as in the Stieltjes case, be
cause all the asymptotic conditions are left unchanged. 
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Analytic connection between configuration-interaction and 
coupled-cluster solutionsa) 

Tomislav P. L:ivkovicb) and Hendrik J. Monkhorst 

Department of Physics. University of Utah. Salt Lake City. Utah 84112 
(Received 17 May 1977) 

The coupled-cluster (CC) equations in the work of Coester. Kiimmel. Cizek, Paldus, and others are 
inhomogeneous, nonlinear and algebraic in the cluster operators to be determined. If taken to all orders, 
they are equivalent to complete configuration-interaction (CI) equations, except for states orthogonal to 
the reference state <1>. However, if taken only to nth order, they are not equivalent to the nth order CI 
equations, and due to their nonlinear form, the existence and the number of the solutions is not 
guaranteed. Also, the reality of the associated energy values is not certain since these values do not arise 
as eigenvalues of a Hermitian operator. We show that the equations can be cast in the form of perturbed 
CI equations, with the "perturbations" being non-Hermitian and nonlinear in the CI-like coefficients to be 
calculated. In the case of a finite number of single-particle states, we construct the solutions to the CC 
equations by analytic continuation from the CI solutions. Singularities peculiar to the method are 
identified and studied, and conditions for reality and the maximum multiplicity of solutions are given. In 
general, the energy will be real, and the number of solutions equals that of the associated CI problem. 
Singularities or instabilities in the coupled-cluster equations can be traced to unphysical assumptions in the 
basis set Hamiltonian, or a poor description to highly excited states. 

I. INTRODUCTION 
In their landmark publications of 1957, Goldstone1 

and Hubbard2 proved the existence of the now-famous 
linked-cluster theorem for interacting fermion systems. 
The theorem, in effect, states that the perturbation cor
rections to the wavefunction and total energy beyond the 
independent-particle approximation can be represented 
by linked Feynman graphs. Earlier Brueckner3 had 
proved this to hold for a few orders in the interaction 
strength by explicit computation. Goldstone and Hubbard 
generalized this to all orders. The significance of the 
linked-cluster theorem stems, in part, from the pro
portionality of the energy corrections for a crystal, 
plasma or nuclear matter fermions at a given density 
with the number of particles. It also provides a nice 
bookkeeping device for the myriad of perturbation cor
rection terms. 

Both Goldstone's and Hubbard's proofs use the in
teraction representation, thereby introducing time de
pendence in an intrinsically time-independent physical 
problem. Through the "time" integrations (resulting 
from the adiabatic switching of the interaction), the en
ergy denominators of perturbation theory appear, and a 
cancellation of unlinked terms in both the exact wave
function and correlation energy results. Even for bound 
states the Feynman diagrammatic language of "forward" 
and "backward" scattering of particles is kept, al
though this notion has only physical realism in scatter
ing phenomena. 

Notwithstanding its rigor and elegance, there are a 
number of disturbing aspects about the way the linked
cluster theorem was introduced and, subsequently, has 
been interpreted and applied. The first objection con
cerns the introduction of time dependence in the deriva-

a)Supported in part by the National Science Foundation (Grant 
GP-42908). 

b) Permanent address: The Rudjer Boskovic Institute, 41001 
Zagreb, Croatia, Yugoslavia. 

tion. It certainly has made understanding of the proof 
more opaque from a mathematical standpoint, and even 
Goldstone admits that in his paper. Later Brandow4 
made the same point In fact, it even leaves many 
authors still worrying to this date about the different 
types of cancellations of terms that we seem to have to 
distinguish. 5 

The second obj ection is the emphasis on the order- by
order feature of the theorem and, most importantly, its 
implementation. Yet it is well known that for Coulombic 
forces in extended systems perturbation theory diverges 
in all orders except the first one. The standard cure 
is partial summations of the most divergent terms to 
all orders, thereby eliminating this unphysical singu
larity. It is claimed as one of the strengths of the 
linked-cluster theorem to find, through topological 
arguments, which diagrams should be summed to in
finite order. At the same time, in most cases, one 
lacks physical insight into the meaning of the particular 
partial summation, An infinite number of infinite-
valued diagrams is always ignored thus casting doubt on 
the choice of those that are kept 

The third and main objection is the diversion of the 
attention away from the phYSical basis of the linked
cluster theorem to the algebraic and particularly topo
logical meaning of linked ness or connectedness. In a 
sense, it is a question of representation in which one 
prefers to describe correlation effects. Its choice is 
inconsequential only when calculations can be carried to 
completion in the particular representation. Unfor
tunately this is almost never the case, so we are left 
with the choice of the "most efficient" representation 
leading to the "most favorable" convergence. (Of 
course, we entirely ignore the practical problem of our 
limitation to handle only a finite number of excitations 
in the zeroth order spectrum, But this applies to any 
representation. ) 

In a many-fermion configuration space, the exact 
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wavefunction is "most of the time" well described by an 
independent-particle form o The probability for two or 
more particles to come close is small, and diminishes 
rapidly when an increasing number of them are involved. 
This is even attenuated by the Pauli exclusion principle 
that causes all fermions to carry a Fermi hole; even in 
the independent-particle modeL Therefore, the energet
ic effect of this clustering of fermions, described by 
so-called linked terms, should decrease rapidly as 
their size increases, There is a significant probability 
for many pairs of fermions to cluster (or correlate) 
with antiparallel spin with no correlation of their rela
tive positions. This leads to so-called unlinked terms in 
the wavefunction, expressible as the product of linked 
terms, Their occurrence is overwhelmingly important 
in large systems, and their neglect causes serious 
errors. 

The importance of the linked-cluster theorem from a 
wavefunction point of view is its recognition of the fast 
convergence of the energetic effect from above linked
cluster type terms beyond the independent-particle 
approximation, At the same time, it includes products 
of these linked terms to higher orders in a most con
venient manner, Goldstone and Hubbard were aware of 
this fact, and in Hubbard's paper it is brought out to 
some extent However, the overall emphasis remamed 
on the connection with the quantum- electrodynamical 
methods of Feynman, leading to the order- by-order 
view of many- body effects and scattering pictures, 

Almost simultaneously, Coester6 proposed a radical
ly different approach to the same linked-cluster theory 
that does not suffer from any of the above disadvantages, 
It is time independent; it is algebraically simple; and it 
makes the physically significant corrections to the inde
pendent-particle wavefunction very explicit o The crucial 
idea is to express the exact wavefunction in occupation 
number formalism as 

>¥=eT<I> = (1 + 1'+ 1'2/21 + 1'3/3! + ... )<1>, 

where the reference state <1> is defined by 

<I> = n b c¥ I vac> , b c¥ = n:', 
",=1 

(1 ) 

(2) 

I vac> is the vacuum state and b" are the creation opera
tors for the fermions in the reference state. We denote 
with 0' the occupied states, and with r the unoccupied 
states. The eluster operator Tis defined by 

(3) 

where 

7'1 ==:0 t';,bra"" 

(4) 

and the general s-particle cluster operator 1'5 is given 
by 

where R is the ordered set of s "particle" indices 
{r[, r 2 , ••• }, and Ll. is that for the s "hole" indices 
{(lil! (liz,·· .}. Here and in the following we will use the 
notation 
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(5) 

(6) 

We sometimes write <I>~ when no confusion will arise. 
1's creates s-particle-hole pairs, which makes Eq, (1) 
a nonunitary transformation of <1>. Its exponential form 
keeps track of the counting over distinct corrections to 
<I> only, expressed as replacements of one- particle 
states by cluster functions and their products, and 
represented by Ts and products thereoC The power of 
this desc ription results from two aspects, First, with
out loss of generality, we can assume that the 1's de
scribe linked clusters, meaning that these operators 
cannot be written as the product of two or more opera
tors, This assumption is consistent with the equations 
that determine the cluster operators., 

The second advantage IS that we can perform a sim
ple algebraic trick, When the Schrodinger equation is 
in our cluster expansion form 

we can obtain its solution from the equivalent 
expressionS 

(e- THe T)<l' = F<1>. 

(7) 

(8) 

But now we can express the left-hand side of Eq, (8) as 
a (illite commutation series, 

e-THe T = II + ill, 1'1 + U[H, 7'1, 7'1 
+, "+ (l/4!)[[[[H, 1'1, TI, 1'1, n (9) 

The series terminates after five terms since H contains 
at most two particle operators. Using simple commuta
tor algebra7 one can reduce those expressions even 
further. In order to obtain equations for E and Ts one 
premultiplies Eq, (8) with <<I> I and <<1>~ I and gets: 

n 

(<1>[c-Tlle TI<I»=E, '1'=:0 1'., (10) 
,=[ 

(11) 

Each wavefunction nonorthogonal to <l> can be ex
pressed in the form (1), However, usually one lI1cludes 
only up to II-particle cluster operators which leads to 
an approximation of the exact wavefunctiono The cor
responding equations are of the order Il, as indicated in 
Eqs, (10) and (11)0 Moreover, we assume that the nUIll
bel' of single-particle states is finite. This implies that 
both the number of particles f{ and the number of holes 
.\' is finite. Solutions of Eqs, (10) and (11) are hence ap
proximate solutions of the Schrodinger equation fo r 1\ 

particles in a finite dimensional Hilbert space, Obvious
ly II' X, However, the case n ~ .v is of no practical in
terest. As shown in the Appendix, provided II c- X, Eqs, 
(10) and (11) are equivalent to the corresponding finite 
dimensional configuration- interaction (C I) equations [or 
all states nonorthogonal to <1>. Also, as II increases, the 
number of excitations increases so rapidly that it soon 
becomes impractical to solve these equations. Hence we 
assume 11 • ,V, 

In actual calculations, Hartree-Fock or Brueckner 
orbitals for a and y states were used and a very limited 
number of nonzero 1's were kept, Obviously as many 
Eqs. (11) are needed as nonzero I~ amplitudes, It was 
found that in all electron systems conSidered, the pair 
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approximation T'" T2 leads to about 99% of the attaina
ble correlation energy, 8 This is a very reassuring re
sult which, as indicated above, can be well understood 
on statistical grounds, 

In a long series of publications since 1960, Coester, 
Kiimmel et al, 9 have used this method (named by them 
the exp-S method) for nuclear ground-state energies 
and properties, Cizek and PaldusS, 10 were the first to 
apply the method to a few atoms and molecules in cal
culations of ground-state correlation energies, Be
cause of their pair apprOXimations, the latter authors 
adopted the terms coupled-pair many electric theory 
(CPMET) and extended CPMET. To stress the general 
cluster aspects of the method, and the Significant 
coupling between the clusters which results in nonlinear 
terms in Eqs. (11), we propose the name coupled
cluster (CC) method, 

As expected, it turns out that by iteration of the 
algebraic equations (10) and (11) one generates all 
Goldstone-type linked perturbation terms, provided 
linked clusters to all orders are included. The marvel 
of this method seems to be that it zeros in directly to 
the heart of the correlation corrections in a most com
pact, yet transparent manner. This applies to fermion 
systems with any kind of interaction, 

Even since its inception, Coester and Kiimmel's 
approach has been largely ignored by the many- body 
theoretical community for a number of reasons, From 
a formal standpoint, it seemed to address itself only to 
calculating the ground-state correlation effects. These 
were not considered as very interesting quantities com
pared to response phenomena of many-body systems, 
which quite naturally shifted the attention to Green's 
function methods, Diagrammatic perturbation methods 
are used to compute these functions in a more or less 
systematic way. In a recent paper, 11 we have shown that 
one can indeed use the CC method to compute prop
erties, both time dependent and time independent, by 
casting it in Green's functionlike form. Yet we can 
preserve the algebraic and conceptual Simplicity, and 
we get easily solvable equations. 

A serious objection was also the relative messiness 
of the coupled algebraic equations (11). These are non
linear, inhomogeneous, and, if not carefully handled, 
of considerable complexity. Moreover, they are not in 
some eigenvalue form, thus not guaranteeing the real
ity and a definite multipliCity of their solutions. 
Coester12 made some attempts to answer these 
questions. 

We have now eliminated this objection by casting the 
CC method in the form of a perturbed configuration
interaction (CI) method. The pertUrbation is a non
Hermitian, unbounded operator with polynomial depen
dence on the CI-like coefficients to be determined. 13 
Algebraically it is somewhat like the Hartree- Fock 
method, except that there the Coulomb and exchange 
operator are Hermitian and bounded. With the help of 
the analytic continuation method we will show a one
to-one correspondence of the CC solutions with CI solu
tions, and reality of E values for real Hamiltonians. 
Moreover, many mathematical properties such as the 
appearance of singularities will be derived. As we will 
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see, these are more of numerical than physical 
significance. 

In the next section we will present the derivation of 
the CI-like representation of the CC method followed by 
a section with numerical examples to illustrate some 
analytic properties of the formulation. In Sec. N a 
summary is given of the mathematical analySiS of the 
general CC equations, the details of which are given in 
the Appendix. We close with a section in which we point 
out the Significance of the findings for the CC equations, 
and for the problem of solutions to coupled, nonlinear 
algebraic equations in general. As a byproduct, we ob
tain the number of Hartree-Fock solutions in a particu
lar atomic orbital basis. 

II. GENERAL 

The most general state W in cluster expansion form 
nonorthogonal to <l? can be written as 

w=e T<l?=(l+C)<l?, (12) 

where T is given by Eqs. (3)-(5), and 

C=:E Cs, (13) 
s 

(14) 

Here Rand .6. are, as before, the ordered sets of s 
"particle" and "hole" indices. In order to cast the CC 
equations in a form more accessible to mathematical 
analysiS, we make use of the formal identities 

T= In(l + C), 

(15) 

(16) 

expreSSing Ts in CI-like operators C s and vice versa, 
According to Theorem 1 in the Appendix, the CC equa
tions (11), including up to n-tuple excitations, can be 
written as 

<<l?~(s) 1 (H - E){l + C1 +. , , + C. 

+ [C.+I(n) + C.+2(n)1}1<l?) =0, s=0,1,2,,,,,n, (17) 
where 

.+1 (_)11 
C.+1 (n) = :E -k 

11.2 

11 

:E <5(sl+",+sll,n+1) n Cs , 
[sl} 1.1 I 

:E <5(sl + .•. + SII, n + 1) 
[sl} 

11 .+2 ( )11 
XCI nCsl-:E--=- E <5(SI+',,+slI,n+2) 

;'1 k>3 k [St} 

(18) 

and L:"t) is the summation over all possible choices of 
S 1> S2, •• , such that their sum is in accord with the <5 

function. Instead of the CC Eqs. (17) we observe the 
following somewhat more general equations, 

[H+ AV(+)]+=E+, 
where 

RI ·1 R' HR""R,,,,,=(<I>,,, H <1>",,), 

V R"', R''''' = V R",<5 R ,,,,,, 00 

(19) 

(20) 

= (<l? f 1 H[ C .+1 (n) + C .+2 (n) 11 <l?) <5 R' "",00, (21) 

wR",=(wfI1+",+c.I<l?). (22) 
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It can easily be shown that in the case of 11.=1 Eq. (19) 
reduces to Eq. (17). The above equation is, however, 
written in the matrix form, where H is a Hermitian 
matrix with matrix elements given by Eq. (20). On the 
other hand, V is basically a non-Hermitian matrix with 
matrix elements depending on the components \[I Rt>. of 
the column vector 'It. As pointed out in the Introduction, 
we assume that the number of single-particle states is 
finite. 

Equation (19) where A is a parameter will be called 
the characteristic equation (C E). For the case 11.=0, 
this equation reduces to the usual CI equation of order 
n with the subsidiary condition 'ltoo = (\[II <1» = 10 In this 
case Eq. (19) is a Hermitian equation, eigenvalues E 
are real, and the number of independent solutions \[I is 
less than or equal to the dimension of the space in
volved. Our idea is to use this well-known property of 
Eq. (19) in the case 11.=0, and by analytic continuation 
to extend the corresponding solutions to the whole com
plex A plane. The particular case in pOint is 11.=1 where 
the solution of the nth order CC Eqs. (17) should come. 
Thus, by that process, from the existence and reality 
of the solutions of CI equations, we hope to infer the 
existence and reality of the solutions to the CC equa
tions. If, however, this fails, we are at least in the 
position to trace down the reason why it is so. 

III. EXAMPLE 

In order to get a clearer insight into the structure of 
the C E and the different possibilities which can emerge, 
we shall give an example of a CE which is simple en
ough to be solved analytically, yet incorporates all the 
characteristic features. 

We consider a system consisting of two particles 
which can be distributed among four different states. 
In this case, there are six two-particle states; one non
excited, four singly excited, and one double excited 
state (see Fig. 1). If only single excitations are ex
plicitly taken into account, the C E for the above system 
reads~ 

(<1>~(S) I (H -E){l + C1 + 11.[ C2(1) + C3(1)l} I <1» = 0, 

C2(1)=~cL C3(1)=tCr, s=O,l, 
(23) 

which can be easily deduced from Eqs. (17) and (18). 
The single excitation operator C 1 can be written in the 
form 

, , 
-4: , , , 
-3 i ~ -e- I -e-

--------~---------------------------------~--------
, I 

-e-2 \ -e- -&: 
I , 

: I 

-e-I : ~ --B-, 
Ii) " <P : 12) 13) 14) 15) 16) 

FIG. 1. Schematic representation of the ground state 11> 3 cI> 

and excited states I 2 > through I 6 > constructed from four 
one-particle states (denoted by 1 to 4), as used in examples of 
Sec. Ill. I 2 > to I 5> are monoexcited states, and I 6> is a 
doubly excited state. 
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C1 =X2b3a2 + x 3b4a2 + X4 b3a j + x 5b4a1> 

where 

This gives 

C2(1) I <1» = (X~5 + xaX4) 16), Ca(l) 14» = O. 

(24) 

(25) 

We can now insert Eq. (25) into Eq. (23) and write the 
resulting equation in a matrix form, 

(
h:" "'. h~') + A(XzX5 + x

aX4
)(h:," 

h51 h55 h56 

hij=(iIHIj), i,j=1, ... ,6. 

o ... 

o . ., }{J 
(26) 

Equation (26) incorporates some correlation effects 
since two particles are involved. On the other hand, on
ly single excitations are explicitly taken into account, 
and hence the corresponding CC method is not equiva
lent to the CI method, which is known to have six 
linearly independent solutions with real eigenvalues. 
Thus Eq. (26) is the simplest nontrivial example of the 
C E. This model example will prove quite useful in the 
demonstration of the different properties of the CEo 

So far, matrix elements hI} are restricted only by the 
hermiticity condition h j } = hjj • We shall now solve Eq. 
(26) for some special choices of those elements. 

Our first example is 

(' 
o v 

V) ~ 
0 0 0 

o)l' J 
0 0 0 o 0 0 0 0 0 o X2 

v* 0 0 o 0 tA(X2X5+XaX4) q 0 0 0 o x3 

~* 0 0 o 0 q 0 0 0 o X4 

0 0 o 0 0 0 0 o X5 

"E~iJ· (27) 

We assume u, v, and q to be all nonzero and obviously 
u* = u. Matrix equation (27) leads to a set of five equa
tions in five unknowns; 

U+ VX 3+ VX4=E, 

0= EX2, 

v* + Aq(x~5 + xaX4) = Ex3, 

v* + Aq(x~5 + xaX4) = Ex4, 

0= EX5, 

(27') 

If we put E = 0 in Eq. (27') we obtain solutions satisfying 

X3(U + VX 3) - VXzX5 = vv* /M, 
x4=- (U/V+X3)' E=O. 

(28) 

For each 11.*0 those solutions form a three-dimensional 
variety in the four-dimensional space spanned by 
x2, x 3, x4' and X5' We can arbitrarily choose three 
eigenfunctions satisfying Eq. (28), and one possibility 
is 
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'l1 t =[ ~ J' 'l12=[(-U+~)/2V~' 
- u/v (- u - D)/2v 

x 0 
[ 

1 1 l/A 
"'3 = (- U + D)/2v , 

(- u-D)/2v 
o 

(29) 

where 

x = [(- 1'* /M) ]112, D = [(1l2 + 4v2v* /A) ]112, 

We note that the space of the eigenfunctions (28) is 
not linear, If "'t and "'2 are eigenvectors of Eq, (27) 
with the corresponding eigenvalue E = 0, their linear 
combination 'l1 = 'l1 1 + J3'l1 2 such that ('l11 4» = 1 (i. e., Ci + J3 
= 1) is generally not an eigenfunction to Eq, (27), This 
is the consequence of the nonlinear character of the 
equations (27), namely of the dependence of the matrix 
Von the eigenfunction 'l1. We can enlarge the notion of 
degenerate states to the general case that more than one 
eigenvector'" corresponds to a given eigenvalue E with
out those eigenvectors necessarily forming a linear 
space, In this sense, the solutions (28) are triply de
generate, forming a three-dimensional hypersurface in 
the four-dimensional space spanned by x2 to x 5, As A 

tends to zero, at least one of the components xi = ('" I i) 
tends to infinity, Since ("'14»=("'11)=1, this means 
that'" tends to be orthogonal to the nonexcited state "'. 
In particular if in our case we take a limit of >1'(, 1jJ2, 

and "'3 as A tends to zero we obtain, up to the normali
zation constant: 

(30) 

Those three vectors are orthogonal to the vector 4> and 
though they are not eigenvectors of the CE, they are 
eigenvectors of the corresponding Ct This behavior of 
the above solutions of Eq, (27) reflects a general 
property of the solutions of CL Since N I 4» = 1, no 
state orthogonal to 4> can be an eigenfunction of C K 

Besides degenerate eigenfunctions (28) corresponding 
to the eigenvalue E = 0, Eq, (27) has in addition two non
degenerate eigenfunctions IjJ 4 and >1'5: 

'l14(A)=~x1A~' "'5(A)=lX';A~' 
X(A) X'(A) 
o 0 

E4 (A) = {u(v - M) + v([u 2 + 4v* (211 - Aq) ])112}/ (211 - Aq), 

E
5
(A) = {u(v - Aq) - v([u2 + 4v* (2v - ;\q) »1/2}/ (2v - Aq), 

where 

X(A) = {- u + ([u 2 + 41'*(211 - Aq) ])1!2}/ (4v- 2Aq), 

X'(A) = {- u - ([u 2 + 411* (211 - Aq)])t /2}/ (4v - 2Aq)o 

(31) 

It should be observed that those two eigenfunctions 
represent one and the same analytic function in the com
plex A plane, and that components of "'4 and'" 5, as well 
as E4 and E5, lie on two different Riemann sheets of this 
function, There are two singular paints of which one is 
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a pole (for IjJ 5) and the other is a branch point, 

>t,,=2v/q, Ab=(u2+8vv*)/4v*q, (32) 

In the case of A = 0, which represents CI, vectors IjJ 4 
and \fI 5 reduce to 

(33) 

If we start with the vector 1JI4 (A) for A = 0 and move 
along the line which encircles the branch pOint Ab and 
then come back to the point A = 0, we arrive at the vec
tor 11'5(0) as indicated on Fig, 2, 11'4(0) and 11'5(0) are 
mutually orthogonal and their associated eigenvalues 
are real, which is not generally true for Ij! 4 (A) and IjJ 5(A), 
Obviously, tlJ 4(A) and'" 5(A) cannot always remain 
orthogonal, since they are analytic continuations to each 
other, and in the branch point, Ab , they coincide, Con
cerning reality of the corresponding eigenvalues, in the 
case of the real Hamiltonian (L e" /' and q real), en
ergy as a function of (real) A is real, as long as we do 
not pass a branch point Once A " Ab (for the case Ab " 0, 
and A'" Ab if Ab" 0), energy E(A) starts to be complex 
due to the negative number under the square root in 
Eq, (31L If, however, H is not real, energy E(A) is 
generally complex for each ,\ '* 0, Hence the reality and 
non reality of the eigenvalues of the CC equations de
pends on the basis in which matrix elements are writ
ten, If these matrix elements are complex, the eigen
value is generally complex. If, however, these ele
ments are real, the eigenvalue is real at least in some 
neighborhood of the point A = O. This is to be compared 
with the CI method which always gives real eigen
values for any choice of the basis vectors, We see that 
the most sensible basis choice for CC equations is a 
real basis where there is much more reason to believe 
that the corresponding eigenvalues will be reaL As is 
well known, in the case of velocity-independent Hamil-

~P= 2v/q 

IJI. (A) 
5 

FIC? 2. Singular points in the complex A plane and a path ana
lytIcally connecti.ng the solutions >¥ 4 (A) and >¥5 (A) of the ex
amples of Sec. III. >¥ 4 (A) and >¥5 (A) belong to different Riemann 
sheets, and coincide in the branchpoint Ab • A and A are a pole 
and hidden singularity, respectively. P h 
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tonians, such a basis always exists, It should be noted, 
however, that even in the case when H is complex, the 
eigenvalues are not completely without meaning: The 
imaginary part of the energy is a small quantity of first 
order in A and as long as A is small, the predominant 
contribution to E(A) is given by its real part, and the 
imaginary part can be considered as an error since, 
in any case, the CC method is only an approximation, 

One can easily see that if H is real and if Ab < 0 the 
CC equations will always have real eigenvalues, If, 
however, Ab> 0, the reality will be insured by the re
quirement Ab'" 1, 1. e. , 

(34) 

This holds particularly true if q is small with respect 
to v or, from Eq, (27), if the mutual interaction of the 
states which are explicitly taken into account is big with 
respect to the interaction of those states with the states 
which are taken into account implicitly through the 
matrix V, That is, however, in accord with our intui
tive feeling of the validity of the CC method, 

Our next example is the CE, 

(~. ~ t ~ ~}*~;+x~')~~ ~ ~ ~ D ~J 
(35) 

where U and v are supposed to be different from zero, 
Equation (35) is equivalent to a set of equations; 

ux3=E, 

0= Ex 2, 

u* + 2AV(X2X5 + X:0"4) = EX3, 

AV(X2X 5 + X:0"4) = Ex 4, 

0=Ex 5, 

(35') 

Concerning (35') it can be shown that there are two 
possibilities; Either A*U/V or A=U/V, If A*U/V, there 
are two solutions to (35'): A*U/V, 

If, however, A=U/V, there is an infinite number of 
solutions to (35'), 

(36) 

~Ix=/v) ~ rH, E ~ux± lu'x' +uu')' ". (37) 
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Note that each energy E can be an eigenvalue, except 
for E = 0, Later we shall see that it is a general prop
erty of the C E that sometimes, for particular values of 
A, an infinite number of eigenvalues are possible. We 
shall call such a point in a complex A plane a resonance 
point 

The two examples above illustrate different types of 
anomalies which can be expected for the CE, We shall 
now examine the C E in more detail in order to show 
that the above two examples exhaust all but one of the 
anomalies which can be expected, 

IV. GENERAL STRUCTURE OF CE 

In the previous section we gave some examples of the 
C E in order to illustrate possible types of solutions, 
Now we are going to observe the CE from a general 
point of view, 

Observe the CE 

[H+AV(X)]x=Ex, x t =l, (38) 

where x={Xt"" ,xm} stands for a vector IjI whose com
ponents IjI Rt:> are renumerated in the order 1,2, ' , , , m 
(see the Appendix), The two basic questions we want to 
answer are the existence of solution (E,x) and the real
ity of the eigenvalue E. 

In order to reach these answers in the most complete 
sense, we must carefully analyze the mathematical 
structure of the CE, In particular, we have to identify 
singularities in the complex A plane, In this section, 
we summarize the results of this analysis, Most of the 
details are given in the Appendix, particularly the proof 
of important theorems, We proceed by first discussing 
the special A points for which the C E is singular in 
character, followed by rigorous answers to the above 
questions of existence, reality, and multiplicity of 
solutions (E, x). 

(a) Resonance points 

As illustrated by Example 2, the CE may have some 
pOints A for which it has an infinite number of distinct 
eigenvalues, We called such a pOint a resonance point 
It is shown in the Appendix that if Ar is a resonance 
point, each E, except for a finite number of them, is an 
eigenvalue of the Eq, (38) where A = Ar • Thus, between 
resonance and nonresonance pOints there is a complete 
symmetry, In a nonresonance point there is a finite 
number of eigenvalues E; in a resonance point there is 
a finite number of E which are not eigenvalues, 

Another question concerns the distribution of reso
nance points in a A plane, This question is answered by 
Theorem 4 to the effect that there is either a finite 
number of resonance points, or there is a finite number 
that are not resonance points, If the first case occurs, 
we call the CE normal, However, the possibility that 
the CE is not normal is very unlikely, It would mean 
that for almost every A Eq, (38) would have each E, 
except a finite number of them, as an eigenvalue. Phys
cally it would imply that the CC equations, which cor
respond to the point A = 1, are void of any significance, 
since even if A = 1 were not a resonance point, each 
point infinitesimally close to it would be, However, we 
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were not able to rule out this possibility, although we 
believe that it actually does not take place. In any event, 
if the CC equations are to be given any physical sig
nificance, the corresponding CE should have, at most, 
a finite number of resonance pOints and hence it should 
be normal. 

The solutions which are "specific" for a resonance 
point we call resonance solutions, Besides resonance 
solutions in a resonance point, we can also have non
resonance solutions- the distinction being that reso
nance solutions cannot be extended in the region outside 
the resonance point. Obviously, if each resonance solu
tion could be extended continuously to some neighbor
hood N(A.) of a point An then in each point of N(A.) there 
would be an infinite number of distinct eigenvalues, and 
hence this pOint should be resonance as welL But this 
would imply that each A except a finite number of them, 
is resonance, which would mean that the CE is not nor
mal. Hence, in the case of a normal C E, only a finite 
number of the solutions in a resonance point AT can be 
extended continuously outside this point and those solu
tions we call nonresonance, Thus resonance solutions 
do exist only in a resonance point and cannot be ex
tended outside it. They are isolated, and since the cor
responding eigenvalue E can assume almost any value, 
be it real or complex, they are void of any physical 
meaning" 

Note that the point A = 0, by the very definition, can
not be a resonance point, and hence in the case of nor
mal C E there is a small neighborhood .V(O) of the point 
A = 0 where there is no resonance point. This is in 
accord with the intuitive idea that for small A the term 
AV(X) should be considered as a perturbation, and hence 
should not destroy the "good" feature of the C E in the 
point A = O. One must, however, be careful in such con
clUSions since, although V(x) is continuous, it is not a 
bounded operator as shown in Lemma 7 of the Appendix. 
Hence there is no a priori reason why A V for infinitesi
mal A should be infinitesimaL 

(b) Singular points 

CE (38), for a given (E,x) and a given A, is well 
characterized by the Jacobian 

D(A, E,x) 

1 (ht2 + A02 Vt (x») 

X 2 (11 22 - E + A02V2(X») 

a;=_O
ax; • (39) 

As shown in the Appendix (Theorem 5), if (Eo, xo) is 
a solUtion of the CE in a point AO, and if a correspond
ing Jacobian D(Ao,Eo,xo) is different from zero, then 
this solution can be analytically extended in the whole 
A plane with the exception of a finite number of points, 
The solution [E(A),x(A)l, which is obtained by this 
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process of analytic extension, we call normal. Our 
main concern, however, are those normal solutions 
which are defined in the point A = 0, which corresponds 
to the cr. Such solutions we call regular. They can 
bridge the gap between CI and CC, since they can be 
extended out of the point A = 0, to the whole A plane, and 
provided they are defined in the point A = 1, they connect 
cr and CC solutions in a natural way, The normal solu
tion [E(A),X(A)], which is the extension of the solution 
(Eo, x o) in the point A = AO' is by the very definition non
resonant Moreover, it is an algebraic function of A, 
and as such it may have poles and branch paints, As 
shown by Lemma 10, if A = Ab is a branch point of a nor
mal solution [E(A),X(A)l, the Jacobian D['\b,E(Ab),x(Ab)] 
should be equal to zero, Also, according to Lemma 8, 
vanishing of the Jacobian can be due to a continuous de
generacy of the solution at this point (see Definition 3). 
If A = Ad is such a point, we call it the point of accidental 
degeneracy, It is shown in the Appendix that vanishing of 
the Jacobian in a point A = A 1 indicates instability of the 
normal solution [E('\/),X(A/)l, Thus in a branch point and 
in the accidental degeneracy point the corresponding 
solution is unstable, It may also happen that the solu
tion [E (A), X(A)] is unstable in some point A = Ah (1, e, , 
the corresponding Jacobian is zero), but it is neither a 
branch nor an accidental degeneracy point, In this case, 
we say that ,\ = Ah is a hidden singularity of a normal 
solution [E(A),x(A)l. 

It shOuld be noted, however, that although [E(A),X(A)] 
is not defined in a pole A = AI" the corresponding Jacob
ian may well be defined in this point. D(A) '" D[A, E (A), X(A) 1 
is an analytic function in A, and there is a possibility 
that there exists an analytic continuation of this function 
in a point A='\p which is a pole of a solution [E(A),X(A)], 
It may happen that the Jacobian vanishes in this point; 
hence poles can also cause disappearance of the 
,Jacobian. 

In conclusion then, if [E('\),X(A)I is a regular (normal) 
solUtion, it may have four types of singular points. 
First there are poles which are those points where 
[F('\),x('\)] is not defined, Second there are branch 
points, third there are accidental degeneracies, and 
fourth there are hidden Singularities, 

(c) Examples of singular points 

The above possibilities are illustrated in Sec. III, 
The regular eigenfunction lJio(A) Eq. (31) has a pole in a 
point A» = 21/q and a branch point in .\b = ({(2 + 81'1' *)/ 
41'*q. In addition, there is a.hidden Singularity in a 
point '\h=-47.,27!*/U 2q. This last singular point can be 
found if we observe the corresponding Jacoblan, which 
is 

D(.\) = D['\, E(,\), '-lr(A)l 

1 0 l' l' 0 
x2 -E 0 0 0 
X 3 .\qx 5 ,\qx4 - E MiX 3 ,\qx 2 (40) 
x~ .\qX5 .\qx4 .\qX3 - E .\qX2 

Xs 0 0 0 -E 

Both eigenfunctions IJi(A) in Eq. (31) satisfy x2=x5=0 
and X3=x4=x. Hence 
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D(A) = £3[E + 2x(v - Aq)], (41) 

Thus D(A) = 0 if either E = 0 or E + 2x(v - Aq) = 0, The 
first possibility yields 

E=O ~ AI = Ah=- 4v2v*/U2q, 11.2 = Ap =2v/q, (42) 

The point 11.2 is a pole while the point 11.10 being neither 
a pole nor a branch point, is a hidden singularity, An
other possibility yields 

E + 2x(v - q) =0 ~ A=Ab= (u2 + 8vv*)/4v*q, (43) 

which is a branch point. 

Concerning the eigenfunctions >¥10 >¥2, and >¥3, Eq, 
(29), one finds D(A) '= 0 in accord with Lemma 8, Thus 
the vanishing of the Jacobian is due to a continuous de
generacy, However, no point A is a point of accidental 
degeneracy, since the above eigenfunctions are de
generate identically, i, e" for each A, Hence they are 
not normal eigenfunctions (see Theorem 5), In the same 
way, one finds D(A=u/v)=O in the case of a resonance 
solution (37), This is in accord with Lemma 9, 

(d) Physical meaning of singular points 

The solutions close to a pole or a branch point can 
obviously have no physical meaning. Close to a pole, 
for example, at least one component of a vector x(A) 
tends to infinity, This, however, means that the opera
tor V cannot be treated as a perturbation anymore, 
However, in the CC equation, V is introduced as an ap
proximation which takes into account only some of the 
excited states. Hence, if a pole is close to a point 11.= 1, 
the corresponding regular solution is not of much value, 
Formally, close to a pole a state x (A) tends to be 
orthogonal to a state <1>, and thus if (x I <1» is small for 
some solution (E,x) of the CC equations, we should 
regard this solution as poorly representing the real 
state, Hence the CC formalism is good only for a few 
low-lying states, expecially for a ground state which is 
likely to have significant overlap with a state <1>. 

On the other hand, close to a branch point we have 
two different solutions with eigenfunctions whose over
lap approaches to L However, at the point 11.=0, those 
two eigenfunctions are mutually orthogonal and hence 
distinct. Thus if operator V is to be considered as a 
perturbation, the solution close to a branch point can 
also have no physical meaning, 

(e) Reality of solutions 

The question of the reality of the solutions, especial
ly, the reality of the eigenvalue E, is answered by 
Lemma 12. Provided Hamiltonian H is real, each 
regular solution [E (A), x (A) 1 is real along the real A 
axis, as long as we don't meet some branch point, It 
means that if there is no branch point between the points 
11.=0 and 11.= 1, the corresponding solution of CC equa
tions (A = 1) should be real, Note that the essential re
quirement is the reality of the Hamiltonian, As is well 
known, provided Hamiltonian H is velocity independent, 
there exists a real basis. 

It is interesting to note that the reality and the non
reality of eigenvalues E depends to some extent on the 
basis in which matrix elements of the Hamiltonian H 
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(and hence of the operator V) are written, Different 
orthonormal bases can be connected by unitary trans
formations and eigenvalues of CC equations are general
ly not invariant with respect to them, This can be illu
strated using as an example the CE (27), The full 
Hamiltonian of the system described by this equation is 
a six- by-six matrix, Observe now the infinitesimal uni
tary transformation, 

u=! + iEA, a36 =a46 = a63 =a64 = 1 

otherwise, alj = 0, i,j = 1, 2"" ,6 

and assume that H is real, 

h13 =h14 =v =v*, h36 =1I46 =q =q*, 

To first order in E the transformed CE reads 

(44) 

(45) 

(" 0 , " ') ~ 2." 

0 0 0 

Dllijl 
00000 0 0 0 0 
v 0 0 0 0 +A(X2x5+x;jX4) q+iEP 0 0 0 
v 0 0 0 0 q + iEP 0 0 0 
00000 0 0 0 0 

~ElH (46) 

where 

P = h66 = (61 H 16), 

Due to (45) the eigenvalues of the nontransformed CE 
(27) are real for real A values as long as A -% Ab' This is 
obvious from Eqs, (31) and (32), However, the eigen
values associated with the transformed CE (46) are 
complex, which results from the appearance of complex 
terms in the operator V, 

It should be noted that the eigenvalues of CI equations 
are also generally not invariant with respect to unitary 
transformations. However, in the case of CI equations, 
eigenvalues remain always real, while in the case of 
CC equations they can, as shown above, assume com
plex values as well, 

Unitary transformation (44) mixes singly excited 
states 13) and 14) with the doubly excited state 16), 
However, we can consider unitary transformations of 
one-particle type, which only mix occupied and un
occupied one-particle states among themselves, Such 
transformations express new creation (annihilation) 
operators as linear combinations of old creation (annihi
lation) operators, and they change the reference state 
<l> only up to the phase, Obviously CC equations (11), 
and hence the CE, are invariant with respect to those 
transformations, Usually, however, a velocity- inde
pendent Hamiltonian is written either in the real basis 
or in some basis which can be connected by the above 
type of unitary transformation with a real basis. We 
conclude that, provided Hamiltonian H is velocity in
dependent, eigenvalues E are generally real, The 
reality of the eigenvalue can be violated only if the cor
responding regular solution of the CE has a branch point 
of the real A axis between real points 11.=0 and 11.= 1, 
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(f) Modified characteristic equation 

As mentioned above, regular solutions of the CE are 
our main concern, since only those solutions can con
nect CI and CC. However, a given CE can have very 
few or no regular solutions at all. In order that a solu
tion [E(A),x(A)l be regular, it is essential that the cor
responding Jacobian is not identical to O. This is a 
serious limitation, and we would like to extend the 
notion of a regular solution to as many solutions of the 
characteristic equation as possible. 

This can be done by a slight modification of the 
characteristic equation. Instead of Eq. (38) we observe 
the equation 

{H + EA + A[V(X) - EA l}x = Ex, XI = 1, (47) 

where operator A satisfies requirement (A45). We call 
this equation the modified characteristic equation 
(MCE). For E = 0 it reduces to the usual CE, while for 
A = 1 it represents the CC equations. Formally, Eq. 
(47) can be considered as a characteristic equation of 
the CC method and a "modified" CI where Hamiltonian 
H is replaced with H'=H+EA, while at the same time 
operator V is replaced with V' = V - EA. 

All the conclusions concerning the behavior and struc
ture of the solutions of CE do apply to the solutions of 
MCE as well. As shown in the Appendix, for small 
enough E, which we assume to be the case, MCE has 
exactly m regular solutions [E(A),X(A)]. Each of those 
solutions can have a finite number of singular pOints 
which are of four types: pole, branch point, accidental 
degeneracy, and hidden Singularity. In a pole the solu
tion [E(A),X(A)] is not defined and at least one compo
nent of a vector X(A) blows up. Thus the pole corre
sponds to an eigenfunction which is formally orthogonal 
to <1>. In each neighborhood of a branch point there are 
at least two solutions which smoothly approach each 
other, In an accidental degeneracy point there are at 
least two solutions with the same energy, Finally, if 
the point A is a hidden singularity point, none of the 
above holds, but the solution [E(A),x(A)l is unstable and 
the corresponding Jacobian vanishes. 

(g) Geometric interpretation of solutions 

For each A the CE is a set of m equations in m un
knowns. Geometrically we can think of those equations 
as describing 111 hypersurfaces in an m-dimensional 
space X m, Each solution is then a common intersection 
of those hypersurfaces. Such a picture can help us to 
understand the nature of resonance pOints and different 
types of singular points, In Fig, 3 are shown those dif
ferent possibilities and their geometrical meaning. This 
figure deals with the simple case where we have only 
two hypersurfaces, fl(A,E,x)=O andf2(A,E,x)=O, In 
Fig. 3 those hypersurfaces for a given A value are 
shown. Figure 3(a) corresponds to a crossing of all 
hypersurfaces in a given point. In this point, D*-O and 
hence it is a nonresonance solution. In Fig. 3 (b) the two 
hypersurfaces do not cross; or, if one prefers, they 
meet in infinity. Hence there is no solution. However, 
the Jacobian still can be defined as the analytic con
tinuation of the Jacobian in some neighboring A point. 
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0=0 X 

Resonance Point 
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'r:::: 0=0 X 

Hidden Singularity ar 
Branch Point 
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FIG. 3. Graphical depictions of possible solutions as intersec
tions of m hypersurfaces in m-dimensional space, and their 
associated values of the Jacobian D. 

In Figs. 3(c) and 3(d) both hypersurfaces do coincide 
which corresponds in a more general case to the de
pendence of hypersurfaces, In the former case, since 
E is always constant, we have degeneracy, while in the 
latter case it is a resonance point. Finally, Fig. 3 (e) 
can describe either a hidden singularity or a branch 
point. In order to distinguish those two possibilities, 
we should draw at least a three-dimensional diagram 
including A axes as well, In the first case (hidden 
Singularity) the two hypersurfaces should only touch in 
some point. In a branch point, as we proceed along the 
A axes starting from a point of touch, we should con
tinuously arrive at two distinct crossing points corre
sponding to two solutions. It should be noted, however, 
that in reality two axes correspond to each axis~ One 
for a real part and another for an imaginary part. Fig
ure 3 is hence only approximate. 

V. DISCUSSION 

Exploiting the analytic connection of the CC with the 
CI method, we have come to the following main con
clusions concerning the solutions of CC equations. 

(1) Each MCE has as many regular solutions as the 
corresponding CI. Here, there are, in general, as 
many solutions to the CC equations as the number of 
solutions to the associated CI equations, The particular 
CI solution can be "lost" only if the point A = 1 is a pole 
or a branch pOint of a corresponding regular solution of 
MCE. 

(2) Unless a branch point exists on the real axis in the 
complex A plane between 0 and 1 the energy eigenvalue 
will be real for a real Hamiltonian. If the Hamiltonian 
matrix is complex, the energy might become complex, 

(3) Solutions to the CC equations associated with high
ly excited states tend to become more and more 
orthogonal to <1>. They will also describe these states 
poorly. Therefore, it becomes more likely that those 
excited CC solutions will show singularities close to 
A = 1. Whether this causes the CC solution to be not 
defined (A = 1 is a pole) or has a complex energy value 
(branch point between 0 and 1 on a real axis) is depen
dent on the Hamiltonian matrix elements. 
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The reader will have noticed that little use was made 
of the actual algebraic form of Eqs. (3S), peculiar for 
the CC equations. This is particularly the case when 
discussing the occurrence of resonance points, poles, 
and branch points. As evidenced by Lemmas 6 and 9 in 
the Appendix, it is important for proving the reality of 
the solution, but only to the extent that 

V(x*) =V*(x). 

This suggests that the developed procedure of analyti
cally constructing the solutions to nonlinear, algebraic 
equations from a known problem (in this case the linear 
CI equations), is quite general, Thus, with some modi
fication this method can be applied to Hartree- Fock 
(HF) equations as well, The modification is required 
since HF equations are not analytic in the unknowns. 
This follows from the fact that the HF potential depends 
on the products of the components of the eigenvectors 
>¥ j with complex conjugates of those components. How
ever, this difficulty can be overcome, and essentially 
the same method of the characteristic equation can be 
applied. One finds that, if HF equations describe a 
system consisting of N particles, and if there are ,U 
one-particle states (occupied plus unoccupied), then the 
characteristic equation corresponding to this HF has 
(:~) regular solutions. In order to obtain this result, it 
is necessary to redefine the characteristic equations 
and the definition of the regular solution in an appro
priate way. This will be done elsewhere, 14 

APPENDIX 

Lemma 1; Let l' and C be cluster and configuration 
operators defined by 

1'=:0 1'., C =:0 C., (AI) 
5.1 s.1 

where Ts and C., 

1'.= :0 t~I;:::&br···bra" ••• a", 
0!1."aStTt ••• rs s 1 s s 1 

(A2) 

are operators creating linear combinations of s-tuple 
P-h excitations. Further, let l' and C be connected by 
the operator relation 

e T = 1 + C. (A3) 

The following two operator relations hold: 

s 1 k 

C s =:0 -k1 '6 6(sl + ... + Sk' s) n T s " (A4) 
k.l • lSi} i.t • 

s (_)k-I k 

T s=:0-,-,- :0 6(SI+"'+ 8k'S) n CSi ' (A4') 
k=1 ' {sl} 1:1 

In Eq. (A4) and (A4') the sum "2;{Slt extends over all 
possible combinations of k numbers sj, s2,.'" Sk such 
that 8 1 + s2 + ... + Sk = s. 

Proof: Due to (A2) we have 

[C., CpJ = [1'., TpJ=O, s,P=1,2"oo (A5) 

and hence 
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e
T 

= ~ Ti/i! = ~ (:0 Tp)l/i! 
1:0 '.0 p.1 / 

= 1 + 1'1 + (1'2 + Ti/2) + (T3 + 1'11'2 + Tr/6) + .. , 

(A6) 

where the last expression can be obtained by a simple 
combinatorial analysis, Comparison with (A3) proves 
(A4) now. 

The inverse relation (A4') can be proven along the 
same lines using the operator relation 

T=ln(l+C)=£ (_.)i (,'i, 
i:! 1 

(A7) 

(A7) is formally valid only if I C I / I. However, If the 
right-hand side in (A7) is applied to any state >¥ consist
ing of a finite number of excitations this series is finite 
and hence (A7) holds, Thus (A4') deduced from (A7) is 
valid for all finite-dimensional cases. 

Theorelll 1; Let 

T=T1+··,+T", 8=0,1",.,11, 
(AS) 

be a set of CC equations including up to Il excitations, 
This set of equations is equivalent to the CI-like 
equations, 

C=('I+"'+('n, 8=0,1,'0.,11, 
(A9) 

where 

, n+l (_)k k 
(n+l(n)=0 ----;;-:0 6(8 1 +",+sk ,n+l) n (s., 

k.2 " lSi) i=1 ' 

n+l (_)k k 
C n+2(1l)=:0 --;- :01l(81+",+sk,n+l)C{ II CSI (A10) 

k=2 " lSi) i.1 

n+2 (_)k k 
-:0 --,- 0 6(SI+···+ S k,Il+2) ncs ·• 

k.3 ( lSi) i:1 I 

Operators C sand Ts for s c, 11 are connected by the 
relations (A4) and (A4'), 

P1'oof: Let the space of states consist of, at most, 
N-tuple excitations, Observe (A3), Formally Ts=Cs=O 
if S ~. ,\', while for the case 8 z N the connection between 
C s and Ts is given by (A4) and (A4'), Now let Ttermi
nate after the nth term T = T{ + 1'2 + . , , + Tn> and let us 
express C s in terms of such T, In order to denote that 
C s depends on II we will write C s (Il), From (A4) it 

follows that C s(n) = C s if S '" no Let us now look at C n+{ (ilL 
This operator has the same dependence on Ts as the 
operator C., provided we put Tn+l =0 in (A4). Hence, 
from (A4), 

By the same argument, we obtain 

C n+2(n) = C n+2 - (Tn+2 + T{ T n+1), 

From (A4), 
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and hence Eq. (AlO) follows, This proves that (A8) is 
equivalent to 

(<1>~(s) I e-T (H - E){l + C + [C n+1 (n) + Cn+2(n) ]}<P) = 0, 

C=C1 +···+C n, s=O,l, ••• ,n, 
(A14) 

where C n+1(n) and C n+2 (n) are given by (A10). Operators 
C n+3, C n+4, etc., creating (n+3)-, (n+4)-tuple excita
tions do not enter into (A14), since Hamiltonian H 
destroys at most two excitations, operator exp(- T) can 
only create excitations and the state <<1>~(s)1 contains at 
most n excitations. 

By induction, we now conclude that operator exp(- T) 
can be omitted in (A14). First, observe the case s = 0. 
Obviously, 

(<1> I e-T(H - E){l + C + [C n+1 (n) + Cn+2(n)]} I <1» 

'" (<1> I (H - E){l + C + [C n+1 (n) + Cn+2 (n)]} I <1» = 0, (A15) 

since exp(- T) = 1 - T + y2 /2! +. ,. can only create ex
citations and there is no excitation in (<1> I. Second, we 
have 

<<1>~(1) I e-T(H - E){l + C + [C n+1 (n) + Cn+Z (n)]} I <1» 

'" (<1>~(1) I (H - E){l + C + [C n+ 1 (n) + Cn+2 (n)]} I <1» 

- (<1>~(1) I T(H - E){l + C +[Cn+1 (n) + Cn+z(n)]} I <1» = 0. 

(A16) 

Operator T, when acting on any ket 1 >It), creates at 
least one more partic1e- hole pair in it. Therefore, ac
cording to (A15) the second term in (A16) is zero and 
hence 

(<1>!(1) I (H - E){l + C + [C n+l (n) + Cn+2 (n)]} I <1» =0. (A17) 

By induction it follows 

(<1>~(s) I (H - E){I + C + [C n+1(n) + Cn+2(n)]} I <1» = 0, 

s==O,l, ••• ,n. (Al8) 

This set of equations is equivalent to (A14) and hence to 
(A8). Theorem 1 is thus proved. 

A kind of inverse theorem also holds: 

Theorem 2: Let 

(<1>~(s) I (H- £)(1 + C) 1<1» == 0, 
(A19) 

be a set of CI equations including up to n-tuple excita
tions. This set of equations is equivalent to the CC-like 
equations 

(<1>~(s)le-T(nl(H_ E)e T(nl l<1» =0, s==O, I, .•. ,n, 

(A20) 

where 
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n 1 If 

Tn+j (n)==-:0 -k
l 

:0 5(sl + ••• +sun+1) n Tsl , 
k.2 • {sl) /.1 

n 1 "(A21) 
Tn+z(n)==:0ki :0 5(sl+"'+s",n+1)T1 n T' I 

,..2 • {sl) hi 

n 1 " 
-:0,:0 5(sl+'"+ s,,,n+2) n Ts .• 

k=3 k. {sl) 1=1 • 

Operators Cs and T. for s "" n are connected by the rela
tions (A4) and (A4'), The above theorem can be proven 
along the same lines as Theorem 1. Both theorems ex
press a formal symmetry between CI and CC equations. 

Observe the equations: 

(<1>~(s) I (H - E){I + C + ••• + Cn 

+ A[C n+1(n) + Cn+z(n)1}i <1» = 0, (A22) 

s=o, 1, ••• ,n, 

These equations explicitly include up to n-tuple excita
tions while (n + 1) and (n + 2)-tuple excitations are in
cluded through the operators Cn+t(n) and Cn+z(n), which 
depend on C1 to Cn, according to (A10). For A == 1 this 
set of equations reduces to (A9), hence it is equivalent 
to CC equations including up to nth order clusters Ts. 
For A == 0, Eqs, (A24) reduce to a usual CI problem 
including up to n-tuple excitations, 

Lemma 2: Equations (A22) can be written in the 
matrix form 

[H+AV(>It»)>It=E>It, >Itoo=l, 

where H and V are matrices with elements 

=(<1>!IH[C n+t (n) + Cn+2 (n)j 1<1»5R'A'.OO, 

and >It is a column vector with components 

(A23) 

(A24) 

(A25) 

Lemma 2 follows directly from (A22). The require
ment >ItOQ = 1 fixes the nOrm and phase of >It. Formally 
(A23) is an eigenvalue equation, Note that according to 
(A24), operator V is not Hermitian, and hence the 
reality of E is not guaranteed. We will call Eqs, (A22) 
and (A23) characteristic equations (CE). We shall 
analyze the solutions (eigenvectors and eigenvalues) of 
the CE as a function of A. Besides CE (A23) we will 
sometimes consider the equation 

(A23') 

where A is a real Hermitian operator. Later on [see 
Eq, (A45)] we will impose some additional requirements 
on A. We will call Eq. (A23') the modified characteris
tic equation (MCE). Obviously, for E = ° this equation 
reduces to CEo Note also that for A = 1 it reduces to CC 
equations, In what follOWS, we will refer mainly to CEo 
However, all the conclusions, unless otherwise speci
fied, apply to MCE as well. 

We now first examine some properties of the operator 
V and its matrix elements V RA. 
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Le 117 ma 3; Each V RA is either identically zero or it is 
a polynomial in the components of the vector q, 0 

(a) All matrix elements V RA(S), corresponding to the 
s-tuple excitations where S < n - 1 are identically zeroo 

(b) If there is no (n+l)-tuple excitation 1<1>~(n+l) 
such that 

(A26) 

the matrix element V RA (n - 1) corresponding to (n - 1)
tuple excitations I <1> ~(n - 1) is identically zeroo Other
wise V RA (n - 1) is polynomial in the components of IJI of 
degree (n + 1) and with smallest power 20 

(c) If there is no (n + I)-tuple excitations I <1>~:(n + I) 
such that 

and at the same time no (n + 2)- tuple excitations 
I <I>~:(n + 2) such that 

(A27) 

(<1>~(n) I H I <I>~:(n + 2) '* 0 (A28) 

matrix element V RA(n) corresponding to n-tuple excita
tions I <1>~(n) is identically zero. If only (A26) holds, 
V RA is a polynomial in the components of \li of the de
gree (n + 1) with smallest power 2 [same case as (b)1. 
If (A29) holds V RI> (n) is polynomial in components of \li 
of degree (n + 2) with smallest power 20 

Summarizing, Lemma 3 states that unless V RA is 
identically zero, it is a polynomial of q, components of 
degree at most (/1 + 2) and at least 2, 

Lemma 4: Polynomial V RA contains each component of 
'l' with power of at most L 

Le Iillila 5' If the Hamiltonian fI is real, matrix ele
ments 1T RA ('l') satisfy 

(A29) 

Lemma 6~ If the Hamiltonian H is real, and if (Eo, 'lio) 
is a solution of CE for A = AO' then (Ed, 'l'd) is a solution 
of the same CE in the point A = ltd'. 

All these Lemmas follow from (AIO) and (A24L For 
example, 

V RA (11 - 1) = < <I>~(n - 1) I H[ Cn+1 (n) + C n+2 (nl1 \ <1» 

n+l (_)k 
=t= -- t= 6(S1+· oo + s .,n+l) 

.;2 " {si} 

X t= <<I>~(n-l)IHI<I>r.(n+l) 
R'll' 

• 
x(<1>~:(n + 1) I1 cs.l <1»0 

i=1 1 

(A30) 

If in the above expressions there is at least one vector 
: <1>~:(n + 1) such that relation (A26) holds, the term in 
(A30) corresponding to 1< = n + 1 gives rise to the highest 
power (Il + 1) in the components of \li, The lowest power 
is 2, corresponding to the term with k = 2 in (A30)0 In 
the same way, matrix elements V RA(n) can be analyzedo 
Lemma 4 follows from the fact that ai = 0 for each 
Fermion annihilation operator a~o Since operators C s 

can only create particle-hole pairs and never destroy 
them, once such pairs are created the repeated applica
tion of the same p - lz creation operators on the new 
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state gives zeroo Lemma 5 can be deduced straight
forwardly from the explicit expressions for V RA, such 
as (A30), and from the assumed reality of the matrix 
elements of H. Lemma 6 follows from Lemma 5. The 
following lemma is also of some interest, 

Le m 111(1 7; Operator V is either identically zero or it 
is nonbounded, 

Pyoof~ Observe first that according to (A23) operator 
V is defined only for q, such that q,oo = L From Eqo 
(A24) it follows that 

(A31) 

Assume now that V is not identically zeroo According to 
Lemma 3, there is (R' 6.') such that V R'A' is a polynomial 
in the components of ~ of the degree at least 20 Hence 

(A32) 

However, I V R'A'(q,) \2 is a polynomial of at least fourth 
degree, while 1RA I q, RI>.12 is a polynomial of a degree 2, 
and hence the right-hand Side in Eqo (A32) is not bound
ed. n follows that V is not bounded either, 

Observe that although V is not bounded it is continu
ous since its matrix elements are polynomial (con
tinuous) functions of the components of a vector 'li 0 

We would now like to examine the properties of CE as 
a function of the parameter Ito Examples given in Sec, 
III suggest the following definitions; 

Definition 1: Point Ar in a complex A. plane is a reso
nance point of a CE if for It = Itr the CE has an infinite 
number of eigenvalueso 

Definition 2: Point Itn in a complex A plane is a non
resonance point of a CE if, for It= Itn the CE has a 
finite number of eigenvalueso 

The emphaSis in Definitions 1 and 2 is on the number 
of eigenvalues and not on the number of eigenfunctions, 
which can be infinite due to degeneracy, It is clear that 
A = 0 is a nonresonanc e poinL 

We now prove the following theorem, 

Theorem 3' Let A.r be a resonance pOint of a CEo Each 
value E, except a finite number of them, is an eigen
value of the CEo 

Proof; In order to prove this theorem, it is more 
convenient to renumerate the components ~ RA of a vec
tor lJI in such a way that we first take component 'lioo = 1, 
then in some definite order all components correspond
ing to single excitations, then all components associated 
with double excitations, etco, up to n-tuple excitations, 
We denote the renumerated components by Xi' i 
= 1,0 •• ,m, With this enumeration understood, we 
write, instead of lJI, the vector x, Thus (A23) reads 

(A33) 

where H and V are m x 11/ square matrices with elements 
given by (A24), using the correspondence IJI RA - Xi' 

The matrix equation (A33) is a system of 11/ equations in 
ill unknowns: 
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fl = hl1 + h 12X2 + ... + hlrnXm + A.Vl (x) - E = 0, 

f2 = h21 + h2ZX2 + .. , + h2rnXm + AV2(X) - Ex = 0, 
(A34) 

fm =hml +lzmZxZ +'" + hmrnXm + AVm(X) - EXm= 0, 

where the unknowns are E,X2,'" ,xm' Each polynomial 
fi can be uniquely factorized in a set of k(i) irreducible 
polynomials f /i, .i 1 = 1, ' , , ,k (i), For example, the 
polynomial 

f = xi - x~ + X IX~ - x;x 2 + X2 - X I = ° 
can be factorized as 

f= (xI - X~ - l)(xl - X2) = 0, 

Hence the set (A34) is equivalent to K:= ni k(i) sets of 
equations 

f/I=O, .i 1 =1,2,,,,,k(1), 

f{2=0, h=1,2,o,o,k(2), 

f~m=o, .im =1,2"",k(m). 

(A35) 

Each equation in (A35) represents a hypersurface in the 
m-dimensional space X'" spanned by E,X2, •• ' ,xmo 
Geometrically, the solution of (A34) is the joint inter
section of all hypersurfaces f/ I • • 'f~m, Assume now 
that the point A = Ar is a resonance point of (A34), In 
this case, there is at least one set (A35) which has an 
infinite number of intersections in xm with different 
values of E, Due to the algebraic structure of the fit 
this can happen only if this set is dependent. But this 
means that it can be solved step by step to lead finally 
to an equation of the type 

;;[E,x2(x;)"" ,XI_I(Xi),XI,Xi+I(Xj)"" ,xm(xl)]=O, (A36) 

which is algebraic in E,x2,'" ,Xm, where all xs(x j ) are 
algebraic in XI' Therefore (A36) is algebraic in E and 
x I, and, being satisfied for a denumerable number of 
distinct E values, it is satisfied for each E except, 
possibly, for a finite number of them. This proves 
Theorem 3. 

Related to this Theorem is the following theorem, 

Theore 111 4 ~ Each C E has either a finite number of 
resonance points, or each A is a resonance point except 
for a finite number of them, 

This theorem is proven along the same lines as the 
preceding one, Assume namely that a given CE has an 
infinite number of resonance points, From this infinite 
number, we can extract a denumerable subset of them. 
According to Theorem 3, for each resonance point the 
CE is satisfies for all E except for a finite number of 
them, It follows that for a denumerable number of 
resonance points there is a set consisting of all E ex
cept for, at most, a denumerable number of them. 
However, due to the algebraic character of the C E 
exclusion can apply only to a finite number of them. 
This means that the equations 

(A37) 

are satisfied for a denumerable number of A values 
and for all E with the possible exception of a finite num-
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ber of them. But then, since fl are polynomials, (A37) 
should be satisfied for all A with the exception of a 
finite number. This proves Theorem 4. 

It is very likely that the number of resonance points 
can only be finite, meaning that the second possibility 
in Theorem 4 does not apply for realistic cases, How
ever, we were unable to prove that 

Besides resonance points, the C E can also have 
singular points, In order to define these points, we first 
introduce the Jacobian of the CE which is defined for 
a given A, E, and XI; 

I 
a'fl o. 0 amtl I 

D(A,x,E)= a'fm, .. amfm ' 

where 

I 0 01=_0_ 
o =aE' ox;' i=2", 0, Ill, 

In the case of C E we have 

1 (h12 + '\0 2 VI) 
Xz (1122 - E + ,\a2V2) 

D('\,x,E)=-

(A38) 

(him + ,\omvl ) 

(lz2m + ,\am V2) 

(hmm - E + ,\amVm) 

(A38 /) 

and Similarly for the MC E, Now the following theorem 
can be proven, 

Theorem 5: Let the CE 

[H + '\V(x)]x = Ex (A39) 

for A ='\0 have a solution (Eo,x o), Further let the cor
responding Jacobian be different from zero: 

D('\o, Eo,xo) * 0 0 (A40) 

Then there is E('\) and x('\) such that~ 

L E(A) as well as each component of x(,\) are analy
tic functions in the whole complex ,\ plane, with possible 
exceptions of, at most, a finite number of points, 

2, [E(A),x(A)] is a solution of a CE (A39) and for 
,\= AO it concides with (Eo,xoL 

This solution [E(,\),x(,\)] we shall call a normal solu
tion, If [E(A),x(,\)] is defined in the point ,\=0 we shall 
call it regular, Also, eigenvalue E(A) and eigenfunction 
X(A) we shall call a normal (regular) eigenvalue and a 
normal (regular) eigenfunction, respectively 0 Note that 
by the very definition for each normal solution there is 
at least one point A such that the corresponding Jacobian 
is different from zero. 

Proof: The proof of the above Theorem 5 is based on 
the following Theorem 6, 

Theorem 6: Let g(x ,y) ={g1>'" ,gn} be continuous for 
vector x in a neighborhood of Xo in Rm, and for vector y 
in a neighborhood Yo in Rn, with ;;(xo,Yo) = 0, Suppose g 
is continuously differentiable in y and that the 
determinant 

J= I agi(Xo, Yo) 1*0, 
aYj 
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Then there is a neighborhood N1 (xo) in Rm and a neighbor
hood N2(vo) in Rn such that for every x in HI there is a 
unique y = cp (x) in N2 for which g(x, cp (x) 1 = 0, If g(x, y) 

is k times continuously differentiable in x and y, then 
cp(x) is k times continuously differentiable (k:" 1). 

The above theorem is proven in Ref. 15 for the case 
of real spaces Rm and R n, However, it holds for the 
case of complex spaces as well, which can be proven 
along the same lines, 

Putting x'" A and y '" (E, x) the above theorem can im
mediately be applied to the CE, Since V(x) is analytic 
in some neighborhood of a point x =xo, E(A) and X(A) 
are analytic as well in some neighborhood N(AO) of a 
point iI. = AO where a solution exists, Due to the algebraic 
character of the CE this solution Shall be algebraic as 
well, and we can make an analytic continuation of the 
function E(iI.) and x(iI.) in the whole iI. plane, Since these 
functions are algebraic in a small neighborhood N(AO), 
they are algebraic in the whole A plane as well, We 
have only to show that [E(iI.),X(A)] is a solution of CEo 
In N("o) the solution [E(A),x(A)l satisfies 

fi[A,E(A),X(iI.)] =0, (A42) 

Since E (iI.) and x (iI.) are analytic in iI., and since fl is 
analytic in A, E, and x, it is analytic in A as welL On 
the other hand, fi is identically zero in N(il.o) and, being 
analytic in iI., should therefore be identically zero for 
all A, This proves that [E(A),X(A)] satisfies CE for each 
iI. where it is defined. However, E (iI.) and x (iI.) are alge
braic functions of il.j hence they are defined for each A 
with a possible exception of a finite number of poles 
and branch points, 

It is interesting to see the meaning of the require
ment (A40) in the above theorem, For that purpose, we 
use the following geometric interpretations: 

Each equationf,(il.o,E,x) =0 for a given A=AO repre
sents a finite number of hypersurfaces in the m-dimen
sional space xm spanned by E and x 2"., ,xm • The vector 
"Vfl (il.o, E, x) = {() If I , 02fl' ••• , Omfl} is orthogonal to the 
hypersurface in the point (E,x), The Jacobian (A38) 
consists of vectors "Vf" "Vf2' •• , , "Vfm and hence the van
ishing of this quantity implies a linear dependence of 
these vectors, D oF 0 thus means that "Vfl to "Vf m are not 
linearly dependent. If the point (Eo, xo) satisfies 
f,(AO,EO,x o) =0 it should lie on a common intersection 
of all hypersurfaces fl = O. Moreover, if the correspond
ing "Vf; are linearly independent, the vectors ortho
gonal to fl = 0 are linearly independent. Hence there is 
some neighborhood of point (Eo,xo) in xm where there 
is no other common intersection of hypersurfaces fl 
=0. Thus the nonvanishing of the Jacobian [Eq. (A40)] 
implies that the solution (Eo,xo) should be isolated in 
the space xm, 

Definition 3: Let (Eo, x o) be a solution of the C E in 
the point iI. = il.o. Further, in each neighborhood of 
(Eo, xo) let (Eo, xu) oF (Eo, x o) exist such that it is a solu
tion of the CE for iI.="o as well, We say that (Eo,xo) is 
a continuously degenerate solution of the CE in the point 
iI.= il.o. 

According to the definition, a continuously degenerate 
solution is not isolated. Also, Eq, (A36) implies that a 
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resonance solution cannot be isolated. Hence, and in 
connection with the above concluSion, we did prove the 
following Lemmas. 

Lemma 8: If (Ed,X d ) is a continuously degenerate solu
tion of the CE for iI.=~, the corresponding Jacobian 
D(il.d, Ed, Xd ) is equal to zero, 

Lemma 9: If (Er,xr ) is a resonance solution of the CE 
in a resonance point iI. = An the corresponding Jacobian 
D[An E(Ar),x(il.r )] is equal to zero, 

Lemma 10: If A=Ab is a branch point of a normal 
solution [E (iI.), x (A)], the corresponding Jacobian 
D(iI.", E(Ab),x(Ab)l is equal to zero, 

Namely if D(Ab) oF 0, by Theorem 5 the solution 
[E(A), x (iI.)] should be analytic in the pOint A = Ab which 
contradicts the assumption that this is a branch point. 

The inverse is not true: Vanishing of the Jacobian 
does not necessarily mean that the point iI. = iI. ' is either 
a branch point, a resonance point, or a point of conti
nuous degeneracy, The above geometrical interpreta
tion implies that if D(il.o) = 0 the solution (Eo, xo) should 
be unstable, Namely, if "Vfi are linearly dependent, 
the point (Eo,xo) is the common intersection of allfl=O 
to at least first order. Hence there are some vectors 
(E,x) in a space xm which differ to the first order from 
(Eo,xo), but also satisfy the CE to at least second order. 
Note that by the very definition, continuously degenerate 
solutions, solutions in a branch point, and resonance 
solutions are unstable as welL 

Theorem 5 now provides a basis for the definition 
and classification of different types of Singular points, 
Intuitively, each point where the normal solution 
[E(A),X(iI.)] is not analytic, or is unstable due to any 
reason, we consider as singular. Thus singular points 
are Singular points of a given normal solution 
[E(iI.),X(A)], and each normal solution can have a dif
ferent set of singular pOints. On the other hand, reso
nance points are characteristic of the CE as a whole, 
We can have the following singular points: 

L Point A:=oil.,. where solution [E(A),X(A)] is not de
fined. Since [E(iI.),x(iI.)] is algebraic in iI., such a point 
is a pole, As we approach A = il.p at least one component 
of a vector x(iI.) tends to infinity, Hence 

. (x (iI.) I <p) 
~~~ [(X(A) IX(A» ]1/2 = O. (A43) 

This means that x(iI.) is more and more orthogonal to <P, 
No vector orthogonal to <P can be a solution to CEo 

2, Point A = Ab which is a branch point of the solution 
[E(A),X(iI.)], Obviously, if Ab is a branch point, D(il.b ) 

should be equal to zero, If it were not, there would ex
ist, according to Theorem 6, a unique analytic conti
nuation of the solution [E(il.b),x(il.b)] in some neighbor
hood of this point, which is contrary to the definition 
of a branch point. We call such a singularity a branch 
singularity, 

3. Point iI.=Ad where the normal solution [E(iI.),X(A)] 
is continuously degenerate. According to Lemma 8, 
Jacobian D(A) vanishes in this pOint. We say that A = Ad 
is a point of accidental degeneracy. 
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40 Point A=Ah where the normal solution [E(A),x(A») 
is defined, the corresponding Jacobian is zero but the 
vanishing of the Jacobian is not due to any of the former 
reasons (branch point or accidental degeneracy). Such 
a point we call a point of a hidden Singularity. As shown 
above, the solution [E(A),x(A)] is unstable in this poinL 

In short, 11..=11.0 is a singular point of a normal solution 
[E(A),x(A)1 if either [E(A),x(A)1 is not defined in this 
point (pole) or, provided [E(A),x(A)] is defined in 11.= 11.0 , 

the corresponding Jacobian vanishes (branch point, ac
cidental degeneracy, and hidden singularity), Due to 
the algebraic character of the solution [E(A),x(A») and 
Jacobian D(A), there can be only a finite number of 
Singular pOints, If it were not so, D(A) would be iden
tically zero, contrary to the assumption that [E (A), x(A) 1 
is a normal solution. 

The above definition of Singular pOints applies only 
to the normal solution [E(A), x(A»), L e., such that there 
exist A = A' with the property D(A')"* 0, However, we 
have no guarantee that in any point, including 11..=0, 
there exists a solution with nonvanishing Jacobian, In 
order to overcome this limitation, instead of the CE 
(A23) we observe MCE (A23'). We chose a real Hermi
tian operator A in such a way that no eigenfunction of 
the equation 

Ax =ax (A44) 

is orthogonal to <P, and that all corresponding Jacobians 
are different from zero. In other words, A satisfies 

(x I <p) "* 0, 

Ax = ax - D (E, x) = - *0, 

(A45) 
and 

Obviously such an operator always exists which can be 
demonstrated by construction, We now prove Lemma 
11, 

Le In rna 11: There exists EO * 0 suc h that if I E I "" EO and 
E * 0 no eigenfunction of the equation 

(H+EA)x =Ex (A46) 

is orthogonal to <P, and all corresponding Jacobians are 
different from zero. 

Proof: If E is big enough Eq, (A46) is close enough to 
Eq, (A44) and since A and H are bounded operators, 
each solution of Eq, (A46) is close enough to some 
solution of Eq, (A44), and vice versa, Hence for big 
enough E, no solution of (A46) is orthogonal to <P and all 
corresponding Jacobians are different from zero. How
ever Eq, (A46) has the structure of a CE and, by Theo
rem 5, all those solutions are analytic in E, with the 
possible exception of a finite number of E points. It fol
lows that overlaps (X(E) I <p) are analytic in E, and hence 
can become zero only in a finite number of points. The 
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same holds true for the corresponding Jacobians. Hence 
there is a small circle in the complex E plane around a 
pOint E = 0 where no solution of Eq, (A46) is orthogonal 
to <P and where all the corresponding Jacobians are dif
ferent from zero, with the possible exception of the 
point E = 0, This proves Lemma 11, 

We will consider the condition E "* 0 and I E I '" EO as a 
part of a definition of MC E, Also, without loss of gen
erality, E can be assumed reaL With that in mind, and 
in combination with Theorem 5, the above Lemma 
proves the following Theorem 70 

Tlzeoyem 7; The modified characteristic equation has 
rn regular solutions, L e" the same number as the 
corresponding CI, This means that in each point A = A' 

an MCE has III solutions which are analytically con
nected with m solutions of the CI equations (point 11..= 0), 
unless A = A' happens to either be a pole or a branch 
point of some regular solution. 

We can now state something about the reality of the 
solutions [E(A),x(A)J, 

Lemma 12; Let the Hamiltonian H be real and let 
[E(A),x(A)1 be a regular solution of the CEo Assume 
furthermore that [E(A), x(A)] has no branch point on the 
real axis between the real pOints 11..=0 and 11..=11..0, Pro
vided 11..0 is not a pole, the solution [E(Ao),x(Ao») exists 
and it is real. 

Proof: Since [E(A),x(A)] is regular, it is defined in 
11..=0. Since H is real, [E(O),x(O)J will be real. We can 
now reach 11..=11..0 starting from 11..=0 along some path P 
in the complex A plane, P can always be chosen such 
that it avoids all possible singular pOints, and that the 
area enclosed by P and the real axis does not contain 
branch points [see Fig, 4], Along P, we have the solu
tion [E(A),x(A)] which smoothly changes from [E(O),x(O)] 
to [E(Ao),x(Ao)], Now we can reach 11.0 as well along path 
p* which is a complex conjugate of P, From Lemma 6, 
and because there are no branch pOints between P and 
the real axis, there is no branch point between p* and 
the real axis eithero Therefore, there is no branch point 
in the whole area enclosed by P and P*. Hence the an
alytic continuation of [E(O), x(O) J along either path will 
yield the same solutions in the point 11..0, However, from 
Lemma 6 and the reality of [E(O),x(O)], it follows that 

[E(A), x(A)] = [E* (A *), x* (A *)] 

and hence, for 11..= 11..0 = 11..6, 

[E(Ao), x(Ao)] = [E* (11..0), x* (11..0») 

expressing the reality of the solution, 

(A47) 

p 

p. 

FIG. 4, Paths P and p* in 
the complex A plane con
necting a configuration-inter
action solution (Ac 0) with that 
in point A= 11.0 on the real axis. 
Solution [E(AO), x(AolJ is real 
provided there is no branch
point on the real axis between 
o and AO' 
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Note in the above proof that the condition that there 
is no branch point between A = 0 and A = AO on the real 
axis is essential since, if such a point would exist, the 
analytic continuations along P and p* would give two 
different solutions-say, [£1(Ao), X1(Ao)] and [£2(Ao), X2 (Ao)]' 

All we could then infer is that £j(AO)= E!(Ao) and X1(AO) 
=X!(AO)' However, the absence of poles between 0 and 
AD is not essentiaL 
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This paper concerns the representation of linear operators of L 2 spaces by means of "generalized 
matrices" as it is usual, following Dirac, in quantum mechanics and in electronics. The known possibility 
of representing (on a nuclear test-function space) the bounded operators by means of distribution kernels is 
shown to extend to all the closable operators whose domain contains the test-function space (hence to all 
the Hermitian operators whose domain contains the Schwartz space D of the infinitely differentiable 
functions with compact support). The representation of the adjoint operator is considered, and the 
possibility of representing the product of operators by means of a suitably defined "Volterra convolution" 
is studied. In particular it is shown that. -algebras of unbounded operators (which are, for instance, 
generated by the canonical coordinates and momenta and the total energy of most quantum mechanical 
systems of n particles) may be represented isomorphically by means of distribution kernels, so that the 
Dirac's rules on "generalized matrices" apply in the sense of distributions without further assumptions. 

1. INTRODUCTION 

In recent years some remarkable papers1 have ap
peared concerning the problem of giving a precise 
mathematical meaning to the "Dirac formalism. ,,2 The 
present note is intended as a contribution which is in
dependent from using or not using rigged or equipped 
Hilbert spaces and concerns the particular problem3 of 
representing any (linear) operator A of an L2 space by 
means of a "generalized matrix" KA, according to the 
formula 

(Aj)(t) = J KA(t, 7)j(7) d7 , (1) 

as it is usual in quantum physics and in electronics. 

In his classical book4 Dirac summarizes as follows 
the results that hold for ordinary matrices5

: 

(i) any linear operator is represented by a matrix, 

(ii) the unit operator is represented by the unit 
matrix, 

(iii) a real linear operator is represented by a 
Hermitian matrix, 

(v) the matrix representing the product of two linear 
operators is the product of the matrices representing 
the two factors. 

Then he states: "We arrange our definitions concern
ing these generalized matrices so that rules (i)-(v), 
which we had above for the discrete case, hold also for 
the continuous case." 

It is known that it is not possible to represent every 
linear operator A of an L 2(n) space (n being an open set 
of Rn) by means of a kernel KA which is a function on 
the square n x n. However the situation becomes more 

alThis work has been performed in part within the Gruppo 
Nazionale per la Fisica Matematica del C. N. R. 

favorable if the kernel KA is allowed to be a "distribu
tion kernel," that is a distribution on the square n x n 
[an element of f) '(n x n)]. For instance, the identity 
operator I is represented by a Dirac 6, in accord with 
Dirac's statement (ii), the derivation operators by de
rivatives of the 6, and so on. Of course, it must be 
pointed out that such representations hold in general 
only for functions which belong to the space of the test 
functions 6 and the integral of the formula (1) has to be 
thought of in the sense of distributions. 

The mathematical tool which seems to be the most 
suitable for this problem is the "kernels theorem" of 
distribution theory and it is indeed remarkable that 
Schwartz, presenting this highly nontrivial result at 
the International Congress of Mathematicians of 1950 
at Cambridge, 7 has motivated his work by referring to 
the Dirac representation of linear operators. It is ac
tually an immediate consequence of this theorem that 
any bounded linear operator of L 2(n) may be represented 
in the form (1) by means of a distribution kernel. 

The main result of the present note (Theorem 1 be
low) is that such a representation is also possible for 
any closable linear operator of L 2(n) whose domain con
tains f) (n) (the space of the infinitely differentiable func
tions with compact support). So the representation holds 
in particular for any Hermitian operator whose domain 
contains f) (a). The result is an easy consequence of 
another profound proposition, i. e., the closed graph 
theorem for linear mappings from a barrelled space 
into a Frechet space, the barrelled space being here 
f)(n). 

So Theorem 1, as well as the remaining statements 
of this paper, remains valid when everywhere replacing 
the Schwartz space f) (n) with the Schwartz space S(R") 
of the rapidly decreasing infinitely differentiable 
functions. 

Theorem 1 may be considered as characterizing a 

1023 J. Math. Phys. 19(5), May 1978 0022·2488/78/1905·1023$1.00 © 1978 American Institute of Physics 1023 



                                                                                                                                    

range where the above statement (i) of Dirac holds, 
when interpreting his" generalized matrices" as dis
tribution kernels and it is perhaps difficult to find in 
the physical or electronical applications any particular 
linear operator which does not satisfy the conditions 
that are required by Theorem 1, provided Q be suitably 
restricted (see the example below). 

The consideration of statements (iii) and (v) of Dirac 
leads to Proposition 1 and Theorem 2 below. The case 
of Hermitian conjugation is trivial: Whenever both A 
and A* allow the" generalized" representation (1), the 
corresponding distribution kernels KA and KA* are 
Hermitian conjugates of each other, 

Concerning the product AE of two linear operators A 
and E, such that A, E, and AE allow the "generalized" 
representation (1), it is shown here that whenever E 
maps a dense vector subspace V ofD(~1) intoD(Q) [case 
(a) of Theorem 2], then the distribution kernel KAB is 
given by an easily defined8 "Volterra convolution" 
KA c KB of the kernels KA and KB, which may well be 
symbolically written 

(2) 

corresponding to the product of "generalized matrices" 
considered by Dirac. {In more general cases the defi
nition of an appropriate" Volterra convolution" of dis
tribution kernels is more complex. Here one such case 
is also treated [case (b) of Theorem 2]: The above con
sidered subspace V of D (Q) is only required to be dense 
in L2(Q), provided the domain of (AEI[!(ll»)* contains 
D(Q).} 

In the last statement (Theorem 3 below) the previous 
theorems are applied to the particularly favorable case 
of the >I< -algebra C Ii (I) of the linear operators that map 

D(Q) intoD(~l) and have an adjoint which mapsD(Q) into 
D (Q). Then all the requirements considered above are 
satisfied and the representation of the operators by 
means of distribution kernels provides an isomorphism 
of *-algebras (the product of the distribution kernels 
consisting in the Volterra convolution); that is Dirac's 
rules quoted above apply in the sense of distributions 
without further assumptions. 

Using an easy proposition of Roberts 9 this last situa
tion is seen to occur for instance for the * -algebra 
generated by the operators P j, Q;, and H that describe 
the canonical coordinates and momenta and the total 
energy in the wave mechanical description of a system 
of 11 particles with a potential energy W which is Coo on 
some open set whose complement has zero Lebesgue 
measure, provided this set is chosen as1D Q. So, in this 
example, all Dirac's rules considered above apply to 
the representation of the operators onD (\1). 

Of course, in this example, the representation of 
many of the operators holds not only on the subspace 
D(Q) but even on some larger subspace of L 2(R"), such 
as D (R") or S(R"): According to Theorem 1, this situation 
occurs for the operators whose domain contains such a 
larger subspace. When furthermore the product of two 
such operators is also defined on such a subspace, then 
even the rule concerning the representation of the pro-
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duct may be applied to the larger subspace, at least 
when the requirements of Theorem 2 are satisfied, for 
instance when also the adjoint of the product is defined 
on the larger subspace. 

Starting from a one-dimensional one-particle parti
cularization of the preceding example, Appendix A il
lustrates the various situations considered throughout 
the paper. Appendix B refers to some domain questions 
which arise when describing operators by means of 
distribution kernels. 

2. CONTINUITY PROPERTIES OF CLOSABLE 
LINEAR OPERATORS OF THE HILBERT SPACE 

We will use the following proposition, which is a con
sequence of the closed graph theorem. 

Lemma 1: Let A be any closable densely defined lin
ear operator of a Hilbert space. Let D be a dense vec
tor subspace of the domain D A of A and let a topology 
T be given on D which is finer than the topology induced 
by H and makes D a barrelled space, 11 and let us call 
D T the space D endowed with the topology T. 

Then: 

(i) the restriction A I D of A to D is a continuous map
ping from DT into12 H; 

(ii) the transposed mapping13 (A ID ) T t of this mapping 
A ID' when identifying H' with H and embedding it cano
nically into (D T )', is a continuous mapping from H into 
(DT)' (endowed with the weak or the strong topology), 
which extends A*. 

We note that, due to the fact that A c. A >I< >1<, statement 
(ii) is particularly interesting when both D A and D A* in
clude D: Then (A* ID ) 7 t: H - (DT)' extends continuously 
A : D A _ (D T) J • 

P1'Oof: Since A is assumed to be a closable linear 
operator of H, then A ID also has these properties. 
Hence its graph is closed in the product space DXH 
and a fortirJYi it is closed in the product space DT xH. 
This means that A ID is a closed linear mapping from 
DT into H. Then, as a consequence of the assumption 
on Dr, the closed graph theorem for linear operators 
from a barrelled space into a Frechet space14 may be 
applied and it follows that A ID is a continuous linear 
mapping from D T into H. So statement (i) is proved. 
Concerning statement (ii), the continuity of the map
ping A ID from D T into H is known to imply the conti
nuity (for both the weak and the strong topologies)15 of 
its transposed (A ID ) T t from H into (D T)" which ob
viously extends A*. 

3. REPRESENTATION OF LINEAR OPERATORS OF 
L 2 BY MEANS OF DISTRIBUTION KERNELS 

The purpose of the next two definitions is to give a 
precise meaning to the statement that an operator A on 
L2(Q) is represented by a distribution kernel. 

Defillition 1: Let n be an open set of R". A distribu
tion K E" D '(\1 x Q) on the open set Q x Q of R" is usually 
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called a distribution kernel on n and it is written 

K :D(n x n) - C : cp - (Kt ,T' cpU, '». 
The Hermitian conjugate K* of K is defined by Kt,T 

=KT t (where the bar means the complex conjugation); 
K is 'Hermitian if K t 1 =J[, t. , , 

Moreover, for any test function cp ED (n), the distribu
tion (K., TO cp( .» E L)' (n) is defined by 

(K. ,To cp(.» :D(n) - C: I/! - (Kt;r, cp(')I/!(t». 

In this manner K determines the continuous linear 
mapping fromD (n) into 0 '(n) defined by 

cp - (K.,1, cp(.» (3) 

and the linear operator AK in the Hilbert space L 2(U), 
defined on the vector subspace D AK ={ cp EL) (n) 1 

(K. 1, cp(7) E L2(n)} by (3) [here, of course, L2(U) is 
embedded intoD '(n) by identifying eachfE L2(U) to the 
mapping16 

cp - <t, cp) = vi cp) = JJ(t)cp(t) dt 1 . 

We note that for any cp E DAK the equalities 

AK cp = (K. ,1' cp(.» 

and 

(4) 

(5) 

(6) 

are equivalent as a consequence of (4); actually (5) 
states the equality of the distributions and (6) states the 
equality of their values. 

This last remark justifies the equivalence of the two 
conditions in the next definition. 

Definition 2: We say that any linear operator A in 
L2(n) is represented [onO(n)] by the distribution kernel 
KA ED'(uxU) if the domain of A containsD(U) and for 
any cp ED(U) 

Acp =<K~,1' cp(T», 

that is, 

(Acp}(t)=<Kt~1,CP(T» a.e. onU 

or equivalently 

'dl/! dJ (n), (Acp I I/!) = (K1,T' cp(T)~(t». 

Any distribution kernel KA representing some linear 
operator A, is uniquely determined by the operator A. 
In fact, if Kt also represents A, then for any cp ED (n), 
«KA _ Ktl.,T' cp(.) = 0, hence KA =Kt. 

The next statement follows immediately. 

Proposition 1: Let A be any linear operator of L2(n), 
If A and A * are represented by the distribution kernels 
KA and KA * respectively, then KA and KA* are Hermitian 
conjugates of each other, i. e., KA* = (KA)*. 

We can now formulate the main statement. 

Theorem 1: Let A be any closable linear operator of 
L 2(n) whose domain contains D (U). Then A is repre
sented by a distribution kernel KA EL) '(U x n), 

Proof: f) (n) is known to be a barrelled space. Then 
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Lemma 1 applies [with H = L2(n) and D =0 (U)] to the 
linear operator A: It follows that A 10(0) is continuous 
fromf)(U) intoD'(U). Now we can apply the Schwartz 
kernels theorem, 17 According to this theorem the cano
nical homomorphism off)'(ItXn) into L(j)(n),D'(Q) [the 
space of all continuous linear mappings fromD (Q) into 
o '(U)] which to any KED '(Ux U) assigns the mapping 

introduced after definition 1, is an isomorphism. That 
is, for any continuous linear mapping B:[) (U) -[) '(n) : 
cp - Bcp there exists one distribution kernel K E[) '(a x n) 
such that for any cpE[)(U), Bcp =(K. ,1' <1'(.». We apply 
this last statement to B=A 10 (0)' Then according to de
finition 2, operator A is represented by a distribution 
kernel KA and the theorem is proved. 

It is important to note that this theorem, as well as 
all the statements of Secs. 3 and 4, hold unchanged, 
when one replaces everywhere the Schwartz space 
[) (n) with any other nuclear barrelled subspace of L2(n) 
satisfying the Schwartz kernels theorem, and in par
ticular, if U =R", the Schwartz space S(R") of the rapid
ly decreasing infinitely differentiable functions on R". 

Corollary 1: Any symmetric operator A of L2(a) 
whose domain contains f) (U) is represented by a Hermi
tian distribution kernel KA = (KA)*. 

In fact ACA** andf)(U)CDA implyf)(U)CDA *: Soac
cording to Theorem 1 both A and A* are represented by 
distribution kernels, which coincide because A 1 j) (n) 

=A * If! (0) implies KA =KA *. It follows from Proposition 
1 that KA = (KA)*, that is, KA is Hermitian. 

4. ON THE REPRESENTATION OF THE PRODUCT 
OF OPERATORS IN L 2 

This section concerns the representation of the pro
duct AB of two linear operators A and B of L 2(a) where 
A, B, and AB satisfy the conditions of Theorem 1, and 
consequently are closable operators whose domains 
contain[) (U) 0 

The mutually corresponding conditions (a) of defini
tion 3 and Theorem 2 refer to the simpler situation in 
which the vector subspace V =[) (n) n B-1j) (n) of [) (U), 
that B maps into [) (U), is dense in[) (U), whereas the 
mutually corresponding conditions (b) refer to a more 
complex situation in which V is only required to be 
dense in L2(n) (examples are given in Appendix A). 

The remark after Theorem 1, concerning the validity 
of all the statements when [) (a) is replaced by S(R"), 
holds again. 

Definition 3: Let H, K be two distribution kernels be
longing toD '(UXU). Then we define their "Volterra 
convolution" H oK ED '(U x U) by starting from the 
formula 

(7) 

whose right-hand side, P(cp), has a meaning on the vec
tor subspace 

V ={ cp E[) (U) I (K.,s, cp(s» ED (n)} 

of[)(U), in the following two (partially overlapping) 
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situations: 

(a) V =f) (n) [more generally V needs only to be dense 
in,D(nll and the above defined mapping P from V into 
D' (n) is continuous when V carries the topology of 
D (n) : then H u K is defined uniquely by formula (7); 

(b) V is dense in L 2(n) and the mapping P is continu
ous when V carries the topology of L2(n) : then H K is 
defined uniquely by extending this continuous mapping 
to a mapping P from D (9) into D '(n) and identifying the 
left-hand side of (7) to P(cp). 

The existence of one distribution kernel satisfying 
(7) follows from the Schwartz kernels theorem, because 
the assumptions allow in any case to extend P to a con
tinuous linear mapping fromD(n) intoLJ'(11). 

Theorem 2: Let A, B two linear operators of L 2(n). 
If A, B, AB are represented respectively by the distribu
tion kernels KA, KB, KAB , then we have for any cp (= V 
=/)(n) r, B-1D(n) , 

(K~~s, cp(s» =<K~,T' (K~,s, cp(s»). (8) 

Moreover, with reference to definition 3, KAB =KA _KB 
if at least one of the following conditions is satisfied: 

(a) v=D(n) [more generally V is dense inD(n)i 

(b) V is dense in L 2(n) and the domain of (ABI/)(o»* 
contains D (n). 

Proof: The first statement of the theorem comes out 
from repeated application of definition 2: In fact, for 
any cp ~ V 

(K~~S) cp(s» =ABcp =(K~,T' (Bcp)(T» 

= <K~ T, (K~ so cp(s»). , , 

Let us prove the remaining statements. According to 
definition 3 we have to consider the mapping 

P=ABlv: V- D'(n):cp 

- (K~,T' (~,S> cp(s») :=ABcp. 

In case (a) the assumption that AB is represented by a 
distribution kernel KAB implies the mapping P to be 
continuous when V carries the topology induced by 
D (11). Hence condition (a) of definition 3 is satisfied. 

In case (b), the assumption that the domain of 
(AB If) (Q »* contains D (~1) implies, according to the re
mark following Lemma 1, the linear operator ABlD(Q) 

to be continuous fromD (n), endowed with the topology 
of L 2(n), intoD '(n), so that the mapping P is continu
ous when V carries the topology of L2(nl. Hence condi
tion (b) of definition 3 is satisfied. 

So, in both cases (a) and (b), definition 3 character
izes through continuous extension the Volterra convolu
tion K A c KB. By comparing formula (7) of definition 3 
with the first statement of this theorem, we obtain 

'fI cp c V, «(KA eKB).,,, cp(.~» "-(K~,E" cp(s». 

Taking into account, in both cases (a) and (b), the den
sity properties that have been assumed for V, together 
with the continuity properties of the right- hand side that 
have been remarked upon, this identity extends 
tou(n), so that KA oKB=KAB. So the theorem is proved. 
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The next proposition concerns a Situation, which oc
curs frequently in the applications, where all the re
quirements of Theorems 1 and 2 and Proposition 1 are 
satisfied. 

TIz('o),(,J11 3: Let CD (Q) be the *-algebra which consists 
of the linear operators of L 2(n) with domainD(n) that 
map /) (n) into U (\1) and whose adjoints map D (11) into 

LJ (11) [the * -operation transforming any operator into 
the restriction toD(~1) of its adjointJ. 1

B 

Let/\Jj (Q) be the *-algebra which consists of the dis
tribution kernels K fC D.' (~1 x 11) such that for any cp ICC D (n) 
(K.,T' cp(T»'· /)(12) and (K!,T> cp(T» cLJ(n), the product 
consisting in the Volterra convolution [as defined in 
Definition 3(a) I. 

Then the mapping 

j : C f) (Q) -1< IJ (Q) : A - KA 

(where KA is defined by Theorem 1) is an isomorphism 
of *-algebras. 

Pmo!': Every element of Co) (0) is represented by a 
distribution kernel, because it satisfies the require
ments of Theorem 1; such a distribution kernel belongs 
to J< If (Q), as it follows from Proposition 1, taking into 
account the definitions of CD (0) and J<[J (Q) : so A _ KA 
maps CfJ(o) intoJ<,J(Q). Conversely, according to the 
remark following definit\on 1, any element of Kf) W) de
~cnbes an operator of L (IG) which belongs to Cf) (Q) as 
It follows, from Proposition 1 and the definitions of 
CfJ (51) andJ<D (0). Hence the mappingj is bijective. At 
last using Proposition 1 and Theorem 2, it is imme
diately verified that the mapping j is a homomorphism. 
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APPENDIX A: SOME ILLUSTRATING EXAMPLES 

As a particularization of the situation considered by 
Roberts and quoted at the end of the Introduction let us 
consider a one-dimensional one-particle system, whose 
potential energy W is given by the Heaviside step func
tion Il(t) [u(t) = ° for 1 < 0 and 11(1) = 1 for t :> 0, t being 
the "paC(' variable]. Then all the operators of the *
algebra generated by Q (the multiplication by the vari
ab1e I), P = - itiD = - in(d/dt) and W, may be represented 
anD (IG), with 11 =R\ {Or and the Dirac rules hold for 
them. 

Such a *-algebra is actually a *-subalgebra of the 
*-algebra C [) (51) considered in Theorem 3. 

As an illustration of the last remark in the Introduction 
we observe that in this example many operators, like 
Q, D, and W, are represented also on the wider space 
5(Rn ). For instance the distribution kernels of D and W 
are Kf,T := 6'(1 - T) and K~,T = u(t) 6(1 - T) [where u(t)6(t - T) 
is defined by (u(t)6(t - T), cpU, T» =(11(1), (6(w), cp(t, t - w») J. 

Furthermore the operator WD is defined on 5(R) and 
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it is represented on S(R) by the Volterra composition 
product, K W 

0 K?, as defined according to case (a) of de
finition 3 and Theorem 2: An easy calculation, based on 
formula (8) of Theorem 2 leads to Kfz;.=(~ oIfJ)t T 

=ll(t)o'(t_T) [to be defined by analog). with ll(t)O(t'_T)). 

On the contrary, the domain of the operator DW 
doesn't contain S(R): Of course DW is represented on 
D(a) by ~~ =(lfJ °Kw)t T =u(t)o'(t- T) (in fact DWlo (0) 

=WDIf) (0): ' 

Finally the product QW provides an example where 
condition (b) but not condition (a) of definition 3 and 
Theorem 2 is satisfied. In fact QW, Q, and Ware rep
resented on S(R), according to Theorem 1, by the dis
tribution kernels K'7 T = loU - T), K: s =u(T)O(T - s), and 
K7~ = t/l(t)o(t - s), r~spectively. H~wever the vector 
sp~ce V where the right- hand side of formula (7) of 
definition 3 has a meaning is V={CPES(R)IVnEN,cp'n)(o) 
= O} which is dense in L 2(a) but not in S(R), so that de
finition 3(a) cannot be applied. On the other hand, QW 
is Hermitian on S(R), hence QWc (QW)* C (QW IS (R))*, 
so that the domain of (QWls(R»)* contains S(R): SO con
dition (b) of Theorem 2 is satisfied and we may still 
write, according to part (b) of definition 3, ~w =~ 01('1'. 
Here, of course, the explicit calculation of ~ 01('1', 
using formula (7) of definition 3 also requires some con
tinuity considerations. 

APPENDIX B: RECOVERING THE OPERATORS FROM 
THE REPRESENTATION 

As the representation (1) holds only on the test func
tion space, the distribution kernel KA does not in gen
eral characterize the operator A. However in impor
tant cases some "auxiliary" information enables us to 
recover in a trivial way a linear operator A of an 
Hilbert space H from its restriction Alv to a dense vec
tor subspace D. Apart from the case of bounded A, situ
ations of this kind occur, when A is known to be the 
closure of A Iv or to be essentially self-adjoint on D. 
Perhaps the most usual case occurs when A is known 
to be Hermitian and moreover its domain DAis given 
(as it happens in many applications, where the" right" 
domain is chosen according to phYSical requirements). 
ThenA=A*l vA =Alv * IVA' 

More generally any closable operator A of a Hilbert 
space H may trivially be recovered from its restriction 
A Iv to a dense vector subspace D whenever its domain 
DA and also some vector subspace D* of the domain 
DA* of its adjoint A* are given, 

A=A**lvA =A*lv* *IVA =Alv *Iv* *lvA • 

This situation occurs frequently when both DA and 
DA* include the same D. If furthermore a topology T on 
D is given so as to satisfy the requirements of Lemma 
1, then, according to the remark following the lemma, 
A (and analogously A *) may also be recovered through 
continuous extension of Al v , considered as an operator 
from H into (D 7 )'. 

So, with reference to Theorem 1, whenever both DA 
and DA* includeD(~1), the distribution kernel KA cha
racterizes the operator A, provided also its domain DA 
is given, and A may be recovered, either through two 
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iterated restrictions to D (n) and adjunctions, or through 
continuous extension of A 10 (0), considered as an oper
ator from H intoD 'en). Moreover in such a case both 
A and A* satisfy the requirements of Theorem 1 and 
A * is represented by (KA)* c 

lSee Marlow, J. Math. Phys. 6, 919 (1965); J.E. Roberts, 
J. Math. Phys. 6, 1097 (1966); J.P. Antoine, J. Math. 
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Entropy of an n-system from its correlation with a k
reservoir 
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Let a random pure state vector be chosen in nk -dimensional Hilbert space, and consider an n
dimensional subsystem's density matrix P. P will usually be close to the totally unpolarized mixed state if 
k is large. Specifically, the rms deviation of a probability from the mean value II n is [(\ ~ II n ')/( kn 
+ 1)] 1/2. "Random" refers to unitarily invariant Haar measure. 

1. MOTIVATION 

With Lucretius, I I find disorder in an initial state of 
the universe repugnant. Furthermore, a pure state 
remains pure. Entropy is somehow to be developed 
without fundamental entropy, 

Indeed, my favorite key to understanding quantum 
mechanics is that a subsystem cannot be isolated by 
tracing from an enveloping pure state without gen
erating impurity2: The probabilities associated with 
measurement develop because the observer must im
plicitly trace himself away from the observed system. 
So I even agree with Lucretius in tying a notion of 
ordered initial state together with a notion of quantum
mechanical indeterminacy. I feel that he was very 
smart to have understood this connection without density 
matrices. 

With this wild beginning, I hope to have convinced 
the reader that whereas there may be nothing practical 
about the subsequent calculation, I find it meaningful 
in a happily nebulous, philosophic sense. 

2. THE n, k ENTROPY PROBLEM 

Let a "system of interest" have an n-complex-di
mensional state space, within a larger nTc-complex
dimensional tensor-product context; the" reservoir" to 
be ignored is "-dimensional. Let the over-all nh-state 
be pure, a vector Ix), and trace out the l?-space labels 
from the projection operator IX)(, i to get the n-space 
density matrix P which is appropriate for neglecting 
!?-space effects. If Ix) is chosen "at random," what 
distribution of probability n-tuples (PI,' .. ,Pn), the 
eigenvalues of P, follows? The problem becomes com
pletely defined by interpreting "random" nl,>-state as a 
weighting of nl<- state unit vectors by a measure invari
ant under Unk , the n/( by nl.; unitary transformations. By 
considering the unit complex Ilk-sphere as a homoge
neous space of Unk , then again as Unk itself but organ
ized into cosets, the measure is seen to be Haar mea
sure on Unk, thus unique. 

If an orthonormal basis is chosen, and the 2n" real 
and imaginary parts of the components are taken as 
2nh real Cartesian coordinates in 2nk-real-dimension
al Euclidean space, then the unit vectors Ix) form the 
origin-centered real unit sphere, S2nk.I' Since the usual 
geometric hyperarea of this sphere is invariant under 
all 02nk origin-centered real orthogonal transforma-

tions, it is in particular invariant under those which 
happen to represent Unk action. Thus, the unique 
unitary-invariant measure desired coincides with the 
usual geometric hyper-area on the unit sphere S,nk_b 
and that is how I will handle it. 

I have found the distribution of (pj, ... ,Pn) n-tuples 
too hard to present explicitly by quoting a weighting 
over n-tuples of positive numbers; yet I have deter
mined Cl I ' ms = «1/11 )L:7=1 (p; - 1/1d)1 / 2, the rms devia
tion of a typical probability from the over-all mean. 
The answer is 

(J =(~_1/112)1/2 
rms lin + 1 c (1) 

N either have I been able to determine the distribution 
of the entropy 

s= -"'6 i); In/); 

or its mean, precisely; but (1) can be converted into a 
reasonable (S) estimate as follows. From Taylor ex
pansion of each lnPi about Pi = lin, with 

1 q. 
p.=~--.!. 

t 11 11 ' 

one gets the formal expansion 

, 1( 1 f 2 1 (L 3 ) S = lml - ~ '-- L q. + -- L q. + . 0 • 

n 1 0 2 i"1 t 2 0 3 i=1 t , 

convergent if Iqi I: 1, i. e" if 

O"'})i . 2/110 

Since (Jrms is small for large k, most of the measure 
will indeed lie with Pi < 2/11 0 This makes it plausible 
that if 

S=lml- def, 

(2a) 

(2b) 

(2c) 

(3) 

most of the defect or information def is represented by 
(2b)' s leading defect term (l/2n)2;qi = ~112(J2, which with 
(1) gives 

1 112 - 1 
(def)'" "2/;;+1"' (4) 

Thus, the mean entropy Inn - (def) is not much less than 
the maximum entropy, In11, if ,?;:" 11, say. As the re
servoir dimension !? - <Xl, (def) - O. 

Hence neglecting the correlations of a small system 
with a large surround ll1« h, or even only TJ = O(n) 1 
already loses enough information to justify maximizing 
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entropy of the small system, even if there is no 
further device for randomization, at least, if the 
correlations are likely to have become rich enough 
to justify the Unk ergodicity assumption. 

3. THE CALCULATION 

Let the nl? complex components of Ix) be XiA' where 
a lower-case index runs from 1 to n, a capitalized 
index, from 1 to l? Ix)(x I' s matrix elements are 
XiAXjBo The l~-space trace of this is P ij =ZAXiAXjA 
= (Xxt)ij' or P =XXt, in a notation which takes X to 
be an n by k rectangular complex matrix. We wish to 
determine aspects of the set of eigenvalues Pi> ••. ,Pn 
of P. Of course, each Pi ;, 0, and Z7.1 Pi = 1; the latter, 
for example, is equivalent to ZiA I X iA I

2 = 1. If 
n 

p(X) = det(X - P) = Il (x - Pi) 
1.1 

(5) 

the ai are the well-known elementary symmetric func
tions of the Pi> •• 0 ,Pn, 

being the sum of all m-fold products of distinct p's. 
Hence 

and 

a~ = (PI + P2 + ... )2 

= pi + p~ + . 0 0 + 2 (PtP2 + PiP3 + ... ) 

or 

The mean square deviation of the Pi about their mean 
lin is 

a2 = .!. 6 (Pi - .!.)2 = .!. (L p~ - .!. L Pi + n A) 
n n n n n 

= .!.(LP~ - .!.). 
n • n' 

shows that a determination of the distribution of a2 

(7) 

(8) 

alone can decide whether the deviation of a typical Pi 
from lin is small. I will calculate (a2), where ( ) indi
cates expectation value over the orthogonally invari-
ant measure on S2nk_l; the "rms" deviation which corre
sponds to this is anna:; (a2)1/2, not «a2)112); this clarifies 
the meaning of Eq. (1). 

From expansion of the determinant (5), a2 is seen to 
be the sum of the diagonal order- 2 minors of P, 

a2 =L Pr,.Pss-PrsPsr· 
r<s 
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Since a zero r = s term is harmless, 

a2 = 1 L P r,.P ss - P r.P sr = 1 [( L P rT r -L P r.P sr ] 
T,S T T,S 

a2 = 1(1- TrP2
). 

Thus, we wish the expectation value of 

Trp2 = TrXXtXXt = L XiAX!AXjBX[B. 
/jAB 

(9) 

If a contraction on an n-fold index is represented by a 
dash, on a k-fold index by a double dash, then we wish 
to mean the loop 

X=X* 

I I 
X*=X. 

Let 

XiA =UiA + I=lViA 

introduce real-component notation. The single com
plex loop (10) gives rise to 16 real-component loop 
terms, eight of which bear the 1- 1 factor and of 
course cancel, leaving 

(10) 

U=U u=u u=v u=v v=u v=u v=v v=v 

1 1+1 1+1 I-I I-I 1+1 1+1 1+1 1 
u=u v=v u=v v=u u=v v=u u=u V=V 

1 2 3 4 5 6 7 8 

Term 2 =term 7, term 3 =term 6. In the mean, the 
symbols u and v can be interchanged, each being nk of 
the 2nl? real variables which sum-square to 1; this 
shows that, in the mean, term 1 = term 8, term 4 
= term 5. Hence, 

(11) 

Each term is the mean over the unit sphere of a sum 
of products of four Cartesian coordinates, hence a 
sum of means (xIXJXKXL), where now I,J,K,L are 
each 2nk-valued. Equal contributions from one 
coordinate's positive and negative ranges cause can
cellation, if any I, J, K, L is distinct from the other 
three. Nonzero values thus require two equal pairs, 
or else the completely equal fourth-power case 
1= J = K = L. Both alternatives are to be considered 
for the uuuu term, but of course the uuvv terms must 
simply have the two u's coincide and the two v's coin
cide, as each u is a distinct coordinate from each v. 
Thus, 

(12a) 

where x, y represent any two distinct Cartesian coor-
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dinates in 2nll space. Similarly, 

(12b) 

Interchange of n and I? in the nll2(x2i) result, or similar 
work, gives 

(12c) 

Finally, 

+ 13 pair + 14 pair, 

where "pair" is meant to exclude fourfold coincidence 
and, explicitly, 

coincide =L (utA) =nllV), 
iA 

12 pair = L, U~AU;B = nll(ll- 1)(x2y2), 
i,A,B,AtB 

13 pair = 0, 

14 pair = L U~AU;A = Iln(n - 1)(x2y2) 
i,i,A, itj 

thus, 

Substitution of (12a)- (12d) into (11) yields 

±(TrP2) =nk(x4) +nk(2n + 21l- 3)(x2y2). 

(12d) 

(13) 

We will need (x4), (x2y2), and in order to delay nor
malization to the end, (1). These are integrals over the 
unit sphere 52•k_1 = 5N_1> where N = 2nll is even. The re
quired element of hyperarea is the factor of r N-1dr in 
the polar-coordinate hypervolume element for Euclidean 
N-space, where polar coordinates r, e, q:,,'" are de
fined in terms of the Cartesian XI by 

X=Xl=rcose 

Y =X2 = r sine cosq:" 

X3 = r sine sinc;b cos</!, 

X4 = r sine sinq:, sin</! cosX, 

All angles except the last run from 0 to 11; the last, 
from 0 to 211. The requisite factor of r N-1dr is the 
product de dc;b d</! dx' •• times the determinant of 

cose sine cosq:, sine sinq:, cos</! sine sinq:, sin</! cosx· .. 
- sine cose cosc;b cose sinc;b cos</! cose sinc;b sin</! cosx· .. 

o - sine sinq:, sine cosq:, cos</! sine cosc;b sin</! cosx· .. 
o 0 - sine sinq:, sin</! sine sinq:, cos</! cosx· •• 
o 0 0 - sine sinc;b sin</! sinX' .. 
o 0 0 0 
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which yields up its pattern upon expansion in the first 
column and factorization of cose and sine factors; then 
similarly for ¢; the result is of the form 

sinN-2e sinN-3ej>F(</!, X, ••• ) de dc;b d</! dX' ••• 

The arbitrary normalization now allows dropping the 
work in angles other than e (because of X = cose) and q:, 
(because of y = sine cosej», to give 

(1) = I sinN-2e sinN-3c;b de dc;b, 

(14) 

Let 

{

=1T(m -1)! !/m!!, 
I; sinme de = 5m 

=2(m -1)! !/m!!, 

m even}. 

111 odd (15)3 

Then 

(1) = SN_2SN_3, (x4: = (SN_2 - 2SN + SN+2)SN_3, 

(X2y2) = (SN - SN+2)(SN_3 - SN_l)' 

Upon proper normalization to (1) = 1, these become 

(x4) - 1 _ 2 SN + SN+2 
- SN_2 SN_2' 

The double factorials mostly cancel to give 

(X4) = 3IN(N + 2), (x2i) = 1IN(N + 2). 

Then (13) simplifies (N = 2nk) to 

f ~=(Trp2)= n+lz 
. P. n" + 1 ' l::01 h 

and (9), (8) yield 

a=!(l_n+k) 
2 2 . nl? + 1 ' 

and 

a = (1-1In2) 1/2 
I'mS Iln + 1 

as stated in Eq. (1). 

Of course, the argument as given needs N~ 4. Never
theless, N = 2nlz = 2 corresponds only to the trivial case 
n = k = 1, when because n = 1 there is only one probabil
ity; hence arms = 0, which is indeed the value given by 
(1). Indeed, n = 1 alone must make arms zero, whatever 
the value of lz; the formula (1) satisfies this check. 

Higher moments and other symmetric polynomials 
of higher degree in the p;'s will depend on more 
coefficients am of the polynomial (5), which will require 
more and longer trace loops, and trigonometric inte
grals involving more than two angles. If this comment 
is taken as "clear," the Pi distribution is in fact 
"given" here. 

4. DISCUSSION 

When all the Pi are l/n, the rms width is of 
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course (J = 0. For any Ph a can be enlarged by decreas
ing a probability and simultaneously increasing the 
largest probability if that is not already 1; hence a is 
maximum for the extreme case PI = 1, P2 = P3 = ... = 0, 
in which case (8) immediately yields a = amax (n) 
=n-1(n _ 1)1/2", n-1/ 2 for n large. 4 That arms « 1 for n 
» 1 is thus without significance. However, when n 
»1, arms"'n-l/2k-l/2; hence arm. «amax(n) provided that 
1,·1/2« 1. Thus, (Jrms(n, k)/amax(n) - ° in the limit 
,,-00, but, interestingly, is already small for k=O(n). 
A neglected reservoir need not be enormous to produce 
near-maximum entropy, 

Two oddities will not have escaped the reader. One 
is the finite dimensionality of the state spaces. The 
other is the freedom of the over-all state vector to 
roam over its whole nk-dimensional Hilbert space, 
without worrying about conservation principles. Per
haps these two faults or limitations can to some degree 
destroy each other, if we first limit the discussion to 
a space of ergodicity, where special boundary condi
tions (a perfect box, say), and conservation principles 
combine to produce the effective overall finite 
dimensionality, 

Note added in manuscript: Charles Goebel and 
Nicholas Papastamatiou have led me to the following 
computation of the normalized (xA) and (x2y2), which 
avoids explicit trigonometric integrals over the volume 
elemenL 

If x is any vector, then xrxJxKxL is a fourth rank 
symmetric tensor. Similarly if the x are a set of vec
tors, then 2: x rX JX KX L is a fourth ra!ili: symmetric 

AA A A A 
tensor. (xrXJXKXL) averaged over the (N -I)-sphere 
is a limit of such a sum or linear combination, with 
the extra property that the set of vectors as a whole is 
ON-invariant. Hence, (xrXJXKXL) is an ON-invariant 
symmetric fourth-rank tensor, ta KL' Hence, if 
a, b, c, d are vectors, 2:rJKLtIJKLarbJCKdL is a sym
metric scalar function of a, b, c, d only. The most gen
eral symmetric scalar function linear in the vector 
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arguments is a multiple of (a' b)(c • d) + (a • c)(b • d) 
+ (a' d)(b • c): this by specializing the well-known theo
rem in H. Weyl's Classical Groups (Princeton U. P., 
Princeton, New Jersey, 1946) about rational invariants 
of vectors under ° N' to the linear symmetric case. 
Hence flJKL=A(oaOKL + °IKOJL + 0ILOJK) = (xlxflKXL)' In 
order to determine A, contract on K,L, using 2:~:1xl 
= 1, to get A(OIJN + 0lJ + 0lJ) = (xrxJ); i. e., (xrxJ) 
=A(N + 2) 0a. Then contract on I, J to get 1 =AN(N + 2). 
Hence A = [1/N(N + 2)], and (xrXJXKXL) = [l/N(N +2)] 
x (OIJOKL + 0rKoJL + 0ILOJK)' The nonzero cases, where 
all four indices coincide, or where the indices form two 
distinct equal pairs, give the desired information 

(x4) = 3/N(N + 2), (x2y2) = l/N(N + 2). 

Higher order moments will have similar symmetrical 
Kronecker ° expressions, with over-all coefficients 
which may be determined inductively by contraction. 

Note added in proof: Estimate (4) of the entropy de
fect is a quadratic-term truncation of (2b). Hence the 
hypotheses I qj I «1, roughly equivalent to k »n, should 
be noted in connection with (4). The "rough equivalence" 
is in the sense that (qj)rms =- ('i!J7)/n =n2(a2

) = (n2 - 1)/ 
(kn+ l)::::n/k. Equation (4) should not be trusted for 
k::::n. 

lLucretius, On the Nature of the Universe, translated by 
R. E. Latham (Penguin, Toronto, 1951). p. 66. 

2L.D. Landau, Z. Physik 45, 430 (1927); or J. Von Neuman, 
Mathematical Foundations of Quantum Mechanics, translated 
byR. Beyer (PrincetonU.P., Princeton, N.J., 1955), 
Sec. VI. 2. 

3Adapted from I. S. Gradshteyn and I. M. Ryzhik, Table of 
Integrals, Series, and Products (Academic, New York, 1965), 
p. 369, or induction through integration by parts. 

4This extreme, pure-case answer cr=n-I(n -1) 1/2 coincides 
with the specialization to k = 1 of Eq. (1), because k = 1 forces 
purity by eliminating the reservoir. This is another check 
of (1). 
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Quantization of the Liouville mechanics for systems with 
singular Lagrangians 
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Quantum mechanics, in phase space formulation, is directly deduced from the Liouville mechanics by a 
correspondence principle. The latter is applied to systems with singular Lagrangians. 

1. INTRODUCTION 

The phase-space formulation of quantum mechanics, 
initiated by Wigner, 1 and later developed by Moyal, 2 

is essentially characterized in the following manner: 

The quantum state is represented by the phase-space 
distribution R V), q , ll. 

The time dependence of RV'J,q,t) is governed by the 
Wigner e..J.uation. The latter is analogous to the Liouville 
equation in statistical mechanics. 

If ,0'1 is the quantum operator corresponding to the 
physical quantity AVJ, q) in classical mechanics, one 
must have: 

< J 1 AI J) = ) A(jJ, q)R (p, q, L) dpdq. 

This more or less ends the similarity between 
quantum mechanics and statistical mechanics. 

(1.1) 

However, R(p,q,tl is not nonnegative and cannot be 
interpreted as a probability density. Moreover, 
R (p, (j ,t) is not unique: as a matter of fact the function 
R(p,q,t) satisfying (1.1) is determined by the 
correspondence which maps the classical quantity A 
onto the quantum operator A. Wigner's distribution 
function is thus associated with Weyl 's rule, 
Blokhintsev's distribution function to the standard 
rule, etc. We refer the reader to Shewell, 3 Metha4 

and Cohen. 5 

The latter5 succeeded in unifying some of these 
distributions by introducing an arbitrary function. More 
recently, Agarwal and WoH 6 ,7 have given a general 
standard formalism. 

Other authors 8
,9 have tried to introduce a nonnegative 

distribution function. 

In this paper, we shall consider the quasiprobability 
distribution R(p, q, t) as only representing the quantum 
state of the system; its statistical aspect will be a 
heuristic way to establish a correspondence principle 
between the Liouville mechanics and quantum mechanics 
in phase-space formulation. 

We shall choose the Blokhintsev representation, 10 and 
shall not longer impose the relation (1. 1), this allows 
us to have a "fuzzy" correspondence prinCiple. In usual 
mechanics (free from constraints) ambiguity shall 
vanish, and the correspondence will be perfectly 
determined. When constraints occur, certain compati
bility conditions will allow us to reduce the "fuzziness." 

The Hamiltonian quantization of systems with 

singular Lagrangians was first carried out by 
Dirac. 11-13 Difficulties occur in the choice of the 
ordering of the operator factors in order that the 
constraints satisfy the compatibility conditionsc 

Here it appears necessary to employ for such systems 
a "fuzzy" correspondence principle, this being solved 
in a pragmatic way depending on the particular 
system. 

FaddeevH has solved the difficulty by using the 
Feynman path integralI5 quantization in a Hamiltonian 
forln.1(i,I7 

After having introduced in Sec. 2 the algebra of 
quantum quantities used in phase-space, we give in Sec. 
3 a quick translation from the Schrodinger mechanics 
into phase-space formulation, we then give a 
correspondence principle between the Liouville 
mechanics and quantum mechanics in phase-space 
formulation. This is then applied in Sec. 4 to systems 
with singular Lagrangians giving first class constraints 
following Dirac's terminology. 

2. BLOKHINTSEV REPRESENTATION OF THE 
QUANTUM OPERATOR ALGEBRA 

Let us consider a quantum system with a finite 
number 11/ of degrees of freedom, where q = (qI' q2" '(jN) 

deSignates a coordinate system, and p = (PI ,Pz c .. P N) 
designates another system of variables, which we shall 
interpret as a rromentum system. The set (p,q) describes 
describes the phase space. 

Let us consider a quantum operator A; its Blokhintsev 
transformI" is a phase-space function defined as 

A(P ,q) = e(A) = J< q IA Iql) exp[ - i(p/n)(q - q/)l dq' (2.1) 

with pq =PI!JI + P2q2 + ... + PNCfN and dCf =dqI dq2" 'dqN 

This mapping is linear: 
.... "" -- -

p(\A + IlB) = \A(p ,q) + 11B(p ,q l. (2.2) 

One shows easily that the transform of a product of 
operators can be written under the form 

p(A. B)= JB(P,qll) (q 1 A 1 q") exp[ - i(p/n)(q -ql)Jdq". 

(2.3) 

We develop the series 

1Y" ")-13'" )+6 (q"_q)"'- (J"'-B(p,q) (2.4) 
\}"q -- \}"q " .. I Q!l i1q"'-

where a=Cl'I+a2+"·+aN, al=a,l Cl'21"'CYN1, 
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(q" - q)'" '= (q~ - ql)"'I(q~ - q2)"'2 ... (q~ - q N)"'N, 

o"'B(P,q)/oq'" '= (o"'I+"'2+"'+"'Nloqfl0q~2'" oq;N)B(P,q). 

Upon introducing the development (2,4) into Eq. (2.3), 
(2.3), we obtain 

13(..1 .B)=B(P )A(P ) + I:;~(~)'" o"'B(p,q) o"'A(p,q) , 
,q ,q ", .. I a! t oq'" op'" 

(2.5) 

which allows use to define a noncommutative law of 
multiplication in phase spacel9

: 

(2.6) 

This operation is associative and distributive with 
regard to addition: 

(A(P,q)* B(p,q))* C(p,q)=A(p,q) * (B(P,q) * C(p,q)),(2. 7) 

A(p,q) * (B(P,q) + C(p,q))=A(p,q) * B(p,q) 

+A(P,qh C(p,q). (2.8) 

The relations (2.7) and (2.8) are derived from the 
corresponding properties of operators A, B, c. 

Let us remark that the product A(p, q) * B(p, q) 
becomes the ordinary product when limit If - 0. 

From the relations (2.5) and (2.6), we deduce the 
transform of a commutator: 

with the definition 

{A(P ) B(P )} = o"'A(p,q) o"'B(p,q) 
,q, ,q '" oq'" op'" 

xo"'A(p,q) . 
op'" 

When C1 = 1, the definition (2.10) is reduced to the 
classical Poisson brackets. This makes us 
introduce what we call quantum Poisson brackets: 

- - 1 (1f)"'-1 - -{A(P,q),B(p,q)}Q.P, = I:; -::;;t --: {A(P,q),B(p,q)}", 
Q;tIol W· 1 

1 - -
= ilf[A(P,q) * B(p,q)-

-B(p,q)*A(p,q)]. 

In the limit 1f=0, (2.11) is reduced to cl'lssical 
Poisson brackets. 

(2.9) 

(2.10) 

(2.10 

The quantum Poisson brackets satisfy the properties 
of the Lie algebra: 

Antisymmetry: 

{A, B}Q.p, =- {B,A}Q.p., (2.12) 

Linearity: 

{AA + ).LB,C}Q,p. = A{A,C}Q,p, + ).L{B, C}Q.P, (2.13) 
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Jacobi identity: 

fA, {B, C}Q,p}Q,P. + {B, {C ,A}Q.p)Q. P. + {c, {B, A}Q.p)Q,P. 

= 0. (2.14) 

One can add the product law: 

{A * B,C}Q,p. =A * {B,C}Q.p. + {A, C}Q.P. * B. 
These last four relations are deduced from the 

corresponding properties of operators. 

(2.15) 

We shall now specify the Blokhintsev transform of 
some functions of position q and momentum p operators: 

(2.16) 

From Eq. (2.16), using relations (2.2) and (2.5). 
one obtaines the following results: 

/3(V(q)) = V(q), 

/3(F(fj)) = F(P), 

/3(V(q)' F(fj)) = V(q)· F(P). 

(2.17) 

(2.18) 

(2.19) 

Let us consider an operator F(fj., ql) constructed with 
commutative operators PR' ql' (a component of angular 
momentum for example); it is possible to put its factors 
in the same order as in Eq. (2.19). Consequently, one 
obtains 

(2.20) 

According to Born and Jordan the operator Pk "F(q.) 
can be put into the form20

: 

~" (~) ~ n! (. )m d
m 

F ~ "-m 
Pk F q. = L.J 1 ( )1 - tn d--;;P 

moO m. n - m . q k 

Its transform is then obtained by using (2.19): 

To put it more simply, 

/3(fik"F(qk)) = Pk "F(qk) + 0 (If) 

(2.21) 

(2.22) 

where O(n} is a term of order If. More generally, for 
any operator cp(fj, q), 

/3(cp(fj,q)) = q;(p,q)= cp(p,q) +O(n}. (2.23) 

The density operator p, representing the state of the 
system, plays a special role, and shall be expressed 
as a complex function in phase space, usually called 
quasiprobability of the phase space: 

(2.24) 

We shall limit ourselves to pure systems: 

p(t) = I <{! > < <{! I . (2.25) 

The function R satisfies the following properties: 

jR(P ,q) dp = <{!*(q) <{!(q) > 0, (2.26) 

jR(p,q)dq=cp*(p)cp(p» 0, (2.27) 

with cp(P) = (2rrn}-N /2 f <{!(q) exp( - ipq In) dq. so, 

jR(p ,q) dp dq = 1. (2.28) 

Moreover, the characterization p2 = P of a pure 
case gives 
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We now have all the elements necessary to proceed 
to a quantization in phase space, which we shall carry 
out in the next section. 

3. QUANTUM MECHANICS IN PHASE-SPACE 
FORMULATION, QUANTIZATION OF THE 
LIOUVILLE MECHANICS 

A. Quantum mechanics in phase-space mechanics 

Quantum mechanics is essentially characterized by 
the following datas: 

(a) an equation of motion: the Schrodinger equation: 

(b) an operation rule which allows to obtain the 
measurements: the eigenvalue equation: 

(c) an operation rule which allows to get the classical 
mechanics quantities: the quantum average built 
upon probability amplitudes. 

Let us translate (a), (b), (c) into the phase-space 
language. 

The transition amplitude between two states if, and if,a 

is given by 

(1'.11') = (2rrli)N JRa(j),q) * RV'J,q)dljdj). 

This result is obtained in the same way as was 
Eq. (3.6). 

(3.8) 

Having obtained an equivalent formulation in phase 
space to the SChrodinger mechanics, we shall now 
examine how to arrive directly to this formulation by 
a correspondence principle using the Liouville 
mechanics. 

B. Quantization of the Liouville mechanics 

The Liouville mechanics of a system with N degrees 
of freedom consists of a space with 2N dimensions 
(p, q) called the phase space, and of a probability 
density function f (j), If, tl whose time evolution is 
governed by the Liouville equation 

? 
?I Iv) ,q, I) = {H(P,q), f(P,Ij, I)}. (3.9) 

(a) The equation of motion equivalent to the SChrodinger Let us remark, following Cabannes, 22 that this equa-
equation is obtained from the density equation tion is equivalent to the Hamiltonian equations. 

(3.1) 

Taking the Blokhintsev transform of the two members, 
one obtains 

(3.2) 

In the ordinary case in which H(j), q) is reduced to the 
classical Hamiltonian H(p,q), Eq. (3.2) is the Wigner 
equation in the Blokhintsev representation. 21 

Omitting the terms of order Ii and replacing the 
quasiprobability R (jJ, If , tl by the probability f (p, If , t) 
in phase space, one obtains the Liouville equation 

? 
rl/f(P, q, t) = {H(jJ, q),f(P ,q, tl}. (3.3) 

(b) The eigenvalue equation, written as follows: 

A I Ja >< ua I = a I 4a > U. I (3.4) 

translates into phase-space formulation: 

A(j),q) * Ra(P'If' tl =aRa(p,q, t) (3.5) 

(c) One has the following equalities: 

I A(j),q) * R(P,lj)dj)dq 

= (2rrtn-N P(A c p)dj)(/q 

= J (q Iii 11')( Jlq') (2rrtn-S 

x exp[ - ip/ll(q - q') 1 dp rlq dq' 

= J( Ij 1 it 1 J. > ( J 1 q' I o(q - q') dqdq' = ( if,' 1 A 11' I. 
One then deduces expectation value in phase-space: 

<A)=(A)=I,l(p,q)*R(p,q,tldj)(/1f (3.6) 

Omitting the terms of order Ii and replacing the 
quasiprobability R by the probability f in phase space, 
one obtains the classical average in phase space, 

if = J A(P ,q )f(p,q, t) djJ(/q. (3.7) 
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We define the correspondence principle: 

/(P,Ij,tl-R(p,Ij,tl 

A(j) ,q) - A(j) , q) 

J l_ r } 
l r \ Qcp. 

product - * 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

As a matter of convention we shall always choose 
A * R (R on the right-hand side). . 

The quantum quantities appear to be an ex-tension 
of corresponding classical quantities and are defined 
on the same phase space (p, If). The Liouville mechanics 
is then used as an heuristic way of constructing the 
quantum mechanics in phase space. 

Thus the correspondences (3.10), (3.11), (3.12) allow 
us to map the Liouville equation onto the Wigner 
equation: 

(3.14) 

In the same way the correspondences (3.10), (3.11), 
(3.13) induce the quantum average: 

if = J A(j), If}f v>, If, t) dj)dlf 

-("l>=jA(jJ,q)*R(j),q,t)dj)dq. (3.15) 

Finally one easily deduces the meaning of the 
eigenvalue equation 

A(jJ,q)*R(j),q,tl=aR(p,q,/) (3.16) 

from a classical situation where the dynamical quantity 
A(p, If) takes a value a independent of p, q, i. e., without 
dispersion. 

We shall end this paragraph by remarking that the 
correspondence (3. 11) is somewhat "fuzzy": 

A(jJ ,Ij) - A(p ,Ij) = A(jJ ,q) + ()(Ii) (3.17) 
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This is due to the possible variety of choices of the 
term o (II), as shown by Eq. (2.21) and (2.22). This 
difficulty is not inherent in phase space; it is produced 
by transition from a commutative to a noncommutative 
algebra. Numerous rules have been proposed3

; their 
abundance show that none of them is entirely 
satisfactory. 

But for the usual quantities in ordinary mechanics, 
we can apply Eqs. (2.17), (2.18), (2.20); consequently 
the correspondence is then perfectly defined since 

(3.18) 

that is, the case for example with the Hamiltonian 
p2/2111 + V(q) of energy, momentum, angular momentum, 
etc. 

The introduction of constraints is going to modify 
the former simpliCity we shall examine this in the next 
paragraph. 

4. QUANTIZATION OF MECHANICAL SYSTEMS 
WITH SINGULAR LAGRANGIANS 

We follow here Faddeev. 11 

Consider a classical system with singular Lagrangian 
L (q, q) in the sense that the equations: 

(4.1) 

cannot be solved for the q. The canonical variables 
P ,q do not vary through the phase space (p ,q) of 
dimension 2N but have to verify a certain number of 
constraints 

(4.2) 

These constraints are independent; the equations (4.2) 
define a surface M of dimension 2N - m in phase space. 

An arbitrary function g(p, q) vanishing on JIll is a 
combination of constraints: 

(4.3) 

The equations of motion are obtained from the varia
tion of the action 

where the A. ([) are Lagrangian multipliers: 

. cH" a cpa 
q.=-+0A -, , oP

i 
a aaP i 

p = _J.!! -6A ocpa 
, ?q i a a oq i 

Thus for any function f (p, q, t) 1. e. , 

j_cf+ of· +.3.L p 
- at oqi qi (lP i i> 

(4.4) 

(4.5) 

• aj 
j=al +{j,H}+6 A.tj,cpa}. (4.6) 

a 

The constraints should obviously satisfy 

cPa = 0 on JIll (4.7) 

To avoid complications, we shall impose on the 
constraints additional conditions assuring (4.7): 
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{cpa, cp~} = 6C~~cpc, (4.8) 
c 

{H,<pa}=0c~<p·. (4.9) 
b 

The constraints satisfying (4.8) are first class ones, 
following Dirac's terminology. 11-13 

Now, ifj(p,g,t) represents the phase space denSity, 
Liouville theorem (j = 0), and Eq. (4.6) lead to 
Liouville's equation 

Let us examine the conditions imposed upon the 
density j (p, q ,t) by the constraints (4.2). 

(4.10) 

Let us call Cl'vl the complement of the surface k] 

in the phase-space (p, q) : 

j(p,q,t)=O on CAl, 

cpa(p,q)=O on ]1,1. 

From (4.11) and (4.12) one deduces 

(4.11) 

(4.12) 

<p"(p,q) 'j(p,q,t)=O 'd p,q. (4.13) 

On the other hand, Eqo (4.11) is equivalent to saying 
that j (p, q , t) is identically null" almost everywhere" 
on the phase space excepting on a surface JIll; one 
deduces that 

i3f =0 of =0 on CJvl, 
2/>i '2qi 

and hence 

{j, 'Po} = 0 on CM, 

{j,H}=O on CM. 

(4.14) 

(4.15) 

(4.16) 

The evolution of the density f (P ,(j , t) Should not depend 
on the arbitrary parameters Aa(t): we shall therefore 
impose 

{j, c,?a}= ° on AJ. (4.17) 

From (4.15) and (4.17) one deduces that 

{f,'Pa}=O'tlp,q (4.18) 

The classical system is therefore described by 
Eqs, (4,10), (4,13), and (4.18); by using the 
correspondence prinCiple, we obtain the quantum 
equations 

c,?a*R=O, 

(We have supposed H=H.) 

(4.19) 

(4.20) 

(4.21) 

We shall remark that Eqs. (4.20) and (4.21) become 
necessary once the correspondence principle has been 
used. 

Up till now we never talked about the hermiticity 
of operators and its translation into phase space. 

Briefly, we shall only say that a quantity (P(p, q) is 
Her mitian if the corresponding operator (,? is Hermitian 
itself . 
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_ We shall suppose that the quantum constraints 
cpa(p,q) are Hermitian, this imposes a certain choice of 
OCn) and partly reduces the ambiguity of cpa(p,q). It is 
easy to see, since R is Hermitian, that Eqs. (4.21) are 
deduced from Eqs. (4.20), which in turn are equivalents 
to the conditions given by Dirac U

- t3 : 

(4.22) 

Let us examine folowing Dirac the compatibility of 
Eqs. (4.20). 

Multiplying (4.20) by cpb, 
;Pb * ;pa * R = 0. 

In the same way, 

cpa * q5b * R = O. 

We deduce that 

{q5a,q5b}Q.F. *R=O. 

(4.23) 

(4.24) 

(4.25) 

We must not introduce new constraints; Eq. (4.25) 
must be included in Eq. (4.20)' Therefore, let us 
require that 

(4.26) 

In the same way, the compatibility of Eqs. (4.19) with 
Eqs. (4.20) require 

{H, cpa}Q.F = ~ C~ * ;Pb. (4.27) 

Let us remark (coherence of quantization) that Eqs. 
(4.26) and (4.27) are quantum translations of the 
classical equations (4.8) and (4.9). We then have the 
advantage of a certain free choice of the term o-un 
(belonging to ;pal in such a way as to satisfy Eqs. (4.26) 
and (4.27). If one requires that the theory be equivalent 
to Dirac's, 11-13 the number and expression of the possible 
possible terms o-un are well determined, This freedom 
corresponds to the choice of the order in which 
operators p and q are put in CP-. 

More precisely, let us take a simple example devoide 
of any physical sense. Take a classical quantity 

(4.28) 

One can make correspond to it the following quantum 
operators cj2ij, qpq, pq2 and all their linear combina
tions whose sum of coefficients equals 1. To these 
operators corresponds in phase space the quantities 
q2p +00i), where oon has respectively the values 0, 
inq, - 2inq and all their linear combinations whose 
sum of the coefficient equals 1. One deduces that the 
choice of O(fi) has to be limited to 

O(Pf)=Aifiq (i\acomplexnumber) (4.29) 

If one requires q5 to be Hermitian, 

A=-1. (4.30) 

In this example it is no longer possible to impose 
other conditions. 

More generally, the compatibility conditions on the 
constraints does not necessarily have a solution. 
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Nevertheless, the translation of quantum mechanics 
into phase-space formulation suggests new possibilities: 
If the problem has no solution when using the limited 
choice of possible forms of o (Ii) , one coold consider 
widening the choice to any function of p and q of the 
order of Ii. It then may be necessary to add some 
criteria to eliminate all indeterminations. 

The study of that hypothesis necessitates its applica
tion to particular systems. We shall not do it here. 
As a matter of fact the most interesting systems with 
singular Lagrangians are to be found in field theory; 
we have considered systems with only a finite number 
of degrees of freedom. 

5. CONCLUSION 

After setting up a "fuzzy" correspondence principle 
between the Liouville mechanics and quantum mechanics 
in phase-space formulation, we have now been able to 
treat in general the systems with Singular Lagrangians. 
In the case of first class Hermitian constraints, we 
obtain results identical to Dirac's. 11-13 The process 
has several advantage from a theoretical point of view: 

(a) It shows that, for such systems a clearly defined 
correspondence cannot be chosen first hand. 

(b) The equations of constraints and their compatibili
ties are necessarily introduced as direct consequence 
of the correspondence prinCiple. 

(c) If Dirac's theory has no solution, it suggests a 
possible way of solving the problem. 
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A new operator denoted as a zero-energy Runge-Lenz vector is used to derive a differential equation for 
the zero-energy Schrodinger wavefunction in the u representation. An integral equation is also derived in 
terms of a generalized Fock 4-vector which, in the zero-energy limit, yields the correct integral equation 
for the zero-energy Green's function. The zero-energy aspect of the problem is further exemplified by 
extracting the zero-energy results directly from those for negative energies through the taking of the zero
energy limit, which is construed as making a group contraction from 0(4) to E(3). 

1. INTRODUCTION 

The Kepler or Coulomb problem has been a subject 
of interest to physicists and mathematicians alike for 
a long time. The reason for this sustained interest is 
perhaps twofold. It is the only isolated two- body system 
occurring in nature and it represents the only case in 
which the potential is a solution of the Laplace equation 
with a point source. 1 Together with the harmonic os
cillator and the Ising model, it is also one of the three 
exactly solvable problems in all of quantum mechanics. 

This paper deals with the problem specificly when 
the total energy of the Kepler or Coulomb system is 
zero. This aspect of the problem does not seem to 
have been fully explored. While the zero-energy Kepler 
problem may have applications in astrophysics, the 
zero-energy Coulomb problem is of interest in atomic 
scatterings of three-body Coulomb systems. Indeed, 
the two-body Coulomb T -matrix has been widely used 
in the treatment of such systems by the Faddeev 
formalism. 2 In this paper, we take a closer look at 
the zero-energy Coulomb problem. 

It has long been known that the nonrelativistic 
Coulomb problem has interesting symmetry properties. 
Fock3 explained the degeneracy of the levels of the 
hydrogen atom in terms of the symmetry group in a 
four-dimensional space. Schwinger4 constructed the 
Green's function for the problem by exploiting this 0(4) 
rotational invariance. More recently, Rogers,5 using 
quarternion algebra, gave a geometric interpretation 
of the classical transformations for the negative-energy 
Kepler problem. For positive energies, it has been 
pointed out6 that the problem acquires the symmetry 
properties of the 0(3,1) group. Finally, for E = 0, the 
invariance group becomes the three-dimensional 
Euclidean group E(3) isomorphic to the restricted 
Galilean group. While the Green's function1 for positive 
energies can be obtained by analytic continuation from 
negative energies, a separate integral equation has been 
derived for the zero-energy Green's function6 for its 
solution. Similarly, the zero-energy wavefunction has 
been obtained by solving an appropriate integral 
equation. 6 

The plan of this paper is as follows. In Sec, 2 we 
show that the zero- energy Runge- Lenz vector Ao, a 
self-adjoint operator, and a generalized coordinate 
vector u satisfy the canonical commutation relations 

and are used, under the zero-energy constraint, to 
derive a differential equation for the zero-energy wave
function. In Sec. 3 we derive a unified integral equation 
for the Green's function in terms of a generalized Fock 
four-vector, which, in the zero- energy limit, yields 
directly the integral equation for the zero-energy 
Green's function. In Sec. 4 we demonstrate how the 
zero-energy Green's function and wavefunction can be 
extracted directly from those for negative energies by 
taking the zero-energy limit, which is tantamount to 
making a group contraction from 0(4) to E(3). Some 
concluding remarks are made in Sec. 5. 

2. THE SCHRODINGER WAVE FUNCTION 

The fact that the Coulomb system has not only the 
geometrical symmetry of the group 0(3) but also the 
dynamical symmetry of the group 0(4) referred to as 
the "hidden" symmetry means that there exists an addi
tional constant of the motion besides the angular mo
mentum L. Such a constant is known as the Runge- Lenz 
vector given in the Hermitian form by 

A = rlr - (px L - Lx p)/(2Pcl, (2.1) 

where the constant Pc stands for Ze2m. The operator 
A satisfies the following identity: 

AoA_1=2m(L2+f[2)Hlp~, (2.2) 

where 

(2.3) 

is the Hamiltonian. It should be noted in this connection 
that the existence of A leads to the degeneracy of the 
energy levels of the hydrogen atom. 

We now rewrite Eq. (2.1) in the form 

(2.4) 

so that when the energy E becomes zero it leads im
mediately to the zero- energy limit 

A(E=O)=B. (2.5) 

The operator B is not self-adjoint but has the following 
decomposition: 

B=Ao +iC, 

where 

(2.6) 

(2.7) 
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and 

C =np/(2Pc) (2.8) 

are noncommuting Hermitian operators. We shall refer 
to Ao as the zero-energy Runge-Lenz vector because 
it is the properly symmetrized form of its classical 
counterpart defined by 

8.0 = - rp2/(2Pc) + p(P' r)/pc' 

The self-adjoint operator Ao and the generalized 
coordinates 

(2.9) 

(2. 10) 

satisfy the commutation relation for canonical opera
tors. From Eqs. (2.7) and (2.8) and with the aid of the 
following commutation relations 

[p. r, p2] = 2inp2, 

[p' r, p]=inp, 

[r,p'r]=inr, 

[r,pZ]=2inp, 

it can be easily verified that 

p~Ao"Aos = (p' r)2 PotPS - Hp' r) p2(xot ps + PotXs) 

(2. Ha) 

(2. llb) 

(2. llc) 

(2. 11 d) 

+ tilfpZ(xotPs + PotXs) + tp4XotXS + tnZpotPS, 

UotAos = 2(p' r) Potp/pZ + 3 inpotps/pZ - PotXe, 

Aosuot = 2(p' r) Potp/pZ + 3 ilfPotPe/p2 - XSPot. 

It then follows that 

[A 0,,, Aoe] =0, 

[u", Aos] = ilfoaB • 

Consequently, Ao admits the representationS 

Ao = - inV u' 

(2. 12a) 

(2. 12b) 

(2. 12c) 

(2. 13a) 

(2. 13b) 

From Eqs. (2.6) and (2.8) we also find that the opera
tor B can be represented by 

B = - ilf'V u + itzu/u2 = - inu'V u u-1
• (2. 15) 

It should be pointed out that, since C commutes with u, 
the non-Hermitian operator B of Eq. (2.6) satisfies the 
same commutations relations (2. 13a and b) with u 
as Ao. 

To derive the differential equation for the zero
energy Schrodinger wavefunction in the u representa
tion, we proceed by first evaluating B' B. With the 
use of commutation relations in Eq. (2. 11) and the 
following additional ones: 

[p'r,r-1]=inr-1, 

[p2, r] = _ in(r-1r· p + P' rr-1), 

we obtain 

p~ Ao • Ao = trp2rpZ + in 2p2 - ~in(p • r) pZ , 

p~ C • C = tnZpZ, 

p~Ao·C = in(p' r) pZ, 

p~ C • Ao = ~n(p' r) pZ + tin2pz. 
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(2. 16a) 

(2. 16b) 

(2. 17) 

(2. 18) 

(2.19) 

(2.20) 

Upon combining these results, we get 

B' B = rpzrpz /(4p~). 

Since Eq. (2.3) gives 

rpz/(2pc) = 1 + mrH/pc, 

Eq. (2.21) then becomes 

B·B=(I+mrH/pY. 

(2.21) 

(2. 22) 

(2.23) 

Since the zero-energy Schrodinger wavefunction satis
fies H <Po = 0, it follows from Eq. (2.23) that 

(2.24) 

We note that Eq. (2. 24) can be obtained from Eqs. 
(2.2) and (2.5) with, however, less rigor. Upon utilizing 
Eq. (2.15), we obtain finally the desired differential 
equation 

- nZ['V~ <po(u) - 2 (u/UZ) 'V u <po(u)]- <po(u) = o. 
Its solution is given by 

<po(u) = u exp(i~· u/ll), 

(2.25) 

(2.26) 

with I X I = 1. We note that our solution is related to the 
solution wo(u) = exp(iX Gu/ll) obtained from the integral 
equation by 

(2.27) 

and, consequently, is related to the ordinary momen
tum space wavefunction by 

(2.28) 

where 

(2.29) 

Furthermore, we have from Eqs. (2.14), (2.15), and 
(2.27) 

B<po (u) = - inu 'V u exp(iX 'u/n) 

= - inuAo exp(iX G u/ll) =uX exp(iX' u/ti). (2.30) 

Hence, X is an eigenvalue of Ao. We can accordingly 
set X = ao as given by Eq. (2.9) with 18.0 I = 1. There
fore, in our approach, we have not only derived a dif
ferential equation for the zero-energy Schrodinger 
wavefunction but also unambiguously identified the unit 
vector X which has been left undetermined by the other 
approach. 

3. THE INTEGRAL EQUATION 

The Coulomb's Green function in terms of the Fock 
coordinates 

E = 2po p/(pZ + P5), 

~o = (pZ - P5)/(pZ + P5), 

is given by4,6 

G(~,S')= L; nYnlm(Or,'lm(S') 
nlm n -!l 

where Yn!m(~) are the four-dimensional spherical 
harmonics and !l = Pc/Po. It satisfies the integral 
equation 

, II Id3~IIG(e,~") , 
G(~, ~ ) - 21Tl ~o 11;- e' 12 = o(~ - ~ ). 
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It also satisfies the identity 

G(~, ~ ') = _ (16mp~)-1 (p2 + p~)2 G(p, p/;E)(p,2 + p~)2. 

(3.5) 

The Green's function G(~, ~/) diverges at E=-p%j(2m) 
= O. This is understandable since, as the energy, or 
Po, approaches zero, the unit sphere defined by E2 + d 
= 1 collapses into a point given by E = 0, ~o = 1, at which 
G(~, ~/) becomes singular. The failure for G(~, e) to 
yield a well-defined zero-energy limit is related to the 
fact that the integral equation (3.4) is incapable to 
switch its invariance properties through group con
tractions converting 0(4) to E (3). In order to obtain 
an integral equation that is susceptible to group contrac
tion, we make a variable change by introducing the 
generalized Fock coordinates v = (v, vo) defined by 

V=v~, 

Vo = v~o. 

(3.6) 

(3.7) 

These coordinates define, in turn, a sphere in the four
dimensional space v2 + v~ = v2

, the radius of which, v, 
tends to infinity as the energy tends to zero. The use 
of these coordinates transforms Eq. (3.4) into 

I vjd3
V

n G(V
Il

,V
/
) I 

G(v,v)- -2 2 -- 1 "12 =15(v-v), 
7T Vo V - V 

where we have identified 

G(v, v') = G(~, ~/)/v3. 
In the zero-energy limit, we have 

limv =u, limvolv= 1, 
v .. 00 v .. 00 

(3.8) 

(3.9) 

(3.10) 

and Eq. (3.8) becomes the integral equation, invariant 
with respect to E(3), for the zero-energy Green's 
functions 

G (u u') __ I_fdU" Go(u", u') = B(u _ u'), 
0, 27T2 lu-u/12 

where we have set 

Go(u, u / ) =limG(v, v'). 

From Eqs. (3.9) and (3.12), we obtain the desired 
relationship 

Go(u, u/) = limG(~, e)/~ 

for extracting Go(u, u/) directly from G(~, e). 

4. THE EXTRACTION OF Go AND >Yo 

(3.11) 

(3.12) 

(3. 13) 

To proceed with the taking of the limit, we first note 
that the functions Ynlm (0 satisfy the sum rule 

(4.1) 

where the angle X is defined by 

cosx = 1 + 2p~ 1 p - p' 12 I[J (p2 + P5)( p /2 + p~) J. (4.2) 

Utilizing the sum rule, we obtain from Eqs. (3.3) and 
(3.13) 

Co(u, u') = lim .\ L, 2 2t _ ) sinnx 
v. 00 v- n 7T n v sinx 

(4.3) 
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When v becomes very large, the angle X becomes very 
small. Expanding cosx to X2 and letting 

t= lu-u' I =2Pclp- p' I/(pp'), 

we obtain from Eq. (4.2) 

vx=t. 

We then introduce the parameter 

x=nlv. 

In taking the limit, we set 
00 

L, - v 10 00 dx. 
n=O 

Thus, we obtain the desired result 

, 1 foo dxx2 sinxl 
Co(u, u ) = 27T2 0 l(x - 1) , 

which can be rewritten in the formS 

G ( ') _ 1 fixxexP(iX' t) 
o u, u - (27T)3 x-I . 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

It should be noted that the singularity at x = 1 physical
ly corresponds to the bound states of the hydrogen atom. 

It is of interest to note that by separating out the 
singular parts we can express Go(u, u') of Eq. (4.9) as 

Co(u, u') = B(u - u') + 2;2 ? - 2;2l 
x [sinl ci(- t) + cost si(- t)], (4. 10) 

where ci(- t) and si(- t) are, respectively, the cosine 
and sine integrals. 

In a similar manner, the method can be applied to ob
tain the zero-energy wavefunction by evaluating the 
residue of C(v, v') in the v plane at the polt~ v=n and 
then letting n tend to infinity. Utilizing Eqs. (3.3), 
(3.5), and (3.9), we obtain 

L -Vvlm(p)-v:1m (P')= Res[C(p,p';E) at v=n] 
In 

3mp~ sinnx 
= 7T2(p2 + P5)(p,2 + pal n sinx (4.11) 

Taking the limit v =n - 00 and defining the zero-energy 
wave function by 

(4.12) 

'we obtain from Eqs. (4.5) and (4.11) 

L -V ()~* (P') = 8mp~ sinl = ~~~P% . ( ) 
1m Olm P Olm 7T2p4p,4 t 7T P p' Jo I , (4.13) 

where jo is the spherical Bessel function. By using the 
partial wave expansion and the addition theorem for 
spherical Bessel functions, we obtain the desired zero
energy wavefunction6 

(4. 14) 

which is in agreement with the partial wave expansion 
of Eq. (2.29). 
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It should be noted that the wavefunction lJIv1m(p) 
satisfy the normalization condition 

J lJIv1m(p)lJI:'lm(P) dp=== O(E(v) - E(v')] (4.15) 

on the energy scale, where 

E(v) === - P~/(2r111}). 

They can be shown to satisfy the relation 

lJIv 1m (p) === [v(m V)I/2 / pJlJInlm (p), 

(4. 16) 

(4. 17) 

where lJIn1m(p) are the Coulomb wavefunctions in the 
momentum space and satisfy the normalization condition 

J lJInlm (p)lJI:'lm (p) dp = 0nn" (4.18) 

Furthermore, it is interesting to observe that the 
residue of the Green's function in the v plane yields 
wavefunctions normalized on the energy scale, The 
success of our approach is undoubtedly based upon the 
fact that the bound-state poles in the v plane are equal
ly spaced instead of an infinite accumulation of such 
poles at zero energy on the energy plane or the Po plane. 

5. CONCLUDING REMARKS 

In examining the zero-energy aspect of the Coulomb 
problem, we have uncovered a new self-adjoint opera
tor, the zero-energy Runge-Lenz vector, which has 
enabled us to derive a differential equation for the zero
energy Schrodinger wavefunction. In addition, we have 
derived an integral equation in generalized Fock co
ordinates, which applies to all energies through analytic 
continuation and by group contraction. We have also ex
tracted the zero-energy Green's function and wavefunc
tion by taking the zero-energy limit in the v plane, in 
which the bound state poles are equally spaced instead 

1040 J. Math. Phys., Vol. 19, No.5, May 1978 

of accumulating to result in a condensation of levels. 
The usefulness of these results in Coulomb scattering 
problems and the existence of wavefunction in the u 
representation for nonzero energies should be explored. 
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Phys. Rev. A 2,781 (1970); J.C. Y. Chen, A.C. Chen, and 
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4J. SchWinger, J. Math. Phys. 5, 1606 (1964), 
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tions of motion can be obtained accordingly and, for the 
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representation can be obtained by simply invoking the corre
spondence principle. 
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Four Euclidean conformal group in atomic calculations: 
Exact analytical expressions for the bound-bound two
photon transition matrix elements in the H atom 
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By combining Sturm ian-Coulomb techniques with a local representation of the four Euclidean conformal 
group SU*(4) ""Spin(\,5), a compact analytical form, suitable for any analytic continuation on the energy 
variable, is obtained for the following bound-bound two-photon transition matrix element in the H atom: 
IN,,-(E) = <N1p'E! exp(ik!.r)G(E)p·E,exp(ik,.r)IN'), where G(E) is the Coulomb Green's function. 

INTRODUCTION 

In this paper, yet another method is presented for the 
calculation of matrix elements of two photon transitions 
between two hydrogenic bound states. Although a large 
amount of literature exists on this subject already, 1-12 

general compact expressions valid for arbitrary states, 
and suitable for analytic continuation on the energy 
variable, are still unknown. 

We propose a group theoretical technique, solving 
this problem completely, by using the four Euclidean 
conformal group, isomorphic to Spin(l, 5), the universal 
covering group of SO.(1, 5), 13 This approach describes 
the transformation induced by a general boost in an 
"energy- momentum" space and the Fock stereographic 
projection14 in terms of a conformal transformation in 
the quaternion field E, Thus, this method differs from 
the usual ones where the boost is described by exponen
tiation of the infinitesimal action of the Lie algebra 
so(2,4) on the Hydrogenic states, 9,15 

The organization of this paper is as follows. In Sec, 1 
we formulate the Fock treatment of the H atom by 
introducing a "coupling constant" operator which acts 
on a Hilbert space, denoted by H (Po) [identical to 
L~(SU(2)J. Both its eigenvectors or "Sturmian func
tions" and its eigenvalues are dependent on the energy 
E which is a fixed parameter Po'" (- 2111E)1 12,16-18 

In Sec. II, we introduce the group SU*(4) "" Spin(1, 5) 
and define its action on H as a conformal transforma
tion, Then we consider a local representation of this 
group on L~ (SU(2) which is linear when it is restricted 
to Spin(1, 4), and define some matrix elements which 
are computed in Appendix A. 

In Sec. III, the above elements are used to give exact 
analytic expressions for transition matrix elements in 
the H atom, and to recover the classical results for the 
elastic transitions in the dipole approximation and to 
extend it to higher orders, The formulas which are ob
tained are suitable for any analytic continuation, 

1. A SURVEY OF THE STURM IAN PROBLEM AND 
THE FOCK METHOD 

The Schrodinger equation for two charged particles 

a)Laboratoire "Matiere et Rayonnement" associe au C. N. R. S. 

without spin in terms of relative coordinates and 
momenta can be written as (in natural units) 

(P6 + p2)z!; = c·1Vz!;, 

where 

Po = (- 2/11E)1 /2, c·1 = 2m Cl'Z, 
1 

V=
y' 

For fixed E or equivalently fixed Po, Eq. (1.1) is also 
the eigenvalue equation for the so-called "Sturmian 
operator" or "coupling constant operator, ,,16-18 

c'" (P5 +p2>-IV, 

Cu'=cz!;, 

(1,2) 

(1.3) 

When E < 0, the spectrum of C is infinite and dis
crete, whereas it is continuous for E', 0, and the 
algebraic relation between the eigenvalues c of C and 
the parameter Po allows one to find the energy spec
trum, but the basic difference between the Hamiltonian 
problem and the Sturmian problem must be emphasized. 
For instance, C is not Hermitian in L~(R3), the Hil
bert space of complex square integrable functions on 
R3c It is possible to render it Hermitian in a pre
Hilbertian space in correspondence with the first by 
the Po dependent transformation: Suppose II negative, 
for all 4' L L Hrr~3) such that i (~', (Pa + p2) <,0) I /00; we 
assoc iate a weighted state 

where the square root makes sense since (P6 + p2) is 
diagonal in momentum space, Then 

C' = (P6 + p2)1 /2C(P6 + p2)"1 /2 

= (/)6 + p2)"1 /2 V( P6 + p2)"1 /2 (1. 5) 

is clearly Hermitian on the space generated by the Z!;', 

A similar treatment was used by Fock, 6,14.19,20 The 
Fock method consists of two operations. 

The change of the integration variable in the scalar 
product of L~(R3) introduces the Hilbert space L~(S3), 
where S3 is the unit sphere of RI, The multiplication of 
the states by a weight renders C Hermitian in L~(S3L 

Explicitly, the Fock stereographic projection, denot
ed by s (Po) i brings the unit sphere S3 onto the com
pactified hyperplane H(Po) which is isomorphic to the 
momentum space, 
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x=(Po,p)E.H(Po) 

l
;-~ - p2 +p2 , 

-~=S-t(PO)(X) _~2_p2 
~O - p~ + p2 • 

(1.6) 

The relation between the Euclidean measure d3p and 
the 0(4) invariant measure on 53 is 

rhl (0 = (p;~op2) 3 d3p 

=(112~~)3d3p, (1.7) 

where.! = (1,0)0 

The Fock correspondence]"o between the two Hilbert 
spaces L~(:1R3) and L~(S3), the latter denoted by H(Po), 
is 

if! E. L~ (JR3) Jpo ¢ 

1 ( 2po ) 2 
= ffJ; 1.!+~12 if!os(Po), 

¢ E L~(S3) "'H(po), 

and reciprocally 

¢ EH(Po)]A if! 

Their respective scalar products are related by 

(z/!t, Ihh2(JR3) =Po(¢t> ( 11 ~ ~ 12_\¢2) , 
(!; 0 J N(po) 

(¢t, ¢2)N(po) = fo (if!1> (P6 ~j;2) if!~ L 2 (JR3)' 
(!; 

and the eigenvalue equation (10 3) for the Sturmian 
operator is written as an integral equation, 

C¢(O=_1 f d!l(nl~- el-2¢(n 
2rr2 s 3 

=c¢W, 

where 

'" =]poiJ!, C =] C] -I C = 2p c = J!.L '/-' Po Po' 0 111 O'Z ' 

(1. 8)' 

(10 9) 

(109)' 

(1.10) 

C is clearly Hermitian and 0(4) invariant. Its eigen
values are 

~ 1 
c = - n c IN*. 
nil' 

A natural system of eigenvectors is the set of the 
spherical harmonics Yn1m 20 on 53, 

(1011) 

Returning to the Hamiltonian problem, by solving 
(1. 11) in Po and carrying out the corresponding trans
formation ];~, the well-known eigenvalues and related 
eigenstates in the momentum space are obtained: 

(1. 12) 

(1.13) 
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2. SU*(4) APPROACH TO THE STURMIAN
COULOMB PROBLEM 

The dynamical symmetry 0(4,2) of the H atom has 
already been intensively used in atomic calculations, 
mainly by Barut and Kleinert t5 and by Fronsdal. 8 See 
also Refs, 9 and 10, The main difficulty in the generali
zation of these methods to many atomic calculations 
(transition matrix elements, etc.,···) is the transla
tion of the action of operators on the states space in 
terms of "abstract rotations" deduced by exponentiation 
of the action of a representation of the Lie algebra 
0(4,2) or of its enveloping algebra. Part of the physi
cal meaning is lost when the matrix elements which 
describe the processes are re-expressed in terms of 
real or imaginary angles. 

We exploit all the resources of the quaternionic cal
culus. This is an advantage in itselL Indeed, when the 
calculation of matrix elements describing the transition 
from one Coulomb state to another is required, the en
ergy jumps and momentum transfers characterizing a 
"general physical boost" are described by a translation 
in an "energy-momentum" spaceo ThiS, one naturally 
identifies as the quaternion field H when the "energy 
component" Po = (- 2mE)t/2 is real. Now, the Fock 
projection transforms the translation group element to 
an Sp(l, 1) '" Spin(l, 4) element 13 More generally if other 
effects are taken into account (e, g" intermediate sum
mation in the form of a Green function, as arises in 
perturbation calculations) a Fock projection will give an 
element of the four Euclidean conformal group SU*(4) 13 

which is isomorphic to Spin(l, 5), Explicitly, in this 
way a convenient representation of Spin(l, 5) is obtained 
in the form of a group of 2 x 2 quaternionic matrices, 
denoted by SU*(4), which acts on H as a homographic 
transformation, It is then a simple matter to multiply 
2 x 2 matrices together as other processes follow, 
Moreover, the fact that their matrix elements, which 
are phYSically undimensioned quadrivectors, are very 
simply and strangely [see Eqo (2. 8ll connected to the 
general boost parameters of the process under con
sideration merits deeper understanding. This will be 
gone into elsewhere, 

Now the way in which the conformal group appears 
naturally in the Sturmian problem and Fock method 
when Po = (- 2111 E)I /2 is real, is explained, 

Let us consider the quaternion field lH, the elements 
of which will be denoted by x = (x o, x), where Xo is the 
scalar part and x the vector part2t ; 

x =xol + Xli + X2j + X3k, 

xx' = (xoXo - x' XO,xox' + xox + x xx'), (2.1) 

X=(Xo,-x), 

Spin(1,5) is isomorphic to the group SU* (4) of 2 x 2 
matrices with quaternionic entries verifying a scalar 
relation 

SU*(4) 

={.!(=(~ ~);a,b,c,dcH; iclldllac-I
- brrll =1}, 

(2,2) 
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where x - Ix I is the Euclidean norm in H, also called 
the modulus of the quaternion x. 

SU*(4) acts on H via conformal transformations: 

xc:H, g=(; !)C:SU*(4), 

x-g .x=(ax+b)(cx+dt1• 

The following important property holds: 

lex + d Ilg· x - g. y II cy + d I = Ix - y I 

for all x,yc: H, gc:SU*(4). 

(2.3) 

(2.4) 

The Fock stereographic projection s(Po) is a particu
lar case of this action. It establishes a one to one cor
respondence between the subgroup [isomorphic to, and 
briefly denoted by SU(2)] of unit modulus quaternions 
and the hyperplane of the quaternions having the Same 
scalar part Po; let us put: 

x= (Po,p), 

s(P)=- 0 1 (2P 
o ~ 1 

0) -1( 1 ( 1 
1 ' s Po)= ~ -1 2~J. 

(2.5) 

where 

A(; !)=G; ~), AC: R, 
and 0 and 1 henceforward denote the zero and unit ele
ments both in H and in Rc H, (1. 6) is now written 

~ = s-1 (Po) • x =xx-1, 

where x is the quaternionic conjugate of x, 

x = (Po, - p), (2,6) 

Now, we describe in terms of the action (2,3) the gen
eral physical "boost" which also includes the Galilean 
boost in momentum space 

p-p'=p+k, 

as a scalar boost 

Po-Po=Po+ko, 

x = (Po, p) - x' = (PQ,p') = (Po + ko, P + k) =tK ·x, (2.7) 

where 

tK=G ~)C:T4CSU*(4), K=(ko,k), 

T 4: group of translations in H. 

The transformation induced on S3 by the translations 
in H after the inverse stereographic projection is 

(2.8) 

where 

e = s-I(PO) .x', ~ = s-I(PO) ·x, 

h - 1 (K. K_) K - (' k) 
- 2(poPo)1/2 l( K.' ~- Po±Po, • 

h is an element of the subgroup Sp(I,I):o:Spin(I,4), 
which leaves both SU(2) and the unit ball invariant under 
the conformal transformation. Spin(I,4) has been inten
sively studied (see for instance FronsdaI22), particularly 
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under its quaternionic representation by Takahaski23 

and Stromm. 24 In atomic computations we shall use the 
following (nonunitary) irreducible linear representation 
of this group22: 

h-1 =(; !)~h =( _ ~ -~), 
P(h)fW = I c ~ + d 1-2Pf(h- 1 , 0 

with p=1 or 2, (2.9) 

We define the matrix elements of this representation 
with respect to the orthonormal basis {Y N}, N = mm, 

T'lvN,(h) = (r(h) Y N', Y Nh2 (s u(2». (2.10) c 

Since 

these matrix elements verify 

T~N.(h) = (T1'N(h- 1»*. 

One may show that (see Appendix B): 

T~N.(h) = n' (T~'N(h-l»*. 
n 

It follows from (2.12) and (2.13) that 

(2,11) 

(2,12) 

(2.13) 

(2.14) 

Now we extend the representation r to SU*(4) in the 
following way: Let us continue an element f of L~(SU(2» 
to a function defined inside (outside) S3"'SU(2): 

f-F~, 

F«x) = 212 ( dll(e)f(e) 11t~IXxI124' Ixl <1, 
7T } su(2) s -

F>(x) = Ixl-2F«x-1
), Ixl >1, 

F«x) = F>(x) = f(x) , Ix I = I. 

Putting X= Ix I~, F< (resp, F» as a function of the 
variable ~ belongs to L~(SU(2». 

We define the local representation of SU*(4) on 
L~(SU(2» in the following way, 

fc:L~(SU(2», g_I=(; ~)C:SU*(4), 

(2.15) 

r(g)f(~)= Ic~ +dl-2PF§(g-I, ~), (2,16) 

§: according as to whether Ig-1 , ~ I §: 1, 

The representation T" is local in the sense that it is 
linear for all g in some neighborhood of e, unit element 
of SU* (4), Now, let us consider the integral 

S'lvN'(g) = f
SU

(2) dll(~) I c~ + d 1-2Ptj N'(g-l. e)Yt-(~), 

(2. 17) 

where tj N(X) is the harmonic polynomial ("solid 
harmonic") deduced from the surface harmonic by the 
homogeneity formula 

~ N(X) = Ix I n-l y NC~ I) , 

It is homogeneous of degree n - 1. 
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If Ig-1 • ~ I '" 1 for all ~ E SU(2), SVh,(g) is the matrix 
element T'f{N' (g) of the operator TP(g). The same re
mains true if Ig-1 • ~ I ~ 1 for all ~ E SU(2). We give the 

analytic expression of the integral (2. 17) in Appendix A 
for p=1 and lei < Idl. 

3. CALCULATION OF THE BOUND-BOUND TWO PHOTON TRANSITION MATRIX ELEMENTS IN THE H ATOM 

In a set of particular cases, exact analytic expressions have already been available for about ten years for the 
following matrix elements (between bound or continuum states), 

I~N'(E,E1o kt,E2'~) =I~N'(E) = (NI p. El exp(ikt • r)G(E)p. E2 exp(i~. r) 1 N,), (3.1) 

where G(E) = (H - E,-l is the Coulomb Green function. 

Ej (resp. k j ) is the polarization vector (resp. momentum) of the ith photon. 

The follOWing various techniques were used: 

(i) analytic methods in configuration space, by use of the Hostler integral representation25 or the Sturmian 
Coulomb Green function: in the dipole approximationl- 3 and with the retardation effects 3; 

(ii) analytic methods in momentum space, by use of the Schwinger integral representation of the Coulomb Green 
function26 : in the dipole approximation4 and with retardation effects5; 

(iii) analytic methods in L~ [SU(2)], by use of the Fock method and the Schwinger integral representation and the 
harmonic analysis on SU(2): in the dipole approximation6 and with retardation effects1, 7; 

(iv) algebraic techniques, by use of the dynamical group 0(4,2), with retardation effect8
-

10
; 

(v) numerical techniques, by numerical integration of inhomogeneous differential equations. 11,12 

None of these methods is able to give a general compact analytical expression for the matrix elements I~N'(E) 
between any initial and final states. 

It is evident that our expressions provide their own analytic continuation in contrast to the usual situation. 

The detail of the method is given in Appendix C. 

Let us define the two elements of Sp(1, 1), 

We shall now examine the results. 

h ___ 1_( Kl+ -R1_) h
2 
___ 1_(K2+ 

1 - 2,fjiJi" - K 1_ R1+' - NpoP n, K2_ 
K 2_) ~ x/2 0) 
K- ,andexp[(x/2)uj=e -/2 

2+ 0 X x , 

where 

Pn=(-2mEn)I/2, Pn,=(-2mEn,)I/2, po=(-2mE)I/2, K 1.=(Po±p",k1), K 2.=(PO±P",k2). 

Let us put v=mctz/Po. 

(3.3) 

Then, we obtain for the matrix element (3.1) the following integral representation 

(fm,(E) = - m v(nn'rl/2 6, c N6 N'(E2)Cho (El)nO fo +~ dx evxr10NO (g(x», (3.4) 
NO' NO 

with 
1 (K2+Kl+e-X/2 - K2_Kl _ex/2 K2+Kl_e-x/2 - K2_Kl+e X/2 ) 

SU* (4):3 g-1 (x) = (hi exp[ (x/2)u jh2)-1 = fiiIi:; _}{ R e-X 12 + K K eX 12 _ K K e-x 12 + K K eX 12 • 
4Po P.Pn' 2- 1+ 2+ 1- 2_ 1- 2+ 1+ 

(3.5) 

The matrix elements C NN'(E) are given by (D2). We can show that 

1- K2_Kl+e-x/2 + K2+Kl_ex/2 1 < 1- K2}(I_e-x/2 + K2+Kl+ex/2 1, (3.6) 

which corresponds to the particular case given in Appendix A. Expression (3.4) can be reduced to a finite sum of 
integrals q~ defined byl,7 

where 

FI is an Appell function. 27 Thus 

no fo +ro dx evxnoNij (g(x» = 6, q,~NO (hI> h2) q~;V(K2_Kl_' K2+KI+)' 
q, q 

The expression of the coefficients C'1~NO (hI> h2) is given in Appendix E. 
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where 

( ') r = r,( if no = n< r n' if no = n) 
n~=sup no,no, < rn if n6=n<' r)= rn if n6=n) , 

inf 
For n=2, n'=1, l=l'=m=m'=O, this expression is in agreement with Ref, 3, Particularly, for N=N', and 
El =E2 =2 (elastic scattering), we give a complete expression, 

(3.9) 

(3.10) 

PN N(E) = - n
4
w 'B 1AIIO Sn_t, n-t (lo, II) + B lIoSn+l, n+l (lo, II) - 2C lIoSn-t, n+l (lo, II)}, (3. 11) 
n /0 

where 

(1) Snon' (lo, II) 
o ( 1I)_2(no+nQ) = (non6(no -lo -1) 1 (no -10 - 1) 1 (no + lo) 1 (no + 'o)! 11 /2 1 + ;; 

, "<-'0-1 (1 - 112/n2)2 q+">-"«411/n)2"<-2q 
x ( 1 )no-no /, -,-----:-----'=--"-,-7 

- .. -U (n< -lo-l- q)I (n< +lo - q)[ (n> - n< +q)lq! 

x r(n<-q-lI)r(2q+n>-n<~ F(n +n' n -q-II'n +q+1-1I'~) 
r(q + n) + 1 _ II) 2 1 0 0, < , > , n' 

n~ = sup (no, no), 
inf 

A (n+l)(n+l-1)(l+m)(l-m) (n-l-l)(n-l-2)(1+1+m)(l+1-m) 15 
(2) 110'= n(n-1)(21+1)(2l-1) 15 /-110 + n(n-1)(21 +1)(2l +3) ,.1/0' 

(n-l)(n-l+l)(l+m)(l-m) + (n+l+l)(n+l+2)(1+I+m)(l+1-m) 6 
BlIo'= n(n + 1)(21 + 1)(21-1) 6'-1'0 n(n + 1)(2l + 1)(21 + 3) 1+110' 

C _(n+l)(n+l-l)(n-l)(n-l+l»)1/2(I+m)(l-m) 0 
"0 - n2(n - l)(n + 1) (2l + 1)(2l - 1) 1-1/0 

(
n - Z - l)(n - Z - 2)(n + Z + l)(n + l + 2») 1/2 (l + 1 + m)(Z + 1 - m) 

+ n2(n-l)(n +1) -(2Z + 1)(2l +3)- 0'01/0' 

For n = 1 and 2, l = m = 0, this expression is in agreement with the results of the previous works, 1-4 

CONCLUSION ACKNOWLEDGMENTS 

All these results can be analytically continued to 
positive energies E = - P6/2m > ° or equivalently to 
purely imaginary values of II, Moreover, the method 
can be easily generalized to the higher order processes, 
where the following integrals must appear at the end of 
the calculus, 

The author expresses his gratitude to Professor Y. 

i +~ dXj ••• fo +~ dxnexp(t ViX;) TL,,((il hie (XI/2)U\hn+l) ' 
o 1=1 0 0 1.1 } 

h j ESp(I,I), (3.12) 

Then one has to express (3.12) in terms of known spe
cial functions, Finally, similar group theoretical meth
ods can be used to calculate the matrix elements 
IN N·(E) between arbitrary continuum states. These dif
ferent cases will be dealt with in another work, 
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Heno, Professor M. Gavrila, Dr. S. Klarsfeld, and 
Dr, A. Maquet for useful discussions. 

APPENDIX A 

Our aim is to calculate the integral 

S~N,(g) = fsu (2) dl-l (0 I e ~ + d 1-2y N'(g-1 • ~)yt(~), (AI) 
for 

g-I=(: ~)ESU*(4), lei < Idl, 
U is easier to evaluate the integral 

5;. N' (g) '" J sv(2) dl-l (~) I e ~ + d 1-2D~im2 (,1;_1 , ~)D~~m2 m, 
(A2) 

J.P. Gazeau 1045 



                                                                                                                                    

N"'jm lm 2, 

whe~e the D~lm2{x) are the homogeneous harmonic poly
nomlals On H deduced from the usual matrix elements 
of the unitary irreducible representations of SU(2) by 
the homogeneity formula28 

Di (x) -I 12iDi (~) 
mlm2 - X mlm2 Ix I ' 

In another paper23 we have established three funda
mental properties verified by these polynomials: A 
finite difference equation, an addition formula, and an 
expansion formula. 

Putting 

(J~ = [(j - m) I (j + m) ! 1-1 / 2, 

a i =a1 a i 
mlm2 ml m2' 

we have successively; 

a finite difference equation: 

(O~lm2)D~lm2 (x) 

=( ~,) p, (a~-::mim2-m2)D~-/:m'tm2-m2 (x) 
ml ,m

2 

x(a~'m' )D~,,", (x); 
1 2 1 2 

an addition theorem, 

x,x'Eli, 

a~lm2D~lm2{x +x') 
:0 ai-j' DJ-J' ( ) l' Dl' (') 

, , I ml .. mim2-m2 m1 ... mlm2 ... m~ X Um1m2 mimi X ; 
J,ml,m2 

an expansion theorem: 

X,X'Eli,lxl<lx'l: 

(a l rllx + x' 1_2 Di ({x + x,)-I) 
'"1'"2 '"1'"2 

<0 ( 2j' j' J' j>j' -1 ,<-; , -1) 0mimiDmimi(x)(om1>mim2>mi) 
},ml,m 

x lx' 1-2 D,>r, ,(x,-I) 
m1 +m2m2+ mt ' 

Let us add the fundamental group representation 
property, x,x' E lH: 

D~im2(xx') =:0 D~lm'(X)D~'m2(x'), 
m' 

Combining these four formulas, we easily obtain the 
"four Euclidean conformal transformation" formula, 
lexl < Idl, 

1 ex + d 1-2D~,,", «ax + b)(ex + dt1) 
1 2 

= :0 D~;" «ax + b)) \ ex + d 1-1D~m2 {(ex + drt) 

" 
'0 F(jm1m2;j'm;mf;g)~f,za71 D~lm2(x)' 

i.ml,m2 °ml0m l 

where 

F(jmlm2;j'mfmf;g) 

Xo '0 0 (_1)2'3 
'"42' m2+m31 '"41' m2·m2~ mi' '"12+'"32 

(0 14 )-2jdZj-<2i4+1l n ali Dll () 
m41m42 . muml2 mllmt2 g i 

.=1 

withg1 =a, g2=b, g3=C, g4=d, 
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(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

By use of the unitary transformation for connecting a 
given j = (n - 1)/2, the set of the !J nlm' and that of the 
D' 

'"1 m2' 

( )

1/,l 
!Jnlm{x)= 2:2 i ' '0 (2l+1)112(_1)J-m2 

ml,m2 

x(j j l)Di () 
ml - »12 m 101m2 X , 

(A9) 

we finally obtain (n = 2j + 1, n' = 2j' + 1): 
, ' ( ')1/2 S'~N,(g) = i' -'[ (2l + 1 )(2l + 1)]1!2 : 

x '0 (_1)J-m2+J'-mi-l( j j 
ml' m2 }nl - }n2 

l )( ., 
;11 ~11 j' I') 

- 1112 m' 

(A1D) 

ForgESL(2,R)cSU*(4), this expression is reduced 
to a hypergeometric polymial, 

, 1/2(n> -l-I)! (n> +l) !)1/2 
S~N,(g):== OII,Omm.(: ) n< -I - 1)! (n< + I) I 

xd-(n>+I+1)an<-I-l (y(b, e»n>-,,< 
(n)- n<)! 

x 2Fl (l + 1 - n<, n> + l + 1; n> - n< + 1 ; ~~) (All) 

n>=sup(n,n'), y(b,e)= ' >- , { 
b n -n' 

~ inf - C n>=I1, 

In the latter case, another expression is deduced from 
the following formula, 27 

2F l(a, 8; y;z) = (1- Z)""'2 F l(a, y-!3; y; Z ~ 1) 

SI ()=o 0 ,(n'(n>-Z-1)!(n>+1)!)1/2 
NN' g lI'mm n(I1(-l-l)!(n(+l)! 

xd-(n>n') (r(b, c»n>-"< 
(n> - 11<)! 

X2F 1(l + 1- n(, - (n< +l),n> - 11( + 1; - be). (A12) 

APPENDIX B 

We state here the formula (2,13) 

nN,(h) = ~ rt;N (h- t ), for all hE Sp(l, 1). (2.13) 

For all hE Sp(l, 1), we have the following 
f actorization23 

h = ka (t)k', 

where k, k' E Spin(4), maximal compact subgroup of 
Sp (1,1), 0' (t) E A, one parameter subgroup of the 
matrices: 

a(t) = (COsht/2 sinht/2) 0:- 1(1) = 0' (- t) 
sinht/2 cosht/2' ' 

Thus 

r~/m, n'l'm,(k0. (t)k') 

J.P, Gazeau 
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Tl is unitary when restricted to Spin(4). Thus 

T!'m.n~ .. (k) = T!:/i,I'I,,,,(k-
1
), 

T!..,.", rfl'm,(k') = T~ht'.n'A" (k,·l). 

On the other hand, we can state from (A12) that Tl 
satisfies 

Let us also remark that this matrix element is real. 
Inserting (B3) and (B4) in (B2), we finally obtain: 

T~z",. n"·m·(k O! (t)k ,) 

n' 
Th (k,·1.1 (t)k-1) = --;; n'I'm', nlm a 

_ n' Th (h·l) 
- 1'2 ""m',nlm 0 

APPENDIX C 

(B3) 

(B4) 

(B5) 

In this appendix, we shall examine the details of the 
calculation of the matrix elements INN'(E). 

In a first step, we suppose E negative and we re
express the calculus on LUSU(2» as in Refs. 7 and 26 
by means of: 

(i) the inverse stereographic projection (1.6) or (2.6), 

~n= s·I(P n)· (Pn, p), ~~.= s·I(Prf) ' (P n" p'), 
(Cl) 

where 

Pn=(-2mEn )I/2, p n,=(-2mEn.)I12, po=(-2mE)I/2, 

and consequently 

(
p'1,+p2

) 
P'E{= 2fJ--:- ~n'eh 

(
P

2
'+P

I2
) P"E2= _n

2pn
• ;~"E2; 

(C2) 

(ii) the Fock transformations (1.13): 

Y NEfi(Pn) - J~ly N= l/JN, 

Y N.EH(P,,) - J;JY N'= l/JN'; 
(C3) 

(iii) the Schwinger-Sturmian expansion26 of the Cou
lomb Green function, taking into account the retardation 
effect: 

(exp(ik1 • r)G(E) exp(ik· r»(p, p') 

= G(E)(P - k1J p' + k:!) 

= _ m (p~ + I p - kll2) .1(pij + I p' + k212) .2 
Po 2Po 2Po 

(C4) 

where v=maz/po, and hi and h2 are elements of Sp(l, 1) 
induced by the general boosts in H, 

Kl = (Po - Pn, - kt), K z = (Po - Pn" k:!), 
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and the inverse stereographic projections 

hi1 = s-1(PO)tK1S (Pn), 

h2 = s-1(PO)tK2S(Pn')' 

By introducing 

Ki~= (Po±Pn,kt), 

K2~ = (Po ±Pn" k:!), 
we obtain 

hi = __ 1_ ( Kl+ 
'l,fPoP n - K 1• 

h _ _ 1_(K2+ K 2.). 

2 - 2,jPoPn' Kz_ 1(2+ ' 

(C5) 

(C6) 

(iv) the relations (1, 9) between the scalar products of 
the two Hilbert spaces L~(R3) and L~(SU(2», 

Finally, we have to compute 

i2
N
N'(E)=-!!!:. (p

n
p

n
.)1/2 6 (1- ...::.)_1 

Po Nl nj 

x (~~" ez Y N', 72 (hil) Y Nj)H(P
n
') 

X (Tz(h1)YN1 , ~n'EIY N)H< ) 
'n ' 

where T2 is defined by (2,9). 

Reducing the product ~. E Y NW is easy. One may de
fine an operator C(e) which is the image of an element 
of the SU* (4) enveloping algebra under its representa
tion in L (L~ (SU(2))). 

The matrix elements C N'N(e) are given explicitly in 
Appendix D: 

~·eYN(~)=C(E)YN(~) 

= ~ C N'N(e) Y w(O. (C8) 
N' 

Thus, in terms of the matrix elements of the represen
tation T2 of Sp(l, 1) and of the operators C(el) and C(e2), 
Eq. (C7) is written: 

1~,v'(E) = - m (p n pn,)1/2 0 C N
O
N,(E2)C'h

o 
(el) 

Po NO' NO 

X [~ (1 -~ r T~Nl (h21)T~ONj (htlJ (C9) 

By use of (2.12) and (2.14), the expansion between the 
brackets is equal to 

~ (nl- v)"IT~ON1(hl)T~INQ(hl)' 
N j 

NOW, as 9,26 

(nt - 11)"1 = 10 +~ dx exp[ (v - nl)x], 

let us put 

(CI0) 

(ell) 

_(1 0) [/ (exP(X/2) 
U= 0 -1 ' exp (x 2)u]= 0 exp(-°X/2»)' 

and realize the following homogeneity property, 
from the integral (2.17) 

(C12) 
deduced 

exp(- nix) T~ONt (hi) = S~ONj (hi exp[ (x/2)u j), (CI3) 

Since I (exp[ - (x/2}u ]h). ~ I < 1 for all x > 0, ~ E SU(2), 
hESp(l,l), S1

0
Nj(h l exp[(x/2)u]) is merely the matrix 

element of the local representation (2.16) of SU* (4), 
and we can apply the fundamental property of the group 
representation to sum the expansion (CtO) and to obtain 
Eq. (3.4), 
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APPENDIX D 
We give in this appendix the expression of the matrix 

elements C N'N(e) defined by (C8), 

~. E Y N(~) '" C (e)Y N(~):= 6 C N'N(e) Y N'(~)' (C8) 
. v' 

For all N=(n, Z, 111), let us define the numbers: 

a(n Z):=.!(n+Z)(n+Z-l»)1/
2 

(1) , 2 n (n _ 1) , a ,0 = 0, 

(
l+m)(Z-m) )1/2 

biZ, m):= (2l + 1)(2l _ 1) , biD, 0)= 0, (Dl) 

(
I + m)(l + m _1»)1 / 2 

c(l,m)= (2l+1)(21-1) ,c(O,O)=O. 
Then 

C N'N(e) =E/imm,T~,. n',' + ~(E:r + iE y )6m_1• m,cr,:l.n'l' 

where 
(D2) 

r::'.n'!'= 6n_I,n,(6,_I".a(n, [)b(Z, m) - 6'+I,I,o(n, -Z-I) 

x b(Z + 1, '1/» - On. I. A01_l,I.a(1l + 1, -l)b([, 111) 

-%l./,a(n+l,Z+I)b(Z+I,m», 

cr,:"n'I' = 6n_1,n,(O/_I,I,a(n,1)c(Z, m) 

+ 61+1• I ,a(12, -l- l)c(l + 1, - Ill» 

- 6n+l• A6/_1./, a(n + 1, - l)c(Z, Ill) 

(D3) 

+ o,+t.r,a(n + 1,1 + l)c(l + 1, -111». (D4) 

APPENDIX E 
In this appendix, we make explicit the coefficient 

C"/N'(lzl' h2 ) appearing in Eq. (3.8)0 If we consider 
00· 

the expression 

T~ONO (g(x» '" S~ONO (g(x» 

which is given by Eq. (AtD), we note that it is a ques
tion of expanding, in powers of e-x and I K2+KI. 
- e-xKz_K1_ \, the function 

j no - 1 n6 - 1 ,\ £\--2- >J11 1112;-2- m fm 2;g(x); 0 

Let us note that g-l(x), given by Eq. (3.5), is the sum 
of two matrices, 

-1( ) e
r

/
2 [(-K2J<t_ -K2_K1+) 

g x = 4PG";PnPn~ K2+Kl_ K2fil+ 

+ e-x ( ~2+~1+ ~2~1_)J (El) 
- K2_Kl+ - K2_Kl_ • 

Thus, by use of the homogeneity properties of the 
poly~omials D~lm2 and of the addition theorem (A5), we 
obtam: I 

. no - 1 . I no - 1 
)0=-2-' )0=-2-' 
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q,~NO (hi> h2) = 16P5 PnP n' [non~ (2lo + 1 )(2lo + 1 )Jl/2i-1l0 +10) 

X 0 0214.1,.' 62[j1/+1,,,010';I·J2 
Ji,ji,mi~,mi~ 
mit 1112_ mit mZ 
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x (jo 
ml 

jo 

AI= - K 2_K1_, A2 = - K2_Kl+ • 

A 3=K2+K1_, A4=Kl+K2+1 

Bl =K2.K1+, B2 =K2.Kl_, 

Ba = - Kz_Kl+> B4 = - K 1_K2_. 
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Invariance and conservation laws for Lagrangian systems 
with one degree of freedom 
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For a general class of linear transformations of both the dependent and the independent variable in 
Lagrangian systems with one degree of freedom, we investigate the relationship between invariances for 
the Lagrangian, the equation of motion, and a constant of the motion. Unlike Denman's work on this 
subject, we try to show that for every invariance in the equation of motion a Lagrangian can be found 
with the related invariance. Furthermore, a constant of the motion is considered as being implied by the 
invariance of the equation of motion if it has the same invariance as the Lagrangian. 

1. INTRODUCTION 

In a series of papersl -
4 Denman investigated the 

problem of invariance and conservation laws in clas
sical mechanics from a viewpoint differing from the 
usual one in that both concepts are not necessarily 
related to some property of the Lagrangian of the 
system. He shows by various, mostly one-dimensional 
examples how the equation of motion can have some 
invariance property and induce some constant of the 
motion without a corresponding symmetry in the 
Lagrangian. If at first sight this is surprising, it 
becomes evident as soon as one realizes that the La
grangian governing a system of differential equations 
is far from unique. This fact was systematically studied 
by Currie and Saletan, 5 who introduced the notion of 
q-equivalent Lagrangians. Perhaps it is worth men
tioning that these authors used the term "fouling" when 
talking about a transformation from the commonly used 
Lagrangian of the problem to an equivalent Lagrangian. 
So one could ask if one is not "fouling" the symmetry 
in considering Lagrangians which do not have the in
variance property of the equations of motion. 

To be more precise let us take the following example: 
the equation of motion of a linearly damped oscillator, 

q+2yq+w~q=O, (1) 

is autonomous and therefore invariant for time transla
tions. Denman3 points out that (1) can be derived from 
the Lagrangian (introduced by Bateman6 ), 

L = ~e2rt(q2 _ w~q2), (2) 

which is obviously not time-translation invariant. 

The equation of motion (1) induces a constant of the 
motion which obviously cannot be considered as cor
responding to an invariance of the Lagrangian (2). How
ever, there exists a time-independent Lagrangian 
governing (1), namely, 7 

. + (.+ ) L = LJ.!l arctan q yq 
wq wq 

- ~ In[w2q2 + (Ii + yq)2], (3) 

with w2 = w~ - y2. (4) 

Although this Lagrangian is less elegant than (2) it 
allows retaining the invariance throughout the whole 
description. It is this feature that we want to emphasize 
here_ We first consider a general linear transforma-

tion of both the dependent variable q and the independent 
variable t in the form 

Q= aq +bt+"A, 

T = cq + dt + fl, 
(5) 

and investigate under what conditions an invariance of 
the Lagrangian for this transformation induces a cor
responding invariance for the equation of motion. In 
this way we systematically come to ten types of basic 
transformations including all types of transformations 
discussed by Denman, together with some cases of 
periodicity in one of the variables, Then for each 
of these basic transformations we try to treat the 
inverse problem, and the essential difference between 
Denman's approach and ours can be explained as 
follows, Starting from an equation of motion which 
exhibits some transformation invariance Denman often 
mentions the partial differential equation which must 
be satisfied by the Lagrangian in order to produce 
such an invariant equation of motion. Then he looks 
for a particular solution of this equation with no in
variance properties at all, while we just intend to show 
that this equation always has a particular solution with 
corresponding symmetry (here the words symmetry 
and invariance are used as synonyms). A second dif
ference of conceptual nature is related to the notion of 
"constant of the motion implied by an invariance of the 
equation of motion". For Denman a constant of the 
motion is implied by the invariance of the equation of 
motion if this invariance suggests a substitution which 
reduces the second- order differential equation to a 
first-order one which then yields the first integral by 
a simple quadrature. Respecting the philosophy of 
keeping the symmetry throughout every aspect of the 
description of the problem we would like to call a 
constant of the motion being "implied by the invariance 
of the equation of motion" if it exhibits a similar in
variance of the Lagrangian. With this concept we can 
associate a constant of the motion to invariances which 
do not imply a first integral in Denman's approach 
(like the case of time or coordinate inversion). For the 
damped oscillator (1), for instance, we simply require 
the constant of the motion to be time-independent as 
well. This gives 

<P = ~ In[ w21 + (q + yq)2] - 2. arctan q+ yq = c, (6) 
w wq 

which here coincides with Denman's "implied constant 
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of the motion" ,3 and is equivalent to the constant 
Hamiltonian also mentioned by Havas, 7 

2. GENERAL CONSIDERATIONS 
Suppose that a given Lagrangian L(q,q,t) is invariant 

for the transformation (5). By this we mean that 

L(q,q,t)'=L(Q,Q', T), (7) 

where 

Q' '= dQ = at} + b 
dT cc1 + d ' 

(8) 

and 
A'= ad - bct O. (9) 

For the general considerations of this section the 
parameters a, b, c, d, 11., and fl. may be prescribed con
stant values or may run through some arbitrary param
eter family. Of cours e, if too many parameters may 
take an arbitrary number of values, only a trivial con
stant or even zero will satisfy an invariance condition 
like (7), but this is not important because we will 
select afterwards from (5) only the interesting cases. 

If we denote the equation of motion resulting from L 
by 

Ii + j(q,q, t) =0, (10) 

then j is determined by 

a2L, a2L aL a2L 0 

aqaqq+aqat --aq=aq2 j(q,q,t). (11) 

A straightforward calculation shows that (10) will be 
invariant for the same transformation (5) if and only if 

j(q,q,t),= A-l(cq + d) 3j(Q, Q', T), 

which by (11) yields 

(12) 

c[a
2
L (0£ + 0 O£) _ 2aL ( a

2
L 0 +~];:_ aL)] =0 

ac12 at q aq aq aqoq q oqat oq . 
(13) 

Apart from the unsignificant case of a Lagrangian 
canceling the term between square brackets, we see 
that the equation of motion inherits the symmetry of 
the Lagrangian for an arbitrary transformation of the 
form 

Q=aq+bl+lI., T=dt+ fl., 

with ad* O. 8 

(14) 

The inherited invariance for the function j is given 
by 

j(q, q, t) = (d2/ a) j(Q, Q' , T). 

As is known, in the case of one degree of freedom, 
every second-order differential equation linear in q 

(15) 

can be derived from Hamilton's variational principle. 
This is simply the interpretation of the fact that under 
suitable conditions (upon which we do not want to insist 
here), Eq, (11) with givenjalways yields solutions for 
L. The point that interests us now is whether there can 
be found a solution for L satisfying (7), when j has the 
invariance property (15). A t the same time we look for 
a first integral of the system, i. e., a solution of the 
equation 

(16) 
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having the same symmetry: 

cp(q,t1,t),= cp(Q,Q', T). (17) 

Now it is easy to prove that if cp(q, t1, t) is a solution of 
(16), where j satisfies (15), then 

<I>(q,q,t) = cp(Q,Q', T) (18) 

is another solution. Indeed, 

a<I> 0 _l<I> + a<I> = l.!P.. 0 _E:. j~ +b acp +df!.!t 
aq

q 
aq at aaQ q d aQ' aQ aT 

= d [(at] + b) l.!P.. _!:. j~ + a cp ] 
d aQ ~ oQ' aT 

=d[~~Q'-j(Q,Q"T)a~ +~~J 
=0, 

in view of the assumption, 

This is a property similar to the "related integral 
theorem" in the work of Katzin and Levine. 9 An analo
gous property can be shown to hold for the Lagrangian: 
if L (q, q, t) is a solution of (11) with j satisfying (15), 
then 

A(q,q,t)=L(Q,Q', T) (19) 

is another solution. 

However, we want something more, namely a solu
tion for cp and L, such that cp(q, q, t) '= <I> (q, t1, t) and 
L(q, q, t) '= A(q, q, t), 

Before going into the details of this question, we 
want to make the following remark. Suppose for a 
moment that we have solved the problem and that cp 
is a symmetric solution of (16). What are the conse
quences of the eventual existence of a second, inde
pendent solution 1jJ with the same property? 

Let us put 

cp(q,q, t) =Ci, 

</!(q,q, t) =(3, 

Ci and (3 being arbitrary constants. 

(20) 

(21) 

These two first integrals completely determine the 
solutions of the equation of motion. So suppose that 
(20) can be solved for q, giving 

q=ql(Ci,c1,t) 

and that 

X(Ci ,q,t),= 1jJ(ql(Ci ,q,t),q, t) ={3 

can be solved for q, giving 

q=Ql(Ci,(3,t), 

so that the solution finally has the form 

q(Ci, (3, t) '= ql {Ci, ql (Ci, (3, t), t). 

Then using the symmetry of cp and </!, we first get 

Ci '= CP(ql(Ci ,q,t),q, t),= cp(aql (I}', q, t) + bt +11., Q', T), 

from which it follows that 

ql(O' ,Q', T),=aql(Ci, q, t) +bt+\, 

Using this result, we obtain 
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x(a, Q', T)", tl,J (q1(1\' ,Q', T),Q', T) 

so that second 

= <J!( aq 1 (I\' , q, t) + bt + A, Q' , T) 

= <J!( ql (a, q, t), q, t) 

= x (Il' , q, t), 

{3= X(QI ,£I1 (a ,(J,t), t)= X(1l' ,d""1(aQ1(0' ,{3, t) + b), T), 

from which it follows that 

Q1(QI,{3, T)=d""l(a(jl(a,{3,t)+b). (23) 

Finally we get for the solution 

or 

q(QI , {3, T) = q1 (01 ,£II (0' , f3, T), T) 

=q1(QI,d""1(aQl(QI,{3,t)+b),T) [from (23)] 

=aQl(a,Q1(a,{3,tl,t)+bt+A, [from (22)] 

q(QI, (3, T) = aq(a, {3, t) + bt + A. (24) 

Now remember that we would like to call a sym
metric first integral the constant of the motion implied 
by the invariance of the equation of motion. Perhaps 
such a terminology is only justified when this special 
constant of the motion is unique (apart from functionally 
dependent solutions). To see if this is the case for 
some value of a, b, A, d, and j.L, it will be enough to 
control whether the identity (24) is satisfied or not, 
However, we prefer to maintain our terminology in all 
circumstances and consider the cases where (24) holds 
as degenerate ones, An example of such a degenerate 
case is easily found when j is T periodic in t and all 
solutions of (10) are periodic with the same period. 

Returning to the main problem, we do not think that 
anything can be said about it in all its generality. 
Therefore, we will separately investigate the ten basic 
transformations contained in (14). These basic trans
formations are obtained when the influence of only 
one parameter is taken into account, once as a free 
parameter and once as a fixed one, So we distinguish 
as follows: 

(i) time translation: 

a=d=l, b=A=O, j.L free; 

(ii) time-scale transformation: 

a=l, b=A=j.L=O, dfree; 

(iii) coordinate translation: 

a=d=l, b= fJ.=0, A free; 

(iv) coordinate-scale transformation: 

d=l, b=A=fJ.=O, a free; 

(v) Galilean transformation (or "velocity-transla
tion"): 

(25) 

(26) 

(27) 

(28) 

a=d=l, A= fJ.=O, b free; (29) 

(vi) time periodicity: 

a = d = 1, b = A = 0, j.L = T arbitrary fixed; 
(vii) fixed time-scale transformation: 
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(30) 

a==l, b=A= fJ.=0, d arbitrary fixed; 

(viii) coordinate periodicity: 

a == d == 1, b = fJ. == 0, A == P arbitrary fixed; 

(ix) fixed coordinate-scale transformation: 

d==l, b=A=fJ.=O, a arbitrary fixed; 

(x) "velocity periodicity": 

a=d=l, A=fJ.=O, b==Parbitrary fixed. 

(31) 

(32) 

(33) 

(34) 

In studying these cases in more detail in the next sec
tion, we will conclude for the existence of a symmetric 
L or cp whenever we are reduced to a partial differential 
equation for which well-known existence theorems can 
be proved under fairly general regularity conditions. 

3. EXAMINATION OF THE BASIC TRANSFORMATIONS 

(i) Time translation 

Suppose that j satisfies (15) which with (25) simply 
means thatj is independent of t. We look for a solution 
of (11) and (16), satisfying the invariance properties 
(7) and (17) which again reduce to the requirement of 
time-independency. As a result we only have to find 
in this case a function L(q,£I) and a function cp(q,q) 
satisfying, respectively, the equations 

a2L . aL • a2L aqaq q - -aq= !(q, q) aq2 , 

o¢o j( ')o¢ ° -aqq- q,q o£I = . 

(35) 

(36) 

Such solutions are assured by classical existence 
theorems. The symmetric solution for cp is here uni
que. This can be' seen directly from (36) or from (24), 
taking in this case the form 

q(QI ,{3,t + fJ.)= q(a ,(3,t). 

In order to violate the unicity of the symmetric cp, this 
identity should have to hold for all fJ., which is not 
possible (isolated constant solutions of (10) are ex
cluded since QI and f3 are arbitrary free constants). 

Incidentally, the existence of a time-independent 
Lagrangian in this case was already mentioned by 
Havas. 7 

(ii) Time-scale transformation 

From (15) and (26) we can easily deduce that in this 
case j is of the form (see also Denman2 ) 

j(q, q, t) = (1/f)!1 (iq, q), (37) 

while the desired solutions for Land ¢ must have the 
form 

L(q,q, t) = Ll (tq, q), 

¢(q, q, t) == ¢1 (tq ,q). 

(38) 

(39) 

Putting u=fq and taking into account (37), (38), and 
(39), Eqs. (11) and (16) can be written as partial dif
ferential equations in the two independent variables q 
and u: 
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(40) 

u (?.!b. + ?.!b.) _ ~ (u q)?.!b. = o. aq au l' au (41) 

So again solutions for Land ¢ of the desired form can 
be found. The identity (24) here becomes 

q(a,f3,dt)=q(a,f3,tl for all d, 

which cannot hold so that the implied constant of the 
motion is unique. 

(iii) Coordinate translation 

Now 1 is independent of q and we look for solutions 
for Land ¢ of the same form. They can be found as 
solutions of the reduced equations 

a2L . c a2L 
aqat =j(q,t)---aQ2' 

and 

(42) 

- I(q t) ~ + a ¢ = 0 , aq at . (43) 

The identity (24), here of the form 

q(Ci ,{3, t) = q(OI , f3, t) + A, 

cannot be satisfied for all A so that the implied constant 
of the motion again is unique. 

(iv) Coordinate-scale transformation 

According to (15) and (28) 1 is now a homogeneous 
function of the first degree in q and q, 

I(aq,aq,t) = al(q,q, t), for all a, (44) 

while Land ¢ are required to be functions of z and t, 
where (see also Denman2

) 

Such solutions again can be found since with (44) and 
(45), Eqs. (11) and (16) can be written as 

The solution for ¢ is unique because the identity 

q(Ci ,{3, t) = aq(OI ,{3,t) 

is not true for all a. 

(v) Galilean transformation 

In this case 1 is given to be of the form (see also 
Denman2 ) 

(45) 

(46) 

(47) 

l(q,q,t)=F(w,t), (48) 

with 

w=tq - q. (49) 

A Langrangian L and a constant of the motion ¢ = c 
are called symmetric here if they have the same func
tional form as I. Starting from such a structure, 
Eqs. (11) and (16) become 
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2 OL =F(w t). t2 a2
L 

aw ' iJw2 , 

iJ¢ iJ¢ 
-F(w 0- t- +- =0 , aw at ' 

so that symmetric solutions for Land ¢ here too 
exist and the one for ¢ is unique since the identity 

q(Ci ,{3, t) =q(Ci ,(3, t) + bt 

cannot hold for all b. 

(vi) Time periodicity 

(50) 

(51) 

Given a function which is T periodic in t, we were 
not able to prove the existence of a periodic Land ¢ 
satisfying (11) and (16). However, we believe that they 
exist in fairly general circumstances. More particular
ly, concerning the first integral ¢, many examples can 
be found such as damped linear oscillators with a 
periodic forcing term, for which the equation of motion 
has no periodic solutions and still a periodic first in
tegral can be constructed. The only paper known to us 
in which some attention is paid to the problem of 
finding periodic solutions of linear first order partial 
differential equations with periodic coefficients is due 
to Levi-Civita. 10 

(vii) Fixed time-scale transformation 

Suppose that j has the invariance property 

j(q, q, t) = ~ I(q, qd-1 
, dt) (52) 

for some arbitrary but fixed d. According to (7), (17), 
and (31) we look for an Land ¢ with the property 

J(q,q,t);E](q,a1q,dt). (53) 

Assume now that there exists a positive integer n such 
that 

Ii" = 1 

and put for a given function F(q, q, t) 
Fk (q, II, t) ==- F(q, d;kq, dkt). 

(54) 

(55) 

Then if Land ¢ are arbitrary solutions of their deter
mining equations 

~1 ~l 

L = "£ Lk (q, q, t) and <I> = "£ ¢k (q, q, t) 
k"O k·O 

(56) 

produce the desired symmetric solutions. 

Indeed, from the general properties of the preceding 
section, Lk and ¢k are known to be solutions too of (11) 
and (16), so the same is true for L and <I> by the linear
ity of the equations. Furthermore, L and <I> trivially 
satisfy a relation of the form (53) in view of (54). 

Here a degeneration can occur (in the sense of non
unique symmetric constant of the motion) if all solu
tions of (10) satisfy the identity 

q(Ci ,f3,dt)==- q(a ,(3, t). 

We were not able to prove the desired results in the 
case where we cannot appeal to a finite group structure 
as implied by (54). Remark, however, that the case 
of time inversion, treated by Denman2 is a special 
case of (54) corresponding to n = 2. 
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(viii) Coordinate periodicity 

Analogous considerations can be made as in the case 
of time periodicity. 

(ix) Fixed coordinate-scale transformation: 

See point (vii). 

(x) "Velocity periodicity" 

See points (vi) and (viii). 

4. EXAMPLE 

In the introduction we have treated the example of a 
linearly damped harmonic oscillator from the point 
of view of time-translation invariance. The symmetric 
(here time-independent) solutions for Land cp were 
given by (3) and (6). 

Now Eq. (1) also satisfies the requirement (44) for 
coordinate-s cale invariance 0 Solutions for Land cp 
which are invariant for coordinate-scale transforma
tions will have to be obtained from the respective 
equations 

_Z2 a
2
L + a

2
L = (2yz + w2) a

2
L 

az 2 az at 0 az2 

-(z2+2Yz+w~) ~~ + ~~=o, 

where z is given by (45). 

(57) 

(58) 

Remark that in order to get a regular (i. e., a 
nondegenerate) Lagrangian from (57), it certainly 
must depend on t. This illustrates that in our approach 
different invariances may not be combined; it will in 
general not be possible to find Lagrangians (and con
stants of the motion) corresponding to more than one 
symmetry. 

From classical elementary methods we can obtain 
the following particuh,r solutions of (57) and (58): 

z + y [ (z + y) ] [(z + y)2J L = ----w- arctan ----w- + wt -;. In 1 + ----w- ' 
(59) 

(
z + 1') cp = arctan -w + wt, (60) 

with w defined by (4). Remark that (60) is identical to 
Denman's implied constant of the motion for this case. 3 

Let us finally consider the special case Wo = 0. Re
garding time-translation invariance and coordinate
scale invariance we then can calculate the symmetric 
Land cp by replacing w by iy in the general expression 
for Wo if- 0. But the equation 

(61) 

now has a supplementary symmetry, namely coordinate
translation invariance> The determining equations for 
the corresponding symmetric Land cp are given by 
(42) and (43). They give rise to the following particular 
solutions, 
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(62) 

(63) 

Remark that (62) corresponds to the Lagrangian (2) for 
Wo = 0. So we could say that it is merely by a lucky 
coincidence that the symmetric Lagrangian implied 
by the coordinate-translation invariance of Eq, (61) 
produces a handy Lagrangian for the extended case 
Woif-Oo 

5. CONCLUSION 
Perhaps the most systematic approach to the problem 

of symmetry and constants of the motion is contained 
in Noether's theorem and its inverse. There the exist
ence of a constant of the motion is linked to an in
variance of the Lagrangian for some one-parameter 
family of transformations. The transformations (14) 
are not necessarily of the one-parameter type, For 
some of these transformations Denman has reduced 
the existence of a first integral to an invariance of 
the equation of motion not connected with a Lagrangian 
governing this motion. By some elementary considera
tions we have tried to re-establish the role of the 
Lagrangian and to launch a new idea concerning the 
implied constant of the motion, which is required to 
inherit the symmetry property, There seems to be 
a notable distinction between the cases where we 
could prove the existence of such a symmetrical first 
integral and the other ones. Indeed, the favorable 
transformations were those generating a finite group 
or a one-parameter continuous group, while the un
favorable ones were generating a discrete infinite
dimensional group. As a final remark we can stipulate 
that an eventual generalization to more degrees of 
freedom is not obvious for the simple reason that even 
the existence of a Lagrangian for a general system 
of second-order differential equations (the so-called 
inverse problem in Newtonian mechanics) is not such 
an easy matter. Remark that we want the system to 
be directly derivable from a variational principle 
(eventually after multiplication with integrating factors, 
see, e.g., Ref. 7). HavasU proved that there always 
exists a Lagrangian for the equivale~ first-order 
system corresponding to any second-order system, 
but this is not the type of Lagrangian we are interested 
in. 

Recently Santilli12
•
13 has been working on two exten

sive monographs on the inverse problem in Newtonian 
mechanics 0 In his second volume13 Santilli also deals 
with the general problem of invariances and conserva
tion laws, more or less in the same spirit as in this 
paper, but for cases in which Noether's theorem ap
plies. 

tH. H. Denman, J o Matho Phys. 6, 1611-1616 (1965), 
2H.H. Denman, J. Matho Phys. 7,1910-1915 (1966). 
3HoH. Denman, Am. J o Phys. 36,516-519 (1968). 
4H• Ho Denman and L.H. Buch, J. Math. Phys. 14,326-329 
(1973) • 

5D. Go Currie and E. J. Saletan, J. Math. Phys. 7, 967-974 
(1966). 

6H• Bateman, Physo Revo 38, 815 (1931). 
1p. Havas, Nuovo C imento (Suppl.) 5, 363-388 (1957) 0 

BThis result can be generalized in the following way. Consider 
instead of (5) a general transformation of both the independent 
and the dependent variable: 
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Q=Q(q,t) jO( TIl 
withJ= ~ ~O 

T=T(q,t) o(q,t)· 
(5') 

Suppose again that L (q ,q ,t) == L (Q, Q' , TI. The condition [re
placing (12) J which must be satisfied by f in order that the 
equation of motion (10) would be invariant for the transforma
tion (5') is more involved here. But it can be shown that the 
invariance of L implies the invariance of (10) if and only if 
oT/ oq = o2T/ CJt2 = O. So T must be of the form admitted in 
(14), but no restriction must be imposed on the function 
Q(q ,f). 

1054 J. Math. Phys., Vol. 19, No.5, May 1978 

9G. H. Katzin and J. Levine, J. Math. Phys. 15, 1460-1470 
(1974) • 

~~T. Levi-Civita, C.R. Acad. Sci. Paris 128,978-981 (1899). 
P. Havas, Acta Phys. Austr. 38 145-167 (1973) 

12R. M. Santilli, The Inverse Probiem in Newfonia~ Mechanics 
[MIT-CTP publication No. 606 (1977); Springer-Verlag, 
Heidelberg, to be publishedl. 

13R. M. Santilli, Generalizations of fhe Inverse Problem in 
Newtonian Mechanics [MIT-CTP publication No. 607 (1977); 
Springer-Verlag, Heidelberg, to be publishedl. 
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On the normalization of one-dimensional lattice statistics 
R. B. McQuistan 

Department of Physics and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, 
Milwaukee, Wisconsin 53201 
(Received 22 November 1977) 

It is shown that the normalization of the statistics associated with the distribution of A-bell particles [A = 1 
for simple particles; A = 2 for dumbbell particles, etc.] on a one-dimensional lattice space, is given by a 
simple, two-term recursion relation. This normalization, for a lattice consisting of N sites, is shown to be 
(l/x+t, where x+ is the real positive root of the equation x A + x-I = O. A general recursion expression 
is also developed that describes the higher order moments of the statistics. 

I. NORMALIZATION 

It has been shown! that A),(q,N), the occupational 
degeneracy for the distribution of q indistinguishable 
X-bell particles [X =1,2,3, .. -J on a one-dimensional 
lattice space of N equivalent sites, is given by 

(

N-q(X-1)\ 

A.~,N)= q ). 

Here A is the number of contiguous sites occupied by 
each A-bell particle. 

(1) 

Equation (1) results from the following considerations: 
There are q indistinguishable A-bell particles and 
N - qA indistinguishable vacant lattice sites, or a total 
of N - q(A - 1) objects. These objects can be arranged 
in the number of ways described by the binomial coef
ficient in Eq. (1). 

One of the purpose of the present paper is to show 
that the normalization, .D.. N, of A.(q,N) satisfies a 
simple, two-term recursion relation. 

A recursion for A).(q,N) may be written t -Q;'-1») ~ ('-:1'-1») + r -1 ~~~ -1') . 
(2) 

Thus, the normalization of A.(q,N) becomes 

[N/ ,1 ~N _ q(A - 0) 
,D.. N = L 

0=0 q 

= [(Ni l /).) (N -1- q(A - 1») 
0=0 q 

+ [(Ni ).)/),) (N - X - q(X-1») 

0=0 q 
(3) 

=),D..N_l + ,D.. N_)" 

where [NIA] is the largest integer contained in NIA. In 
the recursion relation Eq. (3), we take 

N = X, A + 1, X + 2,"', 

with the initial conditions 

(4) 

( 5) 

The initial conditions described in Eq. (5) represents 

the fact that no A-bell particles can be placed on a space 
for which N ~ X - 1. 

To determine ,D.. N we multiply it by x N and sum over 
N = X to "". This yields 

~ ~ ~ 

2:: ).D..NXN= 6,D.. N_1X
N+ 6).D.. N_).X

N
• (6) 

N=). N=). N=). 

This yields 

G).(x) =xG,(x) + ~G,(x) + 1 (7) 

or 

where 
~ 

G).(x) = L ).D..NXN • (9) 
N=O 

If the roots of Eq. (8), ).Sjl(j = 1, 2, 3, ... ,A), are 
all unequal, then 

i. e. , 
, 

D.. N = L k j ).5:' 
j=O 

We note that when A is odd, Eq. (8) has one positive 
real root, (X - 1)/2 pairs of complex roots; when X is 
even, there are two real roots, one positive and one 
negative, and (A - 2)/2 pairs of complex roots. When 
there are two real roots, the absolute value of the posi
tive root is always less than the absolute value of nega
tive root. Thus 

limD..N = ko ).5:, (11) 
N_~ 

where ,So is the reciprocal of the positive root of Eq. 
(8) and where 

ko = lim(l- .SoX)G. (x) • (12) 
Sox-l 

Thus, for A=l, ID..N=2N and for X=2, 2D.. N =I1:, 

where 11 .. is the golden proportion, ill + ../5], etc. 

H is interesting to note that ).N N(X) satisfies the follow
ing recursion relation: 

).-2 

XD..M+N = ).D..M ),D..N + r ).D..M_ +l+j' ),D.. N_1_J 
J=O 

(13) 
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which may be obtained by iterating Eq. (3) with the ini
tial conditions expressed in Eq. (5). 

II. HIGHER MOMENTS 

We define the mth moment of these statistics to be 

1 [Nt ~J 

~JlN(I11):= T L qmA~[q,N]. 
~ N 0"0 

Then from Eq. (1) we write 

1 [~~l 
~JlN(m)=T L qmA~[q,N-1]+A.[q-1,N-1] 

~ N q=O 

1056 J. Math. Phys., Vol. 19, No.5, May 1978 

(14) 

[~~J 

X L [1+(q-1)]mAJq-1,N-1] 
q"O 

CONCLUSION 

Starting with an expression for the occupation de
generacy for A-bell particles distributed on a one-di
mensional lattice, we have shown that the normalization 
satisfies an algebraic equation of order A. We have also 
developed a relation which yields the higher moments of 
these statistics. 

lR. B. McQuistan, Nuovo Cimento 58, 86-92 (1968). 
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On Lie algebraic properties of the step operators acting 
on P or confluent P functions 

Masao Moria) 

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 
(Received 3 September 1976: revised manuscript received 20 July 1977) 

P functions and confluent P (CP) functions are classified into two and five groups respectively according to 
the types of the step operators (SO's) intrinsic to the respective classes of functions. The correspondence 
between the types of the SO's and the realizations of the Lie algebras (j (a, b) and T6 is established as 
foJlows. The modified SO's acting on P functions (SOP's) belong to either of the type A and E 
realizations of ~(l,Q) and T6 respectively. The modified SOC's, namely the SO's acting on CP functions, 
belong to one of the type B, C', en, F, D' realizations oUj (1,0), (j (0, I), (j (0,0), or T 6' 

1. INTRODUCTION 
As is well known, the second order differential equa

tions of mathematical physics are classified into three 
groups by analyticity. 1,2 (1) The first consists of 
Fuchsian differential equations of second order with 
three singular points. The general solution of this group 
is expressed in terms of Riemann's P function. (2) 
The second consists of the equations closely related 
to the confluent form of the preceding type. The general 
solution of this group is expressed in terms of 
Hukuhara's CP function. 3 (3) The third consists of the 
equations with higher singularity such as Mathieu's 
equation and Lame's equation. 

The factorization method for these equations 
originates from Schrodinger. 4-6 It yields the SO's which 
shift up or down the parameters appearing in a solution 
by some integers, and therefore leads to recurrence 
re lations. F or the equations and their solutions grouped 
into (1) and (2), Inui established a unified theory of 
factorizations and recurrence formulas. 7,8 This theory 
is characterized by simpliCity which results from 
utilization of Hukuhara's differentiation formulas. 
Making use of miscellaneous transformations of 
dependent and independent variables about individual 
equations, Infeld and Hull classified the types of 
factorizations into six. 9 As to the solutions of the third 
group, however, there are some disputes about the 
existence of recurrence relations, which have not been 
settled yet. 10,11 

From the viewpoint of Lie algebra, Weisner took the 
initiative of discussion about some of these 
equations,12-14 and Miller set up the comprehensive 
Lie theory of special functions in which the SO's are 
expressed in terms of realizations of the Lie algebras 
(j(a, b) or T6 , 15,16 where the algebraic background of 
the classification of Infeld and Hull is ascertained. 
Now a compreshensive survey of the Lie theory of 
special functions from the standpoint of symmetry and 
the R-separability of the complex wave equation 
(000 - Ou - 02 2 - ( 33 ) >I< = 0 is carried out by Kalnins 
and Miller. 17-21 

In the present work, we aim to fill the gap existing 
between Inui's and Miller's unified theories of special 
functions. Our results make clear the connection 

a)On leave of absence from Chuo University, Tokyo, Japan. 

between the function of differentiation formulas for P 
or CP functions, namely the behavior of the hypergeo
metric parameters (HGP's) when the SO's are at work, 
and the realization of the Lie algebras (j(a, b) or T6 • 

We begin with preliminary definitions in Sec. 2. In 
Secs. 3 and 4, the classification of P and CP functions 
and SO's are stated. A modification of Inui's theory of 
SO's is shown in Sec. 5. Concrete correspondence 
between the SO's and the realizations are given in 
Sec. 6, 

2. DEFINITIONS 

We denote by P the set of Riemann's P functions, that 
is, 

P=P[~l ~1 ~lZJ, ()!p 13i> AiEC, i=1,2, 
()! 2 (32 A2 

(2.1) 

and by cP the set of Hukuhara's CP functions 3,7,8,22 

(2.2) 

The parameters in the definitions (2.1) and (2.2) are 
restricted to satisfy Fuchs' relation 

()!1 + 1)12 + /31 + (32 + A1 + A2 = 1 

and the Fuchs-Hukuhara relation 

respectively. 

(2.3) 

(2.4) 

Replacement of the independent variable by one of the 
expressions 

1 1 
z, 1-z, -, --, 

z 1 - z 
1 

z -1 ' 
z-1 --, 

z (2.5) 

defines a one-to-one mapping from P onto itself. 2,3 Let 
us call this monodromy transformation the M transfor
mation. Replacing the parameters in the definitions 
(2. 1) or (2. 2) by their linear combinations made so as 
not to violate the conditions (2.3) or (2.4), we obtain 
transformations on P or CP. We shall call this replace
ment of parameters the IT transformation. 

Furthermore, if we multiply an element of P by the 
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factor r(z) = za(z - 1)b, or an element of cP by 
r(z)=exp(az)zb, where a and b are complex constants

T 
Fuchs' or the Fuchs-Hukuhara relation will remain 
unchanged. For we have the following formulas 3 ,7,B,22: 

Z.(Z-l)bP[~l ~l :1 J 
0'2 f32 A2 J 

1 00 

i31 + b Al - a - b 
(32 + b A2 - a - b 

~2 K2 a2 

l (2.6) 

exp(aZ)ZbPr~ : z] 

= P [;:f;-;I -b CTl ~ b z]. (2.7) 
Pz + a li2 - b CT2 + b 

Let us call this multiplication by r(z) the r transforma
tion of the element, which is apparently a bijection. 

3. THE DIFFERENTIATION FORMULAS FOR 
P AND CP FUNCTIONS 

In view of the relations (2. 6) and (2. 7), it is known 
that a r transformation gives rise to change of two of 
the parameters appearing in the operand; therefore, it 
can be a kind of SO. However, other parameters can 
change only through differentiation of the function o 3 

In the present work, we consider the sa's in the form 
of differential operator; hence our attention will be 
restricted to the latter parameters. Thus there arises 
a need to consider the derivatives of the elements of 
P and CP. Unfortunately, it is known that the differen
tiation could cause violation of the relations (2.3) and 
(2.4).3 So we should define some proper subsets within 
which the first derivatives of the elements remain. 

Let $ and C $ be the sets 

$ = {j(z) IDf(z) E P}, 

C$ = {j(z) IDj(Z)E CP}, 

where D =d!dz. 

(3.1) 

(3.2) 

Corresponding to the location of zeros in the param
eters of$ or C'l3, they separate into several 
subsets. 3,23,24 When we take the invariance of P under 
M transformations into account, 'l3 is decomposed into 
two disjoint subsets'l3 1 and'l3 2 as fOllows 23

: 

(3.3) 

where 

(3.4) 

(3.5) 
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The same consideration about C 'l3leads us to the 
relation3 ,24 

(3.6) 

where the subset with superscript will suffer a further 
decomposition as is shown later 0 The components are 
distinguished by the location of zeros, namely, 

(3.7) 

(3.8) 

(3.9) 

The differentiation formulas which describe the 
behavior of the parameters under differentiation are 
given as follows 3

; 

[0 1 - j DP 0 0 Al Z 

Ci. f3 A2 

[ 0 1 00 

-P 0 0 Al + 1 
0'-1 f3-1 ~+1 

[0 1 -

'J 
DP 0 f31 Al 

O! (32 A2 

~p[ : 1 00 

131 - 1 Al + 1 
O! - 1 132 - 1 A2 + 1 

L 0 1 00 

=zP 0131 -1 Al +2 
0' - 2 132 - 1 A2 + 2 

=p[i2 
p K 

8
00 0 

= z-2 p 00 al + 1 
K - 2 a2 + 1 

j, (3.10) 

~ 
~. (3.11) 

(3.12) 

(3.13) 
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J 
a-I J 
o 
1 

(3.14} 

Let us consider the conditions for keeping the first 
derivatives within Il3 or C Ij3 respectively. The differen
tiation formula (3.10) tells us that if the product 
(AI + I)(A2 + 1) does not vanish, the right-hand side 
remains within the set Ij3 in particular Ij3 l' Hence D 
is in general an invariant operator in Ij3 l' Successive 
application of D to an element of Ij3 1 will construct a 
ladder of P functions indexed by parameters of integral 
difference. This ladder could consist of finite or infinite 
steps according to the relation between the parameters 
AI' A2 and the integer Z. For example, the ladder takes 
the form "bounded above" when one of Al and A2 is a 
nonnegative integer. 15 

In the set Ij3 2, the operator z'lD is invariant when the 
parameters satisfy the relations . 

f3 1f3 2 = Al A2 , 

(f3 1 - 1 )(f32 - 1) = (>'1 + 2)(>.z + 2); 

hence 

(3.15) 

(3.16) 

f3
1 
+ f3 2 + 2(A

I 
+ A2 ) = - 3. (3. 17) 

In this case, z" D is applicable again to admit the 
relation 

Z_lDP [ g f3 1 ~ 1 A
l

oo

+ 2 J 
a - 2 f32 - 1 A2 + 2 J 

-p[ ~ f3 1 ~ 2 A,: 4 J. 
a - 4 [32 - 2 A2 + 4 ] 

(3.18) 

Even if the condition (3. 17) is fulfilled, we are pro
hibited from constructing the third step, since the 
equation 

(3.19) 

conflicts with the condition (3. 17). Consequently, the 
ladder has at most three steps in this case. For the 
operator Z·l(Z - l)D instead of z- ID, the situation does 
not change. However, Lie algebraic significance does 
not lie in the short ladder constructed in Ij3 2 but in the 
ladder constructed in 1j31 as follows. Expressing an 
element of 1j32 as a T-transformation of an element of 
1j31' for example, 
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where f3 1 = AIAzI(f3 + Al + A2 ), we can apply the differentia
tion formula (3.11) to obtain 

lJ('_ll"P[~ ::, 'J 
= z(z - 1~81~P r ~ ~ Al + 1 J. 

La - 2 f3 ;\'2 + 1 j 
Hence we have SO (z _1)-8 IZ-I(Z -1)D(z -If I acting on 
the element oflj3 I' The ladder constructed by this 
routine differs from the ladder constructed by the 
formula (3.10). Precise relations between the shape 
of this and the following ladders of CP functions as well, 
and the irreducible representations of Lie algebras 
are shown in Ref. 16, Chapo 3-6. 

Similar consideration about the sets CIj31 and CIj32 
give the ladders constructed by the operators z2D or 
D.25 Investigation of CIj3(3), however, leads to the 
decomposition 

C 1j3(3) = CIj33 1J CIj3 4, 

C$'~H-f: ; j 2<+a~1, PKFol 

c~, +~:" :: ; ,] I 
KI +K 2 +a=l, P,K 2 =-P2K,*0\. 

; 

These subsets are distinguished according as they 
admit long ladders or not. In fact, we can see that the 
set CIj33 admits the invariant operator z- I D, while for 
C1j34' the situation resembles the caselj32' 2, 

Let A be an SO or SOC acting on a function belonging 
tolj3 or CIj3; then those acting on a function transformed 
by T will be given in the form 

(3.20) 

We call the operator in this form the T transformation 
of A. It will be easily seen that a T transformation 
induces a Lie algebra isomorphism if A's are the 
elements of some Lie algebra. 

4. REPRESENTATIVES OF SO'S AND LADDERS 

According to Inui, 7,8 all SOP's can be derived from 
those for the general solution 

f (a, f3;y;z)=p f ~ 
G -y 

of the HGE of Gauss 

1 
o 

y-a-f3 
(4.1) 

z(1 - Z)pd
2 

f + {" _ (rJ! + f3 + 1 )z~ if - aM = O. (4.2) 
Z dz 

And all SOC's can be derived from those for the 
general solution 

f (a; y; z) = p[-;OO-a 
1 y - C\' 

o 

J 
l-y J o 

Masao Mori 
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of Kummer's confluent HGE 

d 2 f d f z- + (y - z)- - a f = O. 
dz 2 dz 

(4.4) 

Taking M, T, and 1T transformations into account, all 
SOP's are equivalent to either of the following 
operator S24: 

SOP's oj the jirst kind: 

(4.5) 
T = z-Cr-crl(z _1)-Ccr+B.,.lZ (z -1)Dzr-cr(z _1)a+tl-r 
tal ' 

SOP's oj the second kind: 
(a.B,2)'l 

T = (Z _l)-aBJr Z-l(Z -1)D(z _1)aB/r, 
(4.6) 

T = T(Z)Z(Z -1)DT(Z)-1 
(C, .B,2l'l 

where T(Z)= Zl-r(z _O-Ca-r+I)CJI-r+1 l/{2-rl. 7 A couple of 
other SOP'S of the second kind 

(B) 

T = T(Z, a, (3)z(z - 1 )DT(Z, a, (3)-1 
Ca) 

(a) 

T = T(Z, (3, a)z(z -1)DT(Z, (3, a)-I 
W) 

(4.6') 

where T(Z, a, (3)=z-B{r-al/(B-a+ll(z _OB(r-B-I)/(B-a>!), will 

be used in Sec. 6. These operate on the associated 
Legendre function, and are equivalent to (4 06)0 

Let us define the ladders 

L 1 =P[ ~ ~ 0'00(3'" zl, am=O!o+n, (4.7) 
1 -y y - am - f3 J 

L 2 =pr ~ ~ =", J, 
U-Y m Y",-O!m-(3", (3", ] 

am=ao+n, (3m=(3o+n, Ym=Yo+2n, (4.8) 

where n is an integer and the real parts of Qlo' (30' Yo 

are nonnegative constants smaller than one. These are 
generated from the P function (4.1) by the SOP's (4.5) 
and (4. 6) respectively. 

Taking T and 'IT transformations into account, all 
SOC's are equivalent to one of the following SO's 25: 

SOC's oj the jirst kind: 

(a) 

T = z-azDz"', 

T =za-re'zDe-·zr-a. 
(a) 

SOC's oj the second kind: 
(r) 

T=e'De-', 

T = Zl-r zDzr-l. 
(r) 

SOC'S oj the third kind: 

1060 

(al 
T = e,/2z -1De-·/ 2, 

T =e,/2Z1-2azDe-·/2Z2a-l. 
(OI) 

J. Math. Phys., Vol. 19, No.5, May 1978 

(4.9) 

(4.10) 

(4.11) 

SOC's oj the jourth kind: 
(0,2)1 

T =e",·/rz-1De-",·/r, 
(4.12) 

T =T(z)zDT(Z)-l, 
(<<,2')1) 

where T(Z)=Zl-r exp[(,y + 1-y)z/(2 -y)]. 

In addition to the SOC's above, other SO's which 
change O! by t exist. 3,25 From Eq. (4.4) and the defini
tion (4.9), the relation 

(4.4') 

holds for f (O!;y; z). According to the differentiation 
formula (3.13), we have 

(zrD) f (ry;y;z)= zrDP[~ : J 
1y-0! 1-1' J 

~pG ~+1 ; ,] 

It we consider the special case y = t, then the relations 
<1') = (-Iz D)2 and 

-Iz Dpro~ ;2
1 

z] 
L~ 2 - a 

00 0 

= p[o--:--+ ~ ? Z] 
1 - a 2 

follow. This means that v'zDf(O';i;z)= f(a+t;t;z), 
that is, (d/dx)f(0!;t;x2 )= f(0!+t;t;x2

), where we have 
put z = x2

• Hence we have the SOC's of the fifth kind 
(at /2) 

T =-IzD, 

T =e'rz De-'. 
e a /2) 

(4.13) 

These operators come from the accidental relation (4.4') 
between Eq. (4.4) and the SOC (4.9). 

Let us define ladders of CP functions as follows: 

o 
o 

1-1' 

o 
o 

1 -I'm 

: zl, Qlm=Qlo+n, 

1-20!m J 
J, 

1 - Ym' J 
o 
o 

Masao Mori 

(4.14) 

(4.15) 

(4.16) 
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(4.18) 

where n is an integer, and the real parts of Ql o and 'Yo 
are nonnegative constants smaller than one. These 
ladders are generated from theCP function (4.3) by the 
SOC's (4.9)-(4.13) respectively. 

5. A MODIFICATION OF INUI'S THEORY 

We express by f (m,z) one of the ladders Lu L 2 , 

CL
" 

CL 2 , CL3 , CL4 , or CL 5 , where m denotes the 
index of the step, Let m'(m) be a 1f transformation 
of m. Then any ladder Pm'(m)(z) of P or CP functions 
whose steps are indexed by m'(m) is expressed as a 
result of a 7 and/or 7T transformation of f(m,z)24,25: 

Pm'(m)(Z)=7m(z)f(m,z). (5.1) 

Let us define the following particular product, 

fm.(z,tl=pm.(z)t m·, (5.2) 

and call this aPt or CPt function according as P is the 
element of I.j3 or C I.j3 respectively, where t is the newly 
introduced independent variable. 

Let T(m) be the SO whic h transforms f (m, z) to 
f (m ± i, z) and S (m') be the SO which transforms 
I m.(z,/) the P t or CPt function to f"".j(z, t). Then S(m') 
will be defined by the relation 

S(m')= Tm"j(z)S(m)Tm(z)-', (5.3) 

and will be interpreted by the diagram 

(5.4) 

As the occasion arises, replacing t by a product 
for example, t = [z(z - 1)]'/2t [see the relation (6.7)], 
we can eliminate the parameter dependence of T, and 
get 

(5.5) 

This and the relation (3.20) mean that the m' SO acting 
on the P t or CPt function is obtained as a T transforma
tion of Simi. 

6. THE SO'S AND THE REALIZATIONS OF LIE 
ALGEBRAS 

A. The SOP's of the first and the second kind and 
the realization of the Lie algebras q(1.0) and T6 

For the ladder (4.7), let us make the rr transforma
tion 

Qlm=m -I, (3=-1, y= - 21, (6.1) 

so that 

[ 0 
1 00 

z]=f(m-l, -1;-21;z). P 0 0 m -I 
1 + 21 -m -l 

(6.2) 
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If we think of the steps as indexed by m, this is exactly 
the ladder L 1, but if we think them as indexed by I, 
(6.2) is seen to be the ladder L 2 • 

Now the m SO's for the ladder 

[

0 1 00 j 
Imp 0 0 m -I z 

1 +21 -m -I 
(6.3) 

of P t functions will be obtained from (4.5) by the rr 
transfromation (6.1) succeeded by the replacements of 
D and m by a/az and to/at respectively. Thus we have 

+ (a a ~ J=tz-+t--l, az at 

.r=r1
(z(z-1l:Z +t:t -lZ+I), J

3
=t:t' 

This is the type A realization of the nontrivial part 
s1(2, C) of Q(1, 0).26 

(6.4) 

On the other hand, the I SO's for the ladder (6.3) are 
obtained from the SO's of the second kind (4.6) through 
the 1T transformation (6.1) and the same replacements. 
However, the most familiar form of the SO's of the 
second kind are those which shift the parameter I of the 
associated Legendre function P'{'(cosl3). So it would be 
better to write them down in the form operating on the 
general solution 

[ 

1 -1 00 ] 

e'{'w=p -,tm -,~m -l ~ 
2m 2m I + 1 

of Legendre's associated differential equation 

d
2
e de ( m

2 
) (1- t 2

)---.. - 2- + l(l + 1) ---2 e-o 
~ de d~ 1- ~ -, 

where I and m attached to e are abbreviated, 

Consider the ladder of P t functions 

(6.5) 

e~(~)tm=[z(z _1)]m/2tmp [: ~ -z:m z=t(1- J, 
-m -m 1+m+1 J 

=f(-1+m,l+m+1;m+1;z)t"', (6.7) 

where t = [z(z - 1)]'/2t. The I SO's of this ladder are 
seen to be obtainable from [:] SO's (4. 6)1, By the rr 
transformation QI = - I + m, (3 = 1 + m + 1, Y = m + 1, they • 
are expressed in terms of the E operators of Miller 
as follows: 

(I) a 
S = (e -l)ar + (l + l)~ =rJ'+p3J 3 + (Z + 1)p3 

S = - W - 1) ~ + l~ = - rJ+ - p3J3 + Ip3 
(I) a~ , 

(6.8) 

where J3, J. are the A operators defined by 

J3= t~, J.=t. ' {(Z2 _1)1/2~ ±Z(Z2 _1)-'/2t~}, 27 
at az at (6.9) 

acting on the ladder (6.5). The operators 

p3=L p-::=rl(e_l)1/2, (6.10) 

and p+ = tee _1)' /2 constitute the E realization of 
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T,,= sl(2,C)Ef)C 3
, together with the A operators (6.9).28 

Thus the SOP's of the second kind are expressed by 
the E operators of the Lie algebra Te. 

B. The SOC's and the realizations of the Lie algebras 
Q(1,0),q (0,1), C; (0,0), and T6 

One can see from the preceding subsection that the 
main point of discussion lies in the location of the index 
with respect to which we consider the SO's. The 
circumstances do not change for the ladders of CP 
functions as well. So we restrict ourselves to an outline 
of results. 25 

We enumerate the basis of CP function for each 
realization1

": 

The basis of the B realization: 

/,,\(z, t) = tmp[_ ~l - ~ z 1 
~ m 1+1 J 

=e-z / 2 z- 1 f(-l-m; -21;z)tm. 

The basis of the C' realization: 

(6.11) 

= e -s / 2 S -0/ 2 f (_ q; m _ q + 1: s )' m, ,= S -0/ 2 t. (6. 12) 

The basis of the D' realization: 

f m(z,/}=e-s / 2 f(- ~m: ~;s = ~z2)lm. 

The has is of the C" realization: 

;"",(z,/} = f(±+m;1+2m;2iz),m, [,=2izt. 

The basis of the F realization: 

.f" I (z, t) = e-z /2 t m f(l - m; 21; z )Zl , 

which is indexed by I. 

(6.13) 

(6.14) 

(6.15) 

By appropriate rr and/or T transformations, these 
basis functions (6.11)-(6.15) reduce to the extended 
form of the ladders (4.14), (4.15), (4.18), (4.16), 
and (4.17) respectively. The m SO's for the ladders 
CLl' CL z , CL 3 , and CLs are obtainable from the SOC's 
(4.9), (4.10), (4.11), and (4.13) with the help of 
appropriate rr and/or T transformations respectively. 
The 1 SO's for the ladder (6.15) which associate 
with SOC's of the fourth kind (4.12) are expressed as 

(I) 

S =P-J+ +p3J3 + (Z + 1)P3 - [e/(l + l)JJ 3 - cl, 

S = - P-J+ - p3J- + Ip3 - (c/Z)J3 + el, 
(I) 

where the operators 

p- = _ 2er1z-1 , p3 = 2ez-1 

and P+ = - 2ctz-1 constitute the F realization of the Lie 
algebra T6 together with the B realization 

• .1 ((l (I 1) J3 a J=f z-±t-'f-Z =t-, . oz (It 2' at 
of subalgebra sl(2, C) of T6 .29 
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Thus a direct correspondence has established 
between the types of SO's intrinsic to the respective 
classes of P or CP functions and the types of the 
realizations of the Lie algebras Cj(a,b) or Tr,. 
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A Green's function for a cubic latticea) 
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The following Green's function for a cubic lattice is evaluated exactly and expressed in terms of the 
complete elliptic integrals of the first kind: 

G(E) = (l/1r3) J J J "odxdydz/[E - atCOSx - a2cosy - a3cosz - a2cosycosz - at coszcosx]. 

1. LATTICE GREEN'S FUNCTIONS FOR CUBIC 
LATTICES 

The Green's functions for the cubic lattices are of 
interest in many physical problems and have been the 
subject of extensive studies for many years. The 
Green's functions for the ordinary three types of cubic 
lattices, the simple cubic (sc), the body-centered cubic 
(bcc), and the face-centered cubic (fcc), are defined by 

G (E) - 1.1"1" r' dx dy dz 
- 7T3 0 0 JoE - w (x ,y , z) , 

(1 ) 

where 

w(x,y,z) 

)

' cosx + cosy + cosz for the sc, (2) 

== cosx cosy cosz for the bcc, (3) 

cosx cosy + cosy cosz + cosz cosx for the fcc. (4) 

The Green's functions for the above cases have been 
evaluated exactly and expressed in terms of the com
plete elliptic integrals of the first kind; the sc case for 
the first time by Joyce, j the bcc case by Maradudin 
et al. ,2 and the fcc case by Iwata. 3 In addition, the 
Green's functions for the following cases have also been 
expressed exactly in terms of the complete elliptic 
integrals of the first kind: 

(i) E=2+0!2, w(x,y,z)=cosx+cosy +0!2cosz 

by Montroll,4 

(ii) w (x, y, z) == (2 + O! 2t1 (cosx cosy + cosy cosz 

+ (1'2 cosz cosx) by Joyce, 5 

and 

(iii) w (x ,y , z) == cosx + cosy + cosz + cosx cosy cosz 

+ cosx cosy + cosy cosz 

(5) 

(6 ) 

+ cosz cosx by Glasser. 6 (7) 

In this paper, we shall add to this list the following 
case: 

w(x, y , z) = cosx + cosy + cosz + cosy cosz + cosz cosx. 

(8) 

In fact we shall obtain an analytic result for the follow
ing more general case: 

alResearch partially supported by the Army Research Grant 
No. DAAG29-77-G-0060. 

W(X,y, z) =al COSX +a2 cosy + a3 cosz +a2 cosy cosz 

+aj cosz cosx. (9) 

Consider the Green's function 

G(E) ==-b 
7T 

fIv r dxdydz 
10.0 Jo E - cosx - cosy - cosz - cosy cosz - cosz cosx ' 

(10) 

and let us begin by assuming that E > 5. We have 

['r" [" dx dy dz 
><}J Jo (E - cosx - cosy) - (1 + cosx + cosy) cosz 

1 i"r' dxdy ==? 0 Jo [ (E - COSX - cosy )2 - (1 + cosx + cosy )2]172 , 

1 
:.G(E)==-;r 

(11) 

('( dxdy 
x Jo J [(E2 - 1- 2E cosx - 2 cosx) - 2(E + 1) cosy ]112 

x( 2 )d (E+I-2cosx)172 x, 

by using 

(. dy 
Jo (a- bcosy)172 

2 K 
(a + b)172 

X[C2!bY'T a> b, 

(12) 

where K(k) is the complete elliptiC integral of the first 
kind. Thus 

G(E)- 2 f' 1 K 
-7T2(E+l)172 0 [(E+l)-2cosx]172 

(13) 
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Expanding 

() 
1 F(l 1 1 k2) 1 ~ (i)n(i)n k2n 

K k == 21T "2,2;; =="21T LJ (1) (1) , 
"=0 PI PI 

where F(a, (3j Yjz) is the Gauss hypergeometric function, 
we get 

(14) 

Now 

(u dx (r 12 2dl! 
J 0 (E + 1 - 2 cosx)n+1I2 == Jo (E + 3 - 4 cos2l!)n+1I 2 

(15) 

from the formula1 

__ l_B(/l+l V+1)d v + 1 p./l+v +1'£') 
- 2aP 2' 2 .. \ 2 ' '2 'a' 

Re/l>-l, Rev>-l, a> ibi ~O. 

Substituting (15) into (14) and expanding out the Gauss 
hypergeometric function F, we get 

- 1 t t (i)m+n(t)m(i)n 
- [(E +l)(E +3)]112 m=O n.O (l)m(l)n(l)m(l)n 

X(E ~3Y (E ~3r 

(16) 

where 

F 2(aj (3, (3/ j y,y';x,y) 

is the second hYpergeometric series in two variables 
of Appell. 8 

It is known that9 

(, 1 X 4VY) 
F\a,a+"2-(3,(3,y,2(3. (1+\ly)2' (1+\ly)Z 

= (1 + vy )2,. F 4 (a, a +t - fl, y, fl + t, x, y), 

where 
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(17) 

F «(3 I )"" (a )m+n({3)m+n xmy", 
4 a, ,Y,Y ,x,y =~~ (Y)m(Y')nm!n! 

is the fourth Appell seriesj and according to a theorem 
of BaileylQ 

F 4(a, y + y' - a-I, y, y'; z(l- Z), Z(l - z» 

==F(a, y +y' - a-I; y;z)F(a, y +y' - a-I; y'j Z), 

(18) 

i. e., F 4 is the product of two Gauss hypergeometric 
functions when y + y' == a + {3 + 1. Thus let us do the 
following manipulation: 

Firstly, from (16), we deduce that since F2 converges 
only if Ix 1+ Iy 1< 1, we must have E > 5. Secondly, to 
transform F2 to F4 according (17), we let 

4 x 4 4vy 
E+3 ==(I+\ly)2> E+3==(1+17y )2 

and solve for x and y. We find, remembering that 
F 4(a, (3, y, y', x, y) converges only if x!l2 +y 112 < 1, the 
acceptable solution is 

x == 2{(E + 1) - [(E + 1)2 - 4]1 IZ}, y ==~x2. (19) 

Thus we find 

(20) 

where x and yare given by (19). Thirdly, to transform 
F4 into the product of two F's according to (18), we let 

x==z(l-Z), y==Z(I-z), 

and solve for z and Z. We find 

1-x+y-[(1+x-y)2-4x]1/Z 
z== 2 ' 

Z _ 1 + x - y - [(1 + x - y)2 - 4x]1 / Z 

- 2 

Thus we get 

F 4(t, t, 1, 1,x,y)==F(t, t; Ijz)F(t, i; liZ) 

== (4/1T2) K(k.)K(k.) , 

where 

kJ=H1 =t=(x-Y)-[(1 +x_y)2_ 4x]l/Z}. 

(21) 

(22) 

(23) 

Thus finally we get, for G(E) of Eq. (10), 

4 
G(E)==1T2[(E+1)(E+3)]1I2 (I+Vy)K(k.)K(k.), E>5, 

(24) 

where k_, k. and x,y are given by (23) and (19). 

Using the property that K'(V2 -1) = V2K(V2 - 1), we 
find 

G(5) == 4(v'2 - 1) KZ(V2 _ 1) (24') 
1T

2vr:3 ' 

which complements Watson's resultsll for the three 
cubic lattices with the usual nearest neighbors 
consideration. 
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The analytic continuation to the case E < 5 can be done 
in a similar way as that for other cases, 12 and it re
sults in G(E) being expressed in terms of the product 
of two K(k)'s with complex moduli. We have not been 
able to express the real and imaginary parts of G(E) 
separately in terms of the complete elliptic integrals 
of real moduli. 

It can be shown in the same way that the following 
Green's function which is a generalization of (10) is 
given by 

1£' :£" G(E) == "=:l dxdy dz (E - al cosx - a2 cosy 
7T 0 0 0 

- a3 cosz - a2 cosy cosz - al cosz cosx t l 

4(1 + /y) 
-7T ..... Z('(E::::--+-a-3)"(E - a3-+-"-::2-a-l -+-::2:-a'2)""j"l/r>r"z 

x K(k.)K(k.j , E> a3 + 2al + 2a2' 

where 

kJ == H1 'f (x - y) - [( 1 + x _ y) 2 - 4x]1I 2} , 

X = (4a/J32)[2 - 13 - 2(1- 13)1/2], 

y = (1/132)[2 - {3- 2(1- 13)1/2]2, 

a =4a/(E-a3+2al +2a2)' 

{3 = 4a/(E - a3 + 2al + 2a2), 

(25) 

(26) 

(27) 

(28) 

(29) 

where aI, a2' a3 are positive numbers, and where we 
assumed, without loss of generality, al * O. It is easy to 
check that when al = a2 = a 3 = 1, we get back the result 
given by (24), while if al = a3 = 1, a2 = 0, remembering 
that 

(1 +k)K(k)=K(2k1l2/(1 +k)), 

we get 

G(E) = 7T(E 2+ 1) K(E +21)1/2)' E > 3, 

which can be verified independently by directly evaluat
ing the integral 

1 (1 dxdy 
? Jo E - cosx - cosy - cosx cosy' 

Similarly, it can be verified that when a 1 = 1, a2 = a3 = 0, 
we get 

G(E) = 7T(E(E ~ 2) jI 72 K (E +22)1/2)' E >2. 

The particular value of G(E) in (25) for E = 2al + 2a2 
+a3 is given by 

( 
2 ) l2{a~+ala2+2a~-2a2[a2(al+a2)J1/2} 

G 2al + a2 +a3 = 7T ai[(al +a2)(al +a2 +a
3
)jI 72 

~al +a2)112 - a~/2 ) 
x 17z 

al 

(
a +a )1/2 __ a1l2 ) 

x K' 1 2 17z 2 , 
al 

(29') 

where K'(k) =K«1- k2)1/2). Equation (29') above is par
ticularly illuminating in exhibiting the way G(2al + 2a2 
+ a3) diverges as a2 - 0, namely as the transition from 
three dimensions to two dimensions takes place at the 
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"critical" value of E = 2al + 2a2 + a3- This is relevant to 
understanding the transition which takes place from the 
two-dimensional spherical model of a ferromagnet13 

which does not exhibit phase transitions to the three
dimensional model which does; and it is also relevant 
to understanding the transition from a random walker 
on a two-dimensional lattice who is certain to return to 
the origin to one on a three-dimensional lattice who 
has a certain nonzero probability of not returning to 
the origin. 14 

2. THE GREEN's FUNCTION OF GLASSER IN 
THE RANGE -1 <E<7 

The following Green's function has been evaluated 
exactly by Glasser6 : 

G(E) ="3 dxdy dz (E - cos: - cosy - cosz 
1 ill' 7T 0 0 0 

- cosx COS}' cosz - cosx cosy 

- cosy cosz - cosz cosx )_1 • 

Glasser obtained the following resuU15 for E> 7: 

G(E) = 7T2(; + rr K (1d, 

where 

2 1 r, (E - 7) 1I2J 
k ="2 L1 - E +1 • 

(30) 

(31) 

(32) 

If we replace E in (30) by E - iE and take the limit E - 0, 
and let 

lim G(E - iE) =GR(E) + iGr(E), (33) 
€ .... 0 ... 

the real and imaginary parts GRand G r for the case 
- 1 <. E <'7 can be expressed, as we show in this section, 
in terms of the complete elliptic integrals of real 
moduli. The only other case for the cubic lattices where 
this can be done was given by Joyce16 for the body-cen
tered cubic lattice (for - 1 <: E < 1). 

Let us write k 2 in (32) as 

(34) 

where 

~ = (E + 1)/8_ (35) 

We note that ~ > 1 and ,,2 < ~ _ Kummer's relation gives 
us 1 ! 

F(-it,~; 1; ,,2) =F(±"}; 1 ; ~-1). (36) 

The following transformation gives us the analytic 
continuation to the case ~ < 1: 

F(t L 1; ~-I) = W l/4 

larg~I<7T, 

F.T. Hioe 
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where 

k;.=t ±t(l- ~)112 =H1 ±[(7 - E)/81112 }, -1 <E < 7. 

(39) 

Equation (38) was obtained from Eq. (37) using rela
tions no. (7) and (9) in Ref. 8, p. 111, and noting the 
relation 

(z_1)1I2=_i(1_z)1I2 ifz <1. (40) 

Substituting (38) into (31) gives us the GR and G1 in (33) 
separately in terms of the complete elliptic integrals of 
the first kind with real moduli: 

(41) 

where k" are given by (39). 

The Green's function G1(E) is directly related to the 
density of states in lattice dynamics, 4 in the tight-bind
ing approximation for electrons, 18 and in many other 
theories of excitations in solids. 
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Three-dimensional solitons8
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Using an inverse Radon transform we generate an integro--ditTerential evolution equation in three space 
dimensions that has soliton solutions which vanish at large distances in all directions. The equation is of 
second order in time and invariant under translations and rotations. The shapes of the solitons are 
generally changed by their nonlocal interactions, but their number and velocities are conserved. The 
method lends itself to other equations. 

1. INTRODUCTION 

The existence of nonlinear evolution equations with 
soliton solutions is of great physical interest and has 
many mathematically faScinating aspects .1.2 These 
equations have been more or less confined to one spatial 
dimension and none but a few examples of two- and 
three-dimensional equations have been found, 3 whose 
sOlitons, moreover, always extend to infinity in some 
directions. If such equations are to have a significant 
bearing on the physics of elementary particles it would 
seem to be important to find evolution equations in 
three space dimensions which have not merely solitary
wave solutions that vanish at large distances in all 
directions but produce solitons with their remarkable 
stability properties under collisions. 4 Such equations 
have not yet been found. 

Since there appear to be major difficulties in dis
covering soliton generating differential equations in 
three space dimensions, it seems worthwhile to search 
for more general equations with such solutions. A 
suitable class may be that of integrodifferential equa
tions, in which one may think of the soliton-soliton 
interaction as nonlocaL The present paper represents 
an attempt in that direction, From a known one-dimen
sional evolution equation we generate a three-dimen
sional one that is not restricted to a line, The equation 
is rotationally invariant and the asymptotic directions 
of motion of the solitons are determined by the initial 
conditions. Our method is, in principle, applicable to 
other evolution equations and to any dimension of space, 
but in this paper we restrict ourselves to one three
dimensional equation, 

The tool we will use is the Radon transform. 5 Since 
this integral transform is not widely known among 
physicists we define it and derive the results we need 
in Sec, 2. In Sec, 3 we apply its inverse to the iterated 
Korteweg-de Vries equation, This equation is of second 
order in the time and does not have the unidirectional 
character of the KdV equation, Its inverse Radon trans
form is an integrodifferential equation that is rota
tionally and translationally invarianL We show that it 
has N-soliton solutions in which the solitons vanish 
asymptotically in all spatial direction and move with 
largely arbitrary (both in magnitude and direction) 
velocities. Their collisions preserve their number and 
velocities but, in general, will alter their shapes. 

a)This material is based upon work supported by the National 
Science Foundation under Grant No. PHY 75-18942 A01. 

Whether the three-dimensional SOliton-generating 
equation (3,6) has any physical application is not known. 
This question may depend on whether there are physical 
phenomena that are describable by its solutions, and it 
remains to be investigated. The method used here can 
easily be transferred to other equations to generate 
intergrodifferential equations in higher dimensions with 
soliton solutions from one-dimensional differential 
equations that are known to have them. It does not work 
for the nonlinear Schrodinger equation, because there 
the one-dimensional solitons are not really solitary 
waves. 6 While their magnitudes are of the traveling
wave form, their complex phases oscillate. As a result 
the inverse Radon transform washes them out in the 
asymptotic region and they disappear. 

There is an appendix which contains a direct verifica
tion, without use of the inverse-scattering machinery, 
of the pure N-soliton solution of the KdV equation. 

2. THE RADON TRANSFORM 

Let us consider two functions, f(Ii, x) and j lz), where 
XE lR1

, z E m3
, and nE m3 with I iii = 1. We shall not, in 

this paper, specify exactly in what spaces 1 and j should 
be. (The reader may consult Ref. 5.) Letj(k) be the 
three-dimensional Fourier transform of ](z): 

j(k) == (F J) (k) == J tflz exp(ik • z)j(z) , (2.1) 

and let / (ii, k) be the one-dimensional Fourier transform 
of f (n, x) as a function of x for fixed n: 

j(n, k) = (FJ)(n, k) == l:dxexP(ikx)f(n, x). 

We consider j(z) to be the R transform of f(n,x), 

j(z) == (Rf)(z) 

if 

(2.2) 

(2.3) 

where k == kk. For consistency it will be necessary to 
require that f(n, x) have the symmetry property 

f(- n, - x) == f(ii,x) (2.5) 

so that 

](-n, -k)==](n,k). (2,6) 

It should be noted that if we required f(k) to be ana
lytic as a function of each component of k at k = 0 then 
(2.4) would imply a specific n-dependence of /(n,O) 
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and of each derivative ofj(n,k) with respect to k at k 
=: 0. 7 For example it would imply that 

j(n,O)= r dxf(n, x) 
0", 

be independent of n. More generally, it would require 
that 

for all l > p, if Yj is a spherical harmonic. We shall 
however, make no such demands on fin,x) and as a re
sult we end up with more general functions f(k), and 
hence a larger class of functions f(z). 

Insertion of (2.1) and use of (2,4) leads to the direct 
relation between fez) and fen ,x), 

(Rf)(z)=f(z) = (2;)3 I rikJ: dkk2exp(-ikk'z)](k,k) 

1 I Ai"' A 0 A = - A 161T3 dk dk exp(- ikk· z)f(k, k) 
0", 

1 I.e "(A A ) = - 81T2 anf n, n' z , (2.7) 

because of (206) and inversion of (2.2). Here f" (n, x) 
== a2f(ft,x)/ax2. The relation R between f(n,x) and 
fez) expressed by (2.7) is the inverse Radon transform. 
We shall refer to it as the R transform. 

We can also formally express f(fI,x) in terms of fez) 
and thereby invert the R transform. By inverting (2.2) 
and using (201) we obtain 

f(n,x) =: (Ro1f)(n, x) = f ~zf(z)o(x - no z)' (2.8) 

This is the Radon transform. [However, it has to be 
realized that this transform is not uniquely defined, 5 

and the result of (2.8) is not necessarily equal to the 
function f (n, x) on the right-hand side of (2.7).] 

The important properties of R under differentiation 
immediately follow from (2, 4) or (207), 

"'f(z) = - 8
1
1TZ I an!,,' (n, n· z)R, 

which means 

(2.9) 

and, by repetition, 

(~) R ax2 =A(Rj). (2010) 

Let us now look at the R transform of a product. 
Using (2.4) we get 

R(fg)(z) = f ~x~y r(z ,x, y)f(x)g(y) , (2.11) 

where 

r(z,x,y) = (21T)04f d 3kf"' da exp[iak o (x -y) 
0", 

+iko(y-z)] 

= - A.Y(X ,y ,z), (2012) 

where Az is the Laplacian with respect to z, and 
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x exp [(ii3k 0 (y - z)] 

= 8;2 I rik o[k. (x - y)]o [it· (y - z)] 

1 1 
- 41Tz I (x - y) X (y - z ) I 

1 1 
=41TZ I(xxy+yxz+zxxl 

Thus Y is symmetric in all three variables, 

y(x,y, z) = y(x, z, y) = y(y ,x,z). 

(2.13) 

(2.14) 

Furthermore it is invariant under simultaneous transla
tion, rotation, or reflection of all three variables. 

If we define the symbol 0 by 

Uo g)(x) == - A ja,3Yd3Zf(y)g(z)y(X,y, z) 

= _ A fd 3 d 3z fey +x)g(z + x) 
JI Y Iyxzl ' (2.15) 

then we can write our result (2011) in the simple form 

RUg) = (Rj) 0 (Rg). (2,16) 

Since the left-hand product is commutative and as
sociative, so is the o-product. 

In Fourier-transform language we have 

F3Uo g)(k) =: (21T )01 fo: daj(ak)g [(J k I - a )k] (2.17) 

-
jf f = F 3 f and g = F ~. 

Consider now a family of functions fen, x, t) that form 
solitary waves8 traveling along x with velocities c which 
depend on n in such a way that there exists a fixed 
vector v so that c=nov, 

f(n,x, t) = f(n,x - n 0 vf, 0). (2.18) 

If fen, x, 0) satisfies the symmetry (2.5) then so does 
fen, x, f). The R transform of the family'iS then given by 

A( t) 1 I A f" (A A A ) A f z, = - 81T2 dn n,ncz-novt,O =f(z-vt,O) 

and hence fez, t) forms a solitary wave moving with the 
velocity v. What is more, if for all n 

lim f"(n,x,O)=O, 
x·±oo-

(2.19) 

then it follows that 

lim f(z,O)=O. 
Izl·~ 

(2.20) 

This is easily proved by writing 

g(z)=f dn f"(n,n'z,O)=2 (2'dcp{ldryf"(o ,+. Izla 0) 
)0)0 ' ,+", , 

=.f da k(a, Izla)=(L"+ fa1)da k(G, Izla) 

by (2.5) and setting 
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2r~ d<jJ f" (Q , <jJ, I z I a, 0);0 h(a, I z I a). 

For any given E > ° we choose a so that 

and then, using (2.19), we choose R so that for all 
lzl >R 

Thus (2.20) follows, Therefore, if f(n, x, t) is a family 
of solitary waves for which not only f but also f" 
vanishes for large I x I (and each n), then j(z, t) is a 
solitary wave that vanishes for large I z I in all 
directions, 

3. A NONLINEAR EVOLUTION EOUATION 

The KdV equation 

AU = 6u AU + 03U 
at ox ox3 (3.1) 

has soliton solutions which move from right to left with 
velocities cn that are related to the (discrete) eigen
values of the associated one-dimensional Schrodinger 
equation 

by cn = 4A n • The undirectional nature of the motion of 
the solitons of (3.1) is the result of the odd character 
of the KdV equation, and the fact that the discrete 
eigenvalues of (3,2) are all nonnegative. Before we 
transfer (3,1) to three dimensions it will be useful to 
remove its unidirectional character by iteration. 

Differentiating (3.1) with respect to t and eliminating 
first t-derivatives by means of (3.1) yields 

We may call this the iterated Korteweg-deVries (I KdV) 
equation. Any solution of (3.1) or of the equation ob
tained from (3.1) by changing the sign of t, is a solution 
of (3.3). Thus (3.3) has soliton solutions in which all 
solitons move to the left, and also soliton solutions in 
which they all move to the right. Whether it has solu
tions in which some solitons move to the right and some 
to the left is unknown. [A pure N-soliton solution of 
(3.1) in which some but not all of the velocities are re
versed does not solve (3.3); see the Appendix.] 

We translate the IKdV equation (3.3) into three dimen
sions by conSidering u(x, t) as a function of two angle 
parameters, or a unit vector n, is such a way that 

u(n,x, t) = u(- n, - x;t), 

and then subjecting it to the R transformation (2.7), 

<f>(z,t)=(Ru)(z,tL 

According to (2,16) and (2.9), (3.3) implies that <f> 
satisfies the integrodifferential equation 
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(3.5) 

where the o-product is defined by (2,15). Let us now 
look at the soliton solutions of (3.3). 

To start with, 

u(c,x,t) = a(1 cl ,x - ct), 

a( I c I, y) = i I c I sech2(i I c Il/2y ), (3.7) 

is a solitary wave solution of (3,3). The velocity c may 
be taken positive or negative. We choose an arbitrary 
vector v so that I v I ~ I c I and write c = nov, As we 
vary n, keeping v fixed, this generates a family of 
solutions 

u(v,n,x,t);ou(nov,x,t)=a(lnovl,x-novt) (3.8) 

of (3.3) depending on n, Because (3.7) is even in y, it 
follows that 

u(v, -n, -x,t)=u(v,n,x,t) 

and we may take its R transform as in (3.5). According 
to our discussion at the end of Sec. 2, then <f> is a soli
tary wave of velocity v, 

<f>(v, z, t) = <f> (v, z - vt, 0). (3.10) 

Thus (3.6) has solitary wave solutions whose velocities 
have arbitrary directions and magnitudes, 

In fact, the family of solitary wave solutions of (3.6) 
is larger than the R transforms of the functions given 
by (3,8). For n in some set of directions, say n E: n, 
we may choose u to be zero, 

(

A )_{o, nEn, 
uV,n,x,t - (IA I A ') a nov ,x - n 0 vt , (3.11) 

If n is such that whenever n E: n then - n E n, it follows 
that u satisfies (3,9) and its R transform is a solitary 
wave. Of course, the function (3.11) will generally have 
steplike discontinuities as a function of n, but that does 
not prevent <f> from being continuous and differentiable. 

An even larger class of solitrary waves is generated 
by using the translational invariance of the KdV equa
tion. We may choose, for n ri n, 

(3.11') 

and make Ii an arbitrary function of Ii, While this 
changes only the position of the one-dimensional soli
tary wave, it generally changes the shape of its R 
transform. 

The next step is to consider an N soliton solution of 
(3.3), 

u(cp , •• ,c N;X, t) =a N(cP ••• , c N;X, t), 

where9 

02 

aN (cp",cN ;x,t)=2 ox2logdetM. 

The NXN matrix M is given by 

Roger G. Newton 
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where the Xl are arbitrary constants, and Kl = I cI I I
/

2
• 

The velocities cl must all be of the same sign, Suppose 
that all c j >0. 

The asymptotic form of aN is given by 

in the sense that for each i 

lim aN (c 1> ••• , C NiX + C j t, t) = a (' C i , , X - o~), 
t-i:: eo 

where a is defined by (3.7), andio 

0; = Xi + Kl [~IOg (KKi ~ KKi) + 6 log (KKJi ~ KK,I.)] , 
i J(I I J J>l 

with the understanding that 0 < KI < 0 - - < K N' 

We choose an arbitrary set of N vectors VI' 

i = 1, . , , , N, and a unit vector Ii such that 

(3,15 ) 

(3,16) 

(3.17) 

Now vary ii, keeping the v, fixed, Let n be a set of 
directions Ii that includes all those for which not all 
Ii 0 Vi' i = 1, ... , N, have the same sign. (n may contain 

directions for which all n· Vi have the same sign, but its 
complement must have positive Lebesgue measure. 11 ) 

Furthermore, let n be such that if Ii En, then - ii En. 
Let n· (n-) be the set of directions 0. <t n such that all 
Ii 0 Vi> 0 (0. 0 Vi < 0). 

We now define a family of functions 

A _laN(o.'V1> ... ,n.vN,x,t), ~f nEn', 
u(n,s,t)= 0, If o.En, (3.18) 

aN (0. • V l' ••• , n . v N' - X, - t, n E n- , 
which, for each 0., satisfy (3.3). It is clear from (3.14) 
that 

u(-o., -x,t)=u(n,x,t) 

for all t, n, x. We may therefore take its R transform 
as in (3.5), and the resulting function q, (z, t) will satisfy 
(3.6). 

=-82 dnaNn-v1,···,n-vN,noz,t 1 f A[ ,,(A A A ) 
1f o. 

(3.19 ) 
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because (3,14) shows that aN is invariant under a si
multaneous sign change of t and all ci • The asymptotic 
form of q, is now determined from (3.16), 

q,(z+vif,t)=- 4~21 dna"(n'vi'n-z-o~)+o(l) (3.20) 
o· 

as 1- ± 00. In this sense, then, we have 

n 
q,(z,t) ;::: ~ 1J;(v.,z -v.l), 

t .. ±c:O i=l "' t 
(3.21) 

where the solitons are given by 

1J~(Vi'Z) = - 4~2 f dna"(n - vi' n· z - o~). 
o· 

(3,22) 

Since (3.17) shows that 0; - o£ depends on the cJ ' it 
depends on o.. Consequently the shapes of the solitons 
in the infinite past generally are different from those 
in the infinite future. In this case the collisions pro
duce not only positional shifts of the solitons, but 
changes in their shapes as welL 

Equation (3.22) can be written in the form 

TJ; (v)z )=Ru(v i , o.,x - 0;) 

in terms of the function u defined in (3, 11). But it fol
lows from (2.4) that 

(3.23) 

and hence 

Since the right-hand side has the same value for + and 
-, it follows that in spite of its changed shape, the 
volume of the square of each individual soliton at t - - 00 

equals the volume of the square of the corresponding 
one at t - + cD. This guarantees, specifically, that no 
solitons can disappear and all solitons present at 
t - - oa are again present, with equal "strength" but 
generally altered shape, at t - + cO. 

We have thus demonstrated that the integrodifferential 
equation (3,6) has solutions which break up into solitons 
in the infinite past and future. Moreover, each soliton 
is confined in the sense that it vanishes at large dis
tances in all directions. The initial number of solitons 
and their velocities are equal to the final ones, but 
their shapes are generally changed. These solutions, 
moreover, are expressible by quadrature, being the 
R transforms, (3,19), of functions explicitly given by 
(3.13) and (3.14). Whether (3, 6) has other soliton 
solutions is not known. Since we do not have a general 
solution of the initial-value problem for the IKdV equa
tion (3.3), except for the special cases in which 11 

satisfies either (3.1) or its time reversed, we do not 
have a general solution of the initial-value problem for 
(3.6). Furthermore it is not obvious that the Radon 
transforms of all solutions of (3,6) mllst solve (3.3). 
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The important question of possible physical applica
tions of (3.6) has not yet been investigated. 

APPENDIX 

We want to present here a simple, direct, algebraic 
verification of the N-soliton solution of the KdV equa
tion that does not use any of the inverse scattering 
machinery. 

We write the matrix l'VI of (3.14) in matrix form 

M=1 +EL, 

where E is the diagonal matrix 

E = 2K exp(K3 t -Kx + X); 

in terms of the matrices X and K, 

and 

Lij= L jj = (K i + Kj)"l. 

We have 

KL + LK=Q, 

where Q is the matrix Q iJ = 1, and 

aE =-KE 
ox ' 

Now, by (A6), and writing N:= M- 1 , 12 

a (a,'l{ ) <p:=2 -logdet M=2tr - N 
ax ax 

= - 2tr(KELN) = - 2 (ELKN) 

since EL commutes with No Als013 

( aM -) -If! = tr - N = - 2tr(LEKN) = - 2tr(EKLN) 
ax 

and hence 

<p=trQF= 0FiJ' 
IJ 

where 

F = - NE =: - (E- 1 + L )_1 . 

Now using (A6), we get 

aN =NK(l-N) aN =NK3 (N -1) 
ax ' at ' 

aF =-NKF, of =:NK3F 
ax at ' 

a2F 
-2 = NK(2N -l)KF, 
ax 

a
3

; = NK (3 NK + 3KN - 6NKN - K)KF, 
ax 

and, using (A5), 

of Q of = _ NK(NK + KN _ 2NKN)KF. 
ax ax 

Consequently the matrix F satisfies the equation 
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(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A 6) 

(A7) 

(AS) 

(A9) 

_ of =3 aF Q aF + a3
F . 

at ax ax ax3 (AI0) 

But since Q is such that for any A and B 

tr(QAQb) = tr(QA)tr(QB) , (All) 

multiplication of (AIO) by Q, taking traces, and using 
(AS) gives 

_ alf! =3 (OIJ!)2 + a3
</, • 

at ax ax3 (A12) 

Differentiation with respect to x and setting u =: olJ!/ ax 
finally shows that u satisfies the KdV equation 

_ au = 6u au + a
3
u 

at ox ax3 
(A13) 

which is the time-reversed version of (3,1). Thus u 
satisfies (3.3). It is of some interest that (A 13) is the 
result of the fact that the symmetric matrix F of (A9) 
satisfies (AIO), or more explicitly 

_ aFii =3B aFik aFjJ + 03F;J 
at k,l ax ax ax 

We may use this technique to check whether the func
tion defined by (3.13) and (3.14), but with the ci not all 
of the same sign, satisfies (3,3). For that case, in
stead of (A2), 

E = 2K exp(K3St -Kx + X), 

where S is a diagonal matrix with some of its diagonal 
entries - 1, and the others, + 1. Since the x-derivia
tives do not involve S, it is only necessary to check if 
S disappears from a2 1f!/a t2 • One readily finds that 

in which S disappears only if S = 1 or S = - 1, Thus the 
pure soliton function (3.13), with some solitons comi.ng 
in from the left and some from the right, does not 
satisfy the IKdV equation. 
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In this paper we study the emission of a two-level atom in a radiation field in the case where one mode of 
the field is assumed to be excited initially, and where the system is assumed to be of infinite extent. (The 
restriction to a one-dimensional field, which has been made throughout this series, is not essential: It is 
made chiefly for ease of presentation of the mathematical methods.) An exact expression is obtained for 
the probability p( t) that the two-level quantum system is in the excited state at time t. This problem, 
previously unsolved in radiation theory, is tackled by reformulating the expression found in VII [J. Math. 
Phys. 16, 1013 (1975)] of this series for the time evolution of p(t) in a finite system in the presence of an 
extra photon, and then constructing the infinite-system limit. A quantitative assessment of the role of the 
extra photon and of the coupling constant in influencing the dynamics is obtained by studying numerically 
the expression derived for p( t) for a particular choice of initial condition. The study presented here casts 
light on the problem of time-reversal invariance and clarifies the sense in which exponential decay is 
universal; in particular, we find that: (I) It is the infinite-system limit which converts the time-reversible 
solutions of VII into the irreversible solution obtained here, and (2) it is the weak-coupling limit that 
imposes exponential form on the time dependence of the evolution of the system. The anticipated 
generalization of our methods to more complicated radiation-matter problems is discussed, and finally, 
several problems in radiation chemistry and physics, already accessible to exact analysis given the 
approach introduced here, are cited. 

I. INTRODUCTION C1' = 11)(21, a* = 12)(11 

(fix 1 (Ix 1 111,) = [2(n, + 1)]1 /20Kr(m, - flx-O 

=(mxla~lJ1x)o 

The work begun in the previous papers of this 
seriesl - 7 (the papers in the series will hereafter be 
referred to as I-VII, respechvely) is continued here. 
An exact solution was found in VII for a model of the in
teraction of a two-level atom (or other two-level 
quantum system) with a one-dimensional radiation field, 
for that "sector" of the problem wtlere, when the atom 
is excited, exactly one photon of the radiation field is 
presenL This exact solution was for a system finite in 
extent, and here the limit of the solution for infinite 
system.3 is found. The taking of the limit is not exactly 
trivial, and involves a reformulation of the result of 

The state Inl.> has 111. (=0,1,2," 0) photons in the Ath 
mode of the radiation field. The oKr( ... ) is the 
Kronecker delta. Also, trwx is the energy of each 
photon in the Jcth mode, and we define fiE=E 2 -E 1 . 

VII before any progress can be made. 

The Hamiltonian of the model is as follows: 

H='laa * +E 2a*fl' +:S tliwA(a~flA + 1) 
l 

+ :s (h~ (Y * ax + h/\' ail ' 
x 

where Eland (2 are the energies of the ground state 11) 
and excited state i 2) of the two -level atom) and where 
the operators are defined by 

a)The research described herein was supported by the Division 
of Basic Energy Sciences of the Department of Energy. This 
is Document No. NDRL-1830 from the Notre Dame Radiation 
Laboratory. 

A basis for the Hilbert space of the system is given 
by the product states 

1 i; tll)J) '" 1 i) [l 1 Ill.) 
x 

with i = 1 ,2 and Ill. = 0, I, 2, .. '. The "sectors" of the 
Ham iltonian are the eigenspaces of the operator 

whiCh commutes with H. The eigenvalue of N associated 
with the state Ii; {n x}) is (i -1) + ~x Ill' and so N mea
sures the number of photons present when the atom is 
de-excited (i = 1). Papers I-VI dealt exclusively with 
the sector where N = 1, while in VII the solution for 
N = 2 was obtained for a finite system. We remark in 
passing that the operator N was defined in VII simply 
as 

N=C1'*fl' +t 6 a~ax' 
I. 

The redefinition here seems more sensible. 
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If the state of the system at time t is denoted by 
I \fI(t» , then by cP~(t) we mean the projection, (21 (l~ 1 
x ({O,,} j1J1(t)>, on the state where the atom is excited and 
one photon in mode A is present. The initial condition 
for the problem discussed in vn, where N = 2, is 

(21 (l~ 1 ({OIL} Iw(O» = </J~. 
Since we shall assume that at time t = a the atom is in 
its excited state, normalization imposes the 
requirement 

The solution of this problem is given in Eq. (29) of 
Vll, and it is as follows: 

(t) - 4h1 L exp( - i&yt) 
CPA - tr y H~(1;y) 

1 
x~ (~IL-wA)H'(~IL)H(!;y-t,IL) 

(1) 

X 6 , G(t,K) (2) 
K H (t,K)H(!;y- t,.) 

The functions appearing in Eq. (2) are defined as 
follows: 

_ 1 ( 21h,Y ) 
HW = 27Ti E - t, - ~ f12(w" - 0 . (3) 

(Recall that nE is the energy separating the two levels 
of the atom; nw, is the energy of a photon in mode A; 
hlL is the coupling parameter in the Hamil.tonian. ) The 
function H in Eq. (3) is a meromorphic function of the 
complex variable t" with (simple) poles at t, = w" and 
interlacing zeros (see IV) at t, = t,,,, say. The function 
(H(t,}}-l therefore has (simple) poles at t, = t,1L' with 
residues (H' (t,,,, ))-1 (the prime here denotes differentia
tion). Next 

G(t) __ l_~~ 
" = (2 .)~ LJ t • 

7T~ ,w~ - s 
(4) 

The function G embodies the information about the ini
tial state of the system. Further, we have 

(5) 

This function, too, is meromorphic in the complex 
variable ?:, with poles at the points ?: = ~IL + t,K for any fJ. 
and K. The poles are interlaced by zeros, at the points 
?:=?:v say. Equation (2) is now completely specified. 

In Sec. II, an expression is found for 

pet) == 6 I CPA (t)/Z, 
/. 

the probability at time t that the atom is in its excited 
state. This expression is then cast in a form from 
which it is possible to find the limit of p(t) as the sys
tem size tends to infinity. Then this limit is taken in 
Sec. III, and an expression suitable for numerical com
putation is found. Numerical results are presented in 
Sec. IV along with comparisons of results from the N 
=1 sector. In Sec. V, there is discussion of the work 
of this paper and of future work to which it should lead. 
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II. REFORMULATION OF THE FINITE SYSTEM RESULT 

It is convenient to introduce at once the dimensionless 
variabies which have been used in aU the previous pa
pers of the series. These variables are necessary for 
the numerical work to follow, and also make limit
taking, whether of infinite size or weak coupling, much 
easier. It has been argued in VI [Eq. (8)J that a general 
form for the coupling parameter h~ is as follows: 

Ihxl2= an~Ec f(cl~xl), (6) 

where O! is a dimensionless coupling constant (a fine
structure constant for one-dimensional systems in 
fact), c is the speed of light, L is the length of the sys
tem, and f is a dimensionless nonnegative real function 
whose argument involves k~, the wavenumber of the 
Ath mode of the field. As usual for radiation, 

w, = clk~1 and k, =2rrn/ L 

for some nonzero integer n. It is always possible to set 
f(1) = 1 by a suitable choice of 0'. We may now introduce 
the dimensionless variables by making the following 
definitions: 

T=.rtEt f3 = ~ y =k..... I) =. Lx. , ~ CiE' ,. CiE' v aE· 

The above are time and frequency variables. The 
length of the system is given by 

a2 =C:iEL/c, 

and then, from Eq. (6), 

Ih~12= (Ci~:n2 f(ctf3). 

Some dimensionless functions are needed, and so we 
make the following definitions: 

H(O'EO= a~ HW, 
27T~ 

with de ri vati yes 

(7) 

(Ba) 

H'(CiE~) = -21 
. H'(U, (Bc) 

rrt 

H~(CiE~)=(!~rH~W. (Bd) 

Corresponding to the function G of Eq. (4) we define 

G(O== (27Ti)Z!; G(aE~) 
n 

= ..f2 "6 j1/2(aJ3JIjI/, 

a ~ f3. - t, 
(9) 

There is no reason here for the function denoted by f l /2 

to be real, since its relation with f will be taken to be 

Ifl/2(x) 12 =f(x). 

With these definitions, then, Eq. (2) assumes the 
form 
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= -4-fl/2(a{3 ) 6 exp(- io"r) 
af2 ~ v H~(o) 

1 X6 ~ ~ 
" (y,,-{3x)H'(Y,,)H(o,,-Y,) 

x 6 x GlY.) 
N H'(y)H(o,,- YK) 

(10) 

The above expression has several summations over the 
various discrete spectra of the problem, denoted sev
erally by the i3A' Y", 0". It is the aim of the remainder 
of this section to express these summations as contour 
integrals where the contours are away from the positive 
real line. By this device, new functions can be defined 
in terms of which ~x (r) can be expressed without ref
erence to the discrete spectrao Then taking the infinite
system limit becomes reasonably simple. 

First, let us consider the lJ summation 

6~, ~ exp(-i'7 r ) 
" HI (o)H(o" - Y,,) H(o" - Y) 

(11) 

along with the contour integral 

1 f exp(- i~r) 
- 27Ti c d~ iil(~)ii(~ - y,,)ii(~ - Y) 

where C is depicted in Fig. 1. As the radius of the 
large semicircle tends to infinity, it can be seen by 
Jordan's lemmas that the contribution from the semi
circle as opposed to the straight-line part of C vanish
es. Consequently, the integral could as well be taken 
along the contour B shown in Fig. 2, since the inte
grand has no singularities except on the positive real 
line. These singularities are at two clas~es of points: 
where ~ = 0,.., that is, from the zeros of Hl1 and at 
points like ~ = Y~ + Yp for some choices of ,\ and p. For 
~ = 0A' the residue is easily seen to be just the sum
mand in the expression (11). Now in Eq. (27) of VII the 
following expression for H1 (z) is given: 

H1(z) = ~ ~ H'(~,,)H'(~K~(Z - ~,,- ~K) 
and in dimensionless variables this becomes 

(12) 

Use of this relation shows that, if K 1- Jl, the only 

~ plane 

Im' 

c 

Re ~ 

FIG. 1. The contour C chosen in evaluating the integral repre
sentation of Eqo (11). 
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singularity occurs where ~ = Y" + Y., where the residue 
can be found by a simple calculation to be 

hxp(-i(y" +y)r]. 

If, on the other hand, K = Jl, then there are singulari
ties at each point of the form ~=y" +yp, with residue 

1exp[-i(y" + yp)r][b'(y,J/H' (y)]. 

At the point ~ = 2y", the residue is 

exp(- 2iy" r). 

This information leads to the following result: 

6 x exp(- iOAr) 
A H~(Qx)R(ox -y,JR(o), -YK) 

=- -1-f d ~ exp(-i~r) 
27Ti c ~ Hl(Oi1(~ -y,,)n(~ -1'.) 

- 1 exp[ - i(y" +y.}T] + 1°.1' exp(- iy" T) 

xb'(y,,)fl(r) , 

where we have introduced the function 

f (r)", _ 6 ex~(- iYK r ) 
1 K H'(Y.) 

which can itself be expressed as a contour integral: 

(13) 

(14) 

(15) 

since the zeros of f1 are at the points Y
K

• Comparison 
of this expression with Eq. (12) of III shows thatfl(r) is 
nothing but the solution of the spontaneous emission 
problem in the sector N = 1, that is, the quantity 

(2, {Ox}i'l!(t) when i'l!(O) = i2,{0.J). 

The infinite-system limit of fl (r) is of course well
defined (see V). 

To make use of Eq. (13), let us return to Eq. (10) and 
compute the probability of the atom's being excited: 

p(r),= 6 i<p~(TW. 
). 

The ,\ summation in this expression can be performed 
when one has evaluated the sum: 

~6 f(a/3A) • 
a ). (Y,,-i3,)(Yp -i3,) 

If Jl 1- p, then this sum is equal to the expression 

~ plane 

1m ~ 

B 

Re , 

FIG. 2. The contour B chosen in evaluating the expression 
(27) for h (T). 

R. Davidson and J.J. Kozak 1076 



                                                                                                                                    

But, from the definitions of Eqs. (8) and (3), 

!i(O=...!. - ~ - ~ 6/(rt{3J (16) 
Ci a2 x (3x - ~ 

[see Eq. (VII. 36)] and (so that we may treat the case 
11. =p) 

flt(O - - 1 - ~ 6 /(ry.8x) 
- a2 x ({3x _ ~)2 

so that finally 

~ L: /(a{3x) = -1 - 0 fi'(y ) 
a2 (1'" - (3x)(YP - f3x) "p "-

since 

H(y,) =0. 

It is now a short algebraic manipulation to see that 

() 6 1 /6 exp(-iovr) 
p r =-4 ,,!i'(y,,) v!ii(o)h(ov-yu) 

X6 A, G(y.) \2. 
• H (y.)fJ(ov -1'.) 

Use of Eq. (13) provides the following expression: 

p(r)= - 4 ~ fJ'(~,J [-} exp(- iI'" r) 

x"exp(-iYKr)G(YK) +lexp(-iy r)G(y )/(r) 
:-' fJ'(y.) 2 "" 1 

__ 1_ ( d~ exp(- i~ r) 
2rriJB fil(OfJ(~-y,,) 

X6 A G(y}) \2. (17) 
K H'(y.)H(~ - YK ) 

Now another new function can be defined as follows: 

j
' ( )= 6 exp(- iy. T)G (Y.) 
2 T - A,( ) 

K H YK 
(18) 

with contour integral representation 

(19) 

just as for /1 (r), The function /2 (T) turns out to be the 
solution of the N = 1 sector problem with initial 
condition 

1'1'(0» = '0 <PxI1; 1x,{O,J",x>, 
x 

It is not worth proving this assertion in detail, for it is 
easily demonstrable by a slight modification of the cal
culation of Sec, II of lit 

The definition given in Eq, (19) permits another use
ful manipulation, The K summation in Eq. (17), that is 

G( \ ;;_~'L' __ _ 
7 fi'(YK)fJ(~ - YK) 

can be expressed as a contour integral 

1 l' ca:) - 2;£ c rir, H(?;)fJ(~ - 1;)' (20) 

provided that ~ lies above the contour C. (We have in 
effect introduced two C-type contours, one below the 
other, ) The expression (20) is a convolution, and we 
can accordingly make use of the following standard 
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facts; 

If two functions a, b, defined on the positive real 
line, have Laplace transforms A, B defined as follows: 

AW=iJo~drexp(i~r)a(r) (21a) 

BW =i Jo~ drexp(i~T)b(r) (21b) 

then the Laplace transform of the function ab is the con
volution, A * B, of A and B, defined by the formula: 

(22) 

Either A or B, regarded as a function of the complex 
variable ~, is defined and holomorphic in the region 
Im~ '> k, for some k, The integrand in Eq. (22) will have 
singUlarities I; with Iml; < k associated with the function 
A and singularities with 1m I; '. - k associated with B. 
The contour D is defined as one which passes from - 00 

to + 00 leaving the singularities associated with A on the 
left and those associated with B on the right, provided 
that this is feasible, The inversion formula for Eq. (21) 
is 

Now, from Eqs. (15) and (19), we may see that 
l/fi(O is the Laplace transform Of(I(T), so that 

(23) 

fi~O=i ~oodTeXp(i~T)/dT)' (24) 

and that - G(O/H(O is the Laplace transform of h(T). 
Since the expression (20) is simply 

( C 1) - - *-,:- (0 
/J H 

(C satisfies the requirements on D), it follows that the 
expression equals 

(25) 

When the results of Eqso (18) and (25) are put into 
Eq, (17), and the whole quantity whose squared modulus 
is being taken multiplied by exp (i ')I" T), the result is 

p(T)=- 6 _A/_(l_) 1-(2(T)+6(Y,,)/I(T)- exp(i'Y"T) 
" H }" rr 

One last substitution frees this expression from the 
function it By use of Eq. (24), we obtain 

p(T)=- '0 ~(. ) /-f2(T)+G(y,,)/dT) + exp(i.Y...!'T) 
" If )" rrl 

x f ~ dO exp(- iy" O)fl (0) f 00 dT'fl (T')/z (T') 
o 0 

xf d~ exp[-i~(T-T'-0)1[20 
c H 1W 

It is tempting at this point simply to define a new 
function by the contour integral expression 
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r d~ ext:(- i~T) • 
Jc H1(O 

But, since HI (~) - 0 as ~ - 00 [Eq, (12) makes this 
clear], it is difficult to work with the integral as it 
stands, However, an integration by parts yields the 
following result: 

f d~+-- frodT'exp[-i~(T- T'- e)l!I(T')fz(T') 
c Hl(~) 0 

=i (d~----J.- ( dT'exp(-i~(T- T'- e)jF(T'), 
Jc ~Hlm Jo 

where 

(26) 

The ~ that has appeared in the denominator is useful, 
as will be seen. First, it follows from Eq. (12) and the 
relation 

6~=-1 
" B'h'.) 

[set T= 0 in Eq. (14)1 that 

lim -A
1
-=L 

~.oo ~Hl(~) 

Thus 

1/ ~}{! (0- 1 

tends to zero at infinity. This means that, for T' 0, 

( d ~ exp(- i ~ T)(----J.- - 1) 
J c ~Bt!O 

= (d~eXp(-i~T)(-"L( -1) JB ~H! 0 
by Jordan's lemmas (with B as in Fig. 2). But since B 
is a closed contour, 

IBd~ exp(- i~T) = O. 

We shall then make the definition: 

and 

Jz(T) = 0 for T O. 

It follows that 

lz(T)=_6exp~-iOvT) 1 (nO) 
v ovHj(ov) - HI (0) 

which is well defined. On the other hand, 

t ( = dT' F(T') f d~ exp[ - iHT - T')] 
m}o c 

_~-iF(T) (T~O), 
-to (TC: 0), 

(27) 

a result obtained by making use of Eqs. (21) and (23). 
Therefore, we obtain 

( d~-J-- f ro dT' exp[ - i~(T - T' - e)]f! (T')f2(T') Jc Hl(~) 0 

( '_8 
=-2lT}0 dT'F(T')h(T-T'-e)+2lTiF(T-e) 
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if T - €I ~ 0, and 0 otherwise, It follows that 

[exp(iy" T)/lTilio 00 de exp(- iy" e)fl (e) fo = dT'fl (T')fz(T') 

xfcd~exp[-i~(T- T'- e)J/H1W 
= j~' de exp[iy" (T- e) lfl (e) 

x[2F(T- e) + 2i fo'-8 dT' F(T')h(T- T' - e)) 

= fo \le exp(iy" e)fl (T- e) 

x[2F(e) + 2i f/ dT' F(T')h(e- T')), 

The last equality is the result of changing the inte
gration variable €I to T - eo Finally, then 

p(T)=- 6-A-1-/- f2(T) + G(y,..Jfl(T) 
" H'(y,,) 

+2 fo'deeXP(i y"e)fl(T- e) 

x [F( e) + i 10 8 d T' F( T')h (€I - T') ] 12. (28) 

This concludes our reformulation of p(T). Only one dis
crete spectrum, namely that of the y", is still involved, 
and it will not be hard to deal with that in taking the 
infinite-system limit. 

III. THE INFINITE SYSTEM LIMIT 

There are a few steps left in the elimination of the 
'Y" from Eq. (28). First of all, we may note that (bar 
denotes complex conjugate) 

1 ---- '0 -;.,-- exp(i'} "e) exp(i'}"e') 
" H'(y,,) 

= _ 6 exp[ -Air" (8' - 8») 
" H'(y.,l 

=-~ rrl~~~[-~~~ 0 

2m JB ' Hm 
(29) 

Now from Eq. (16) and the definition of i3~, an explicit 
expression for H(O can be obtained (see also Sec. V of 
VII): 

H(O =.!. _ ~ + ~ ~ 1(2mlCi/(J2) 
(1 (J2 n:1 ~ - 2ml! (J2 0 

As (J2 - 00, the system size tends to infinity, and one 
obtains in the limit 

A 1 21 ~ f(CiA) B(O=-- ~+- dA'--
Q IT 0 ~-A 

for ~ not a positive real number. This limiting expres
sion is no longer a meromorphic function of ~, but 
rather it has a branch point at ~ = 0 and an associated 
discontinuity along the positive real axis of ~, There 
exist limiting values of H as ~ tends to a point on this 
axis; 

A 1 2 f = f(CiA) . H"U;) = - - I: + - P riA '-- 'f 2zf(o 1:), 
Ci 'if 0 I:-A 

(30) 

where the two limiting values correspond to an ap
proach to I: from above the axis and from below, The 
symbol P indicates that the following integral is a 
Cauchy principal parL In the (J2 - 00 limit, then, the ex
pression in Eq, (29) becomes; 
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(31) 

The validity of this last step is not guaranteed unless 
our system is "ergodic" in the sense discussed in Sec, 
IV of V, This means that the coupling function/ must 
satisfy the condition /(x) - 0 as x - 0 + [see Eq. (9) of 
VI] and that the coupling constant a must be sufficient
ly small, in fact, that 

a < ( ~ fa ~ /~) dArl 
(see V). These conditions ensure that H has no zeros on 
the negative real axis. Further, / must be such that, 
for !;:~ 0, 

(32) 

for some positive E independent of a. Equation (31) is 
then justified, The independence of E and a, as we shall 
see shortly, guarantees the existence of a weak-coupling 
limit. From now on, ergodicity, as defined here, will 
be assumed. It is convenient to make the definition 

H(!;:)=- 2~/;(!;:) - ;.(!;:)) 
=~/(a!;:)[(!-!;:+ ~ p (~dA/(O:A»)2 + <v2(a!;:)]-I. 

7T a 7T)0 !;:-A 

(33) 

The infinite- system limit of It (T) is readily expressed 
in terms of H: from Eq, (15), 

/1 (T) ::= -2
1 

. f d ~ exp (- i ~ T)-J:-
7TZ c Hm 

::= i~d!;:eXp(-i!;:T)H(!;:), (34) 

Similarly, Eq, (29) becomes 

- 6 _A_1_ exp(iY,,8) exp(iy" 8') 
" H'(y,,) 

= ~ ~ d!;: exp(i!;:8) exp(i !;:8')H (!;:), (35) 

Our next step is to consider 

1 A -- 6 -A-- G(y,,) exp(iy,, 8) 
" H'(y"') 

= - 6 exp(- iy 8) ~(y,,) 
" " H'(y,,) 

= -2
1 

. f d~ exp(- i~8) q((~» , 
7TZ B H~ 

(36) 

Fro)ll Eq. (9), one can obtain the infinite- system limit 
of G(O: 

GW = 2v'2 ~ /1I2(27Tna/a2)l/!?rntg2 
a n=1 27Tn/a2 - ~ 

Normalization [Eq. (1») imposes the condition 
~ 

26/<P2.n/.,2/2=1, 
n=1 

and so it is sensible to make the definition 

(37) 
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where, as a2 - 00, 27Tn/a2 - A. The normalization condi
tion is then just 

fo ~ /1/!(A)/2 dA = 1. 

In the limit 

aW=(~)1/2 f ~ jl/2(O'A)p(A)dA • 
7T 0 A-~ 

(38) 

This is another function with a branch point at ~ = 0 and 
a cut along the positive real axis, The limiting values 
are 

a~(!;:) =(~)I /2 P f ro t /2 (a A) I/!(A) ± iY2/ii/1 /2(0' !;:)<P(!;:). 
7T 0 A- !;: (39) 

The expression in Eq. (36) can be written as 

~ (~d!;:eXP(-i!;:8)(.till- _ ~-(n), 
27Tt ) 0 If' (!;:) W(!;:) 

Now in view of the definition of H, Eq, (33), it is useful 
to define 

_ (;-(!;:)H+(!;:) - ih!;:)ii-{!;:) 
g(?;) = fi+ (!;:) - fi-(!;:) (40) 

for then we have 

1 ((>(!;:) a-(!;:)) , 
2ri Hin - ft(!;:) =g(!;:)!r (!;:), 

Equation (36) is then 

lim{- 0 -A-
1
-C(y,,)eXp(ty ,,8)} 

a2_ro "H'(y,,) 

= ~~ d?;H(?;)g(!;:) exp(ifh (41) 

The last step needed in our treatment of Eq, (28) is 
to verify that 

!!~ {- ~ k~y,,) G(y,,)G(~,J} 
= f~ d?;H(!;:)/g(?;)/2. (42) 

o 
(The proof is lengthy, and is relegated to Appendix A, ) 
For then, by use of Eqs. (42), (35), and (41), we ob
tain the infinite- system limit of Eq. (28), as follows; 

p(T)::= fo ~ d!;:H(!;:) /- /2(T) + g(!;:)/I (T) 

+2fo' d8exp(i?;8)/I(T- 8) 

x[F(8) +i J~e (iT' F(T')Jz(8- T')1/ 2, (43) 

where H(!;:) and g(!;:) are given by Eqs, (33) and (40), and 
the functions//> /2, F, and It are all infinite-system 
limits, Equation (40) can be made explicit 

__ 1 __ [' 7T1/!(!;:) _(!. 2 (~/(O'A)dA) 
g(?;)- (27T)1/2 /1I2(a!;:) 0: -!;:- -; P J

o 
A-!;: 

+2P fo~/1/2(~~1(A)dAl 

The limit of /1 has already been given in Eq. (34), Next 

f2(T) = - fo ~ d!;: exp(- i?;T)g(!;:)H(!;:), (44) 

As before 
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For h(T), we obtain 

h(T)=~ f d~exPS-i~T) [Eq, (27)] 
2m B ~Hlm 

=- H~(0)+2~fo~dtexp(-itT)t(Ht(t)- ~m)' 

Now the definition of Hl [Eqs. (8) and (9)] is 

~ 1 
H1W= 0 A fJ • 

U H'h!u) (t - y,,) 

Then it follows that 

Ii (t)=- ~ f d~ 
1 21Ti J B fJ(~)fJ('{; - ~) 

fro H(~)d~ 
= - J 0 {i(t - ~) 

in the limit, and so 

ii~(t) = _ fro H(~) d~ 
1· 0 fj±(t _ ~) , 

Finally, then, after using these results in Eq. (45), 
we find 

1 
h(T) = I; d~HW;il(- ~) 

(45) 

(~dr;exp(-itT)I;d~HWH(t-~) (46) 
+ Jo tIIod~HW/f[+(t- ~)12 

The integral which forms the second term of this ex
pression is of course proper at t = O. 

We have now given an expression for each function 
appearing in Eq. (43), and have therefore fully specified 
the infinite-system limit of our problem. 

It was seen in III that in the N = 1 sector the function 
p(T) for an infinite system took on the simple form 

p(T) = exp(- 4T) 

when the coupling constant 0' became zero (the weak
coupling limit). Although p is not analytic in 0' at 0' = 0 
for any nonzero T, the limit is well-defined. We may 
now show that this result persists in the N = 2 sector. 
First we make a definition that introduces a new rep
resentation of the initial condition of our problem: 

<peA) = (1/va)<p(A/a). 

It can be seen at once from Eqs, (7) and (37) that the 
initial condition is unchanged as 0' varies so long as 
<p(X) does not depend on a, (The photon wavefunction 
depends on energy alone.) Further, normalization is 
preserved 

fo~ 1 <peA) 12 dA=.C 1 <P(A) 12 dA= l, 

Now let us consider 

fo~ dt exp(- itT)H(t). 

By Eq. (34), this is!t(T). It can be written 

exp(- iT / 0') i;lex dA exp(- i AT)H (A + 1/0'). (47) 

The expression H (A + 1/0') has a simple limit when 
0'- 0: 
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H (A+ ~) =;1(1 + aX) 

x[(_ A_ ~ P (~ f(j.L)dj.L )2 
1T Jo j.L-1- aA 

+ 4/(1 + ax~ _1 

_ ~ r(x + ~ p [~f(JJ.) dj.L ) 2 + 4J_1 
1T L 1T Jo JJ. - 1 

as 0'- 0 sincef(1) = 1. We now prove that 

lim ,Clex dA exp(- iAT)H(A + 1/0') 
0<-0 

= .r.:dAexp(-iAT) limH(A + 1/0'). 
0<-0 

If we putf(x) =0 for x < 0, then H(A+ 1/0') =0 for 

(48) 

(49) 

A <: - 1/0', and so the range of integration in Eq. (47) 
can be extended down to - o(). Then the result (49) 
follows by the Lebesgue convergence theorem9 if there 
is a function M(A) such that 

1 exp(- iAT)H(X + 11 0') 1 = H(A + 1/ 0') ~ M(A) (50) 

and 

A suitable M can be defined, in view of Eq. (32), as 
as follows: 

I 

q /(A + p)2 for ,\ < - 2p, 

]vl(A) = q /E2 for - 2p ,,; A,,; 2p, 

q/(A_p)2 forA>2p 

where 

2 
q = - supf(x) 

1T x 

and 

p = :~f I ~ p i ~ f~~ ~j.L \. 

It is easy to see that the conditions of Eq. (50) are 
satisfied. 

From Eqs. (47), (48), and (49), then, we obtain 

(51) 

lim exp(iT / a)f1(T) = exp(iPT) exp(- 2T), (52) 
0<-0 

where 

p=!p(~f(j.L)dj.L 
1T Jo JJ. - 1 

We have verified that, for the N = 1 sector, 

peT)=: \fl(T)12=exp(-4T) as 0'-0. 

By an exactly similar calculation, one can see that 

1· exp(iT / 0') f ( ) -1' exp(iT /0') 
1m 1 12 2 T - 1m - 1/2 

0<-0 0' ",-0 0' 

X [~(l!; exp(- itT)g(t)HW 

where ( 
1 \ 1/2 

= 2riJ exp(iPT) exp(- 2T)Q, 

f
ro 1/2 

_ Q = 21Ti<p(1) + 2 p f ~~~(,\) dA . 
o 
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In fact, because T appears in the defining integrals for 
11 and Iz only through the factor exp(- iAT), the con
vergence in Eqs. (52) and (53) is uniform with respect 
to T. It is also readily seen that away from T = 0, the 
derivatives with respect to 7 of 

exp(iT / a)ft (T) and (1/v'a) exp(iT / a)f2 (T) 

converge uniformly, and therefore converge to the 
derivatives of the expressions on the right-hand sides 
of Eqs. (52) and (53). From the definition of the func
tion F(T), Eq. (26), it follows that 

lim v'a exp(2iT / a)F(T) = i,f2jT; Q exp(2iPT) exp(- 4T). 
,,-0 

It is shown in Appendix B that 

fo~ de exp(i!:e)1t (T - e)[F( tI) + i foB dT' F(T')h(8 - T')] 

~N{(i 

(54) 

(55) 

for all !:? 0, with N independent of both!: and a. Thus, 
finally, since we know that, for any a, 

10'" H(!:) d!; =1t(0) = 1; 

10 '" H(!;) \ g(i:) \ 2 di: = 1, (Appendix A) 

and since I It I and 112 I are bounded by ° and I, we 
obtain, with a further appeal to the Lebesgue con
vergence theorem, that 

limp(T) = lim I It (T)/2 = exp(- 4TJ. 
a-Q ",~Q 

IV. NUMERICAL RESULTS 

In the previous section an exact expression was 
derived [viz., Eq. (43)] describing the emission of an 
excited two-level quantum system in a (one-dimension
al) field of electromagnetic radiation in the limit where 
the system size becomes of infinite extent and the mode 
spectrum becomes continuous. In the formulation of the 
problem (Sec. I), it was assumed that one quantum of 
the field was excited initially, in contrast to the situa
tion described in an earlier paper of the series (V), 
where the infinite-system limit was constructed for the 
problem of an excited two-level atom in a field of radia
tion assumed to be de-excited initially, Having thus at 
our disposal the exact solution for p(T) for both choices 
of initial condition, it is of great interest to study the 
effect of an extra photon on the time evolution of an 
excited two-level system, and for this reason the re
sults of a few representative calculations will now be 
reported. 

In the work presented in papers V and VI of this 
series, calculations were carried out for several dif
ferent choices of the coupling function/(x), viz" 
I(x) =x-11Z

, I(x) =X·
1

/ 4 and 

(56) 

It was found in V that the first two choices of coupling 
function led to "ghost states," and nonergodic behavior 
in the time evolution of p(T) for suffiCiently large values 
of the coupling parameter a. (We shall return to this 
point in the follOWing section.) Here, however, we shall 
focus on the results generated using Eq. (43) with the 
"ergodic" coupling function (56). Given the choice (56) 
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three different values of the coupling parameter a were 
selected for study, viz., a = 0.05, 0.10, and 0.20; 
these three values of a are suffiCiently separated to al
low changes in the time evolution of p(T) with increas
ing coupling strength to be displayed conveniently. To 
complete the speCification for the numerical study, 
we recall that the initial photon state I/J{A) must be 
chosen such that the normalization 

is preserved, and here we take 

;ptA) ={rci72, 0 ~ A ~ 2/ a 
0, A>2/a. 

(57) 

[Since in the limit of an infinite system, the modes 
21rn/ a2 

- A, the choice it = 1/ a in the coupling function 
l(a A) corresponds to resonance, J Our choice of l{!(ll) has 
the fUrther property that the state depends on photon 
energy alone, and not on the coupling constant a. 

So as not to interrupt the continuity of the subsequent 
discussion, the results of several numerical checks 
will now be reported. First, the reformulation of the 
finite-system result (carried out in Sec. u), resulted 
in an expression for p(T) [Eq, (28)] which could be 
computed numerically and checked against the results 
of corresponding calculations reported in VII. In partic
ular, numerical calculations were performed on Eq. 
(28) for the same values a = O. 1 and a2 = L 0, as were 
used in the calculations of VII, based on Eq. (10). The 
agreement between computed values of p(T) is always 
within 1%, Secondly, in the reformulation of the prob
lem, in the infinite- system limit it was noted (Sec. II) 
that 11 (T) is the solution of the spontaneous emission 
problem in the N = 1 sector. Accordingly, the function 
ft(T), evaluated for the particular choice (56) of coupling 
function, can be compared directly with a previously 
derived result, Eq. (VI-19); a check of this point for 
each choice of a considered here revealed that the two 
expressions were in numerical correspondence to with
in 1% for all T. Finally, the contributionfz(T) is the 
lower-sector solution for an initial condition of the 
atom de-excited and a photon represented by <pp present, 
and hence should be strictly zero at 7 == 0. Numerical 
calculation of 12(T) at T = 0 showed that the magnitude 
of fz(O) was r:: O. 01; concomitantly, calculation of the 
full expression (43) at T = 0 gave an initial value> 0.99 
[the integral contribution to the expression (43) vanishes 
identically at T = 0], and agreement with the formally 
exact result, p(O) = 1, was judged satisfactory. 

Turning now to a discussion of the results displayed 
in Figs. 3, 4, and 5, we have plotted the time evolution 
of p(T) assuming the presence initially of an extra 
photon in the field [calculated via Eq. (43)], the evolu
tion of p(T) assuming the field to be de-excited initially 
[calculated via Eq 0 (VI-19)], and the weak- coupling 
solution to the dynamical problem for three representa
tive values of the coupling constant, respectively, a 
= 0.05, 0.10, and 0.20. From and analysis of these 
data, the following conclusions can be drawn. First, 
for a given choice of a, de-excitation of the two-level 
quantum system is facilitated when there exists an 
extra photon initially in the radiation field. Secondly, 
for each choice of a, the time evolution of the" extra 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
T 

FIG. 3. The time evolution of piT) for the choice of coupling 
constant a = 0.05. The solid line (-) displays the evolution 
assuming the presence initially of an extra photon in the field 
[calculated via Eq. (43)1, the hyphenated line (- - - - -) dis
plays the evolution assuming the field to be de-excited initially 
(calculated via Eq. (VI-19), and the dashed line (--------) 
displays the weak-coupling (strictly exponential) solution to 
the dynamical problem. 

0.8 

0.7 

0.6 

~ 0.5 
"-

0.4 

0.3 

0.2 

0.1 

0.0 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.B 0.9 1.0 

T 

FIG. 4. The time evolution of piT) for the choice of coupling 
constant a = 0,10. The conventi.ons i.n this figure are the same 
as in Fig. 3. 
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FIG. 5. The time evolution of piT) for the choice of coupling 
constant C\' = O. 20. The conventions in this figure are the same 
as in Fig. 3. 

photon" solution is closer to the weak- coupling (strictly 
exponential) solution than is the solution generated 
assuming the field to be de- excited initially. In this 
regard, it should be noted that both exact solutions tend 
to converge to the weak- coupling solution as the 
coupling constant a becomes smaller. [The reader 
should be cautioned that the apparent increase in half
life of the decay as the coupling constant becomes larg
er is illusory-remember that T is a dimensionless 
variable (viz., T == aEl) scaled by the coupling constant 
a.] Lastly, we note that there is a qualitative differ
ence between the behavior of the weak- coupling solution 
and either of the two exact expressions for p(T) [viz., 
Eq, (VI-19) and Eq. (43)] in the neighborhood of T=O; 
the latter time-evolution profiles exhibit a "shoulder" 
which becomes more pronounced with increaSing 
coupling constant. This effect had been noted in earlier 
studies on a different class of models. (See Ref. 10 
and especially the article by Zwanzig.) 

V. CONCLUSIONS 

Since the work presented in the series of papers, 
Refs. 1-7, has spanned a number of different aspects 
of the radiation-matter problem, it may be of use in 
this concluding section to place the present study within 
the context of the overall program of research being 
pursued by the authors. As was noted in VII, methods 
for obtaining the exact solution for models involving 
only boson operators (with the coupling linear in these 
operators) have been available since the introduction of 
the coherent-state representation for the radiation field 
by Glauberll in 1963. When these models are general
ized by including fermion operators in the Hamiltonian, 
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as in the various models of laser theory, the formal 
methods developed previously had permitted the con
sideration of only a finite number (usually one) of modes 
of an interacting boson field, if an exact solution was to 
be achieved. It is in this sense that the work presented 
in Refs. (1-7) goes beyond previous work in radiation 
theory, since both fermion and boson operators are in
volved in the Hamiltonian (the QI and ax in the expres
sion for H), while at the same time an infinite number 
of modes of the boson field is considered. In particular, 
the methods developed by the authors allow the exact 
solution to a Hamiltonian model for the spontaneous 
emission of an excited two-level quantum system in a 
field of electromagnetic radiation (with the field de
excited initially), whether the system size is assumed 
to be of finite (IV) or of infinite (V) extent. Further
more, our recent studies have shown that exact solu
tions can be obtained for the same model, even in the 
presence initially of an extra photon in the radiation 
field, whether the spectrum of modes of the field is 
assumed discrete (VII) or continuous (the present 
study). At this point it should be stressed that although 
the radiation-matter problems considered in this 
series were analyzed assuming the field of radiation 
was one dimensional, this is not an essential restric
tion in our approach. The sole purpose for confining the 
radiation field to one dimension is to allow the under
lying mathematical structure of the problem to be more 
clearly exposed, and to facilitate the numerical com
putation of the final expressions obtained. Put different
ly, the crucial mathematical issues which must be faced 
if one hopes to obtain the exact solution to the general 
class of models cited above are already present in the 
one-dimensional problem; once these issues are re
solved, provided one orders the modes A of the field 
properly, there is no a Priori theoretical reason which 
stands in the way of applying the techniques developed 
to problems for which the dimensionality of the field is 
greater than one, and in fact we are now in the process 
of doing so. 

The main task in this paper has been to show that the 
results presented in VII for the dynamical evolution of 
our system in the N = 2 sector can be extended to sys
tems infinite in extent. It is not very pleasing that a 
procedure so simple in principle as the taking of a lim
it as one parameter tends to infinity should be so dif
ficult in practice. The presence of so much nonanaly
ticity in the expressions involved is however one of the 
chief characteristics of the solutions found in this 
series of papers, and it is, of course, this nonanalytici
ty which causes the difficultieso The final answer, Eq. 
(43), is not of an excessively complicated form, and it 
may prove possible to find a way of deriving it less 
tortuous than that used here. 

The numerical computations demonstrate clearly that 
the solution, Eq. (43), has all the properties with 
which physical intuition would wish to endow it. Since 
this is so, perhaps it is to the point to say here why we 
have thought it worth-while to work it out in such detail. 
Equation (43) is the exact solution of the model we have 
been conSidering in the appropriate sector. As such, it 
has enabled us to give, in Sec. III, a quite precise def
inition of what we mean by ergodicity in problems of 
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this kind, and to point out how pathologies may arise 
which would remove the "nice" properties of the solu
tion. It has, al~o, shown just what is involved in the 
seemingly straightforward process of taking the weak
coupling limit, and has allowed us to see what kinds of 
convergence, uniform, L1, and so on, are involved in 
letting QI tend to zero. It is plain, for example, that 
it is the infinite-system limit which converts the time
reversible solution of VII into the irreversible solution 
in Eq. (43). On the other hand, it is the weak -coupling 
limit that imposes exponential form on the time-depen
dence of the evolution of the system. 

It is not unreasonably our hope that the methods of 
this paper and of VII will be of use in providing exact 
solutions to more complicated matter- radiation models. 
We may draw attention to our paper on the exact 
dynamics of three-level systems12 and the prOjected 
applications of this work to radiationless transitions in 
aromatic molecules, processes with phonons in solids, 
as well as the phenomena of phosphorescence and 
fluorescence. Here we may claim that since the meth
ods introduced here lead to exact expressions for the 
time evolution of p(T) (for different initial conditions), 
the results generated may be of use in evaluating ap
proximate theories advanced in recent years to de
scribe the above-mentioned phenomena. We have also 
noted that the nonergodicity uncovered in V in the time 
evolution of p(T) for suffiCiently large values of the 
coupling constant QI is intimately linked to the onset of 
super-radiant emission, and we conjecture that this 
nonergodicity may also be related to the onset of en
hanced conductivity in one-dimensional (i. e., 
polymeric) systems. 

Over and above the practical applications noted above, 
we believe that the results presented in this paper bring 
us a step closer to realizing the overall goal which 
motivated the work documented in Refs. 1-7: to cast 
some light on the nature of irreversibility by working 
out the exact dynamics for Hamiltonian models of ex
cited atomic and molecular systems. In this regard, 
we may point out that sectors of the two-level problem 
with N greater than 3 can be treated by the methods in
troduced here; there is every reason to hope that a 
genuine thermodynamic system can be discussed in 
which the system size becomes infinite along with the 
number N in such a way that a finite density of radia
tion is maintained over all space. Thus, in conclusion, 
we should like to claim that, although our mathematical 
methods are still complicated and delicate, they are at 

. least novel, they permit exact solution of interesting 
and previously unsolved models, and seem capable of 
much further extension. 

APPENDIX A 

It will be sufficient for the proof of Eq. (42) if it can 
be proved that 

1 ... -
- ~ ~( ) G(y~)G(y~) 

~ H y~ 

= fo ~ dl; HU:) Ig(l;) 12 = 1. (A1) 

The discrete sum is the easier calculation and will be 
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tackled first. Let us define, analogously to Eq. (9), the 
function: 

C(~) = f2 6 jl/2(af3x)<h. , 
[J). f3 x - ~ 

of which the limit as [J2 - 00 is readily seen to be [com
pare Eq. (38) 1 

(~)1/2 fro jl/2(aX)<jJ(X)dX • 
7T 0 x_ ~ 

Since y" is real, it follows, that 

G(y,,)=C(y,,)o 

F or the [J2 - 00 limit, the corresponding result is that 

G±(~) = C'W 
(for real ~). 

Let us now consider the contour integral 

_1 f GW.?Wd~ , 
27Ti s H(~) 

where S is a large circle 1 ~ 1 = R, in the limit R - 00. 

Because 

lim ~G(j)C{!;) = 0, 
{-~ H{!;) 

(A2) 

the integral vanishes. The sum of the residues at the 
poles of the integrand in the finite part of the ~ plane is 
therefore zero. At the zeros y" of iI(~), the residues 
are the quantities 

G(y,,)C(y,J 

H'(y,,) 

A ,.--

G(y" )G(y,,) 

k(y,,) 

There are other poles at the points ~=f3v, at which the 
residues can easily be computed from Eqs. (16) and 
(9). The result is just 1 <jJv 12. We obtain then that 

_ 6 G(Y,,:G(YJ = 6 \ <jJv \2 = 1, 
" fi(y,,) v 

by the normalization of the initial state. This is the 
desired result. 

For the integral, we may begin by noting that, from 
the definition of g(t), Eq. (40) and from Eq. (A2), we 
have 

2 (C+ C-) (c+iI' -c'ir) 
27TiHW \g(t) 1 = Jf - H- fr _ fr . 

The argument, t, of all the functions has been omitted 
for ease of notation, and use has been made of the fact 
that 

-;r =it, 
which follows directly from Eq. (30). We have, then, 
that 

27TiHW 1 g(IJ 12 

{C+C+(H-)2 + C'C'(ir)2 _ C+C'fr H- _ C'C+fr fr} 
y+y-(ii' - it) 

The result that 

1 CWCWd~ -0 
s iIW -
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(A3) 

holds whether or not [J2 becomes infinite, and may be 
written, in the limit, as 

f "'(G+C> C-C') ------;r- - H- d t = O. 
o 

For the purposes of evaluating 

fo"'HWlg(I;)1 2 dt, 

then, the quantity 

1 (G+C+ e'C') 
- 27Ti it - Ii-

may be added to the integrand without changing the 
integral. Then, from Eq. (A3), we have 

fro H<I;) Ig(1;) 12 d!; 

o = ~ f ., J (;+C+(1/")2+ G-(h~+~2 -A c+c:frfi' - G-G+fry-
2711 0 t H+W(W - H+) 

e+c+ c-c'} -~ + --...--- dl;. 
H H' 

The integrand can be simplified, and may be written as 

(G+ - C-)(C+ _ C') 
(El" _yO) 

In view of Eqs. (39), (30), and (A2), we have 

C+ _ C-=2iV2Tr jl/2(al;)<jJ(?;), 

C+ _ C'= 2iV2Trjl/2(al;)<jJ(I;), 

iI, - ir = 4ij(a!;). 

Therefore, 

f'" HU;) 1);(1;) 12 dl; 

o __ 1_ (ro _ 87Tj(al;) 1 <jJ(I;) 12 d!; 
- 27Ti Jo 4ij(al;) 

= 10 '" 1 <jJ(I;) 12 dl; = 1 

by normalization. This completes the proof of Eq. (A1). 

APPENDIX B 

The aim of this Appendix is to prove the result (55): 

{ dB exp(iI;I)jl(T - B)[F(B) + i t dT' F(T')h(B - T') 

.,,;N..fa 

for all I; ~ 0 and with N independent of both I; and (lI. 
The coupling constant (lI may be restricted to small 
positive values. 

The first step is to show that for all T, (lIh(T) - 2 as 
(lI - 0, uniformly in T. The definition of h(T) is given 
in Eq. (46). Let us begin by considering the integral 

f ro H(~) 

o d~ afI+(I;- 0 . 

It can be written as 

f '" H(x+ l/(lI) 
dX A / (lIJr(-X-1 (lI+I;) 

-'" 
Since H (X + 1/ (lI) is dominated by the function M(X) de-
fined in Eq. (51), it is permissible, if we wish to apply 
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the Lebesgue convergence theorem, to consider the 
integral 

f
~ M(A) 

dA 0I!r(- A _ 1/01+ t) 
-~ 

First, let 

i: dAM(A) =A. 

Then let us define 

- {M(.\) , 
M(.\) = M(A) _ A, 

Clearly 

i:~ dAiv(.\) =0. 

A<-t A>t 
-~~A~~. 

(B1) 

Consider next the sectionally holomorphic function (see 
Muskhelis hvili 13) 

1 f '" dAM('\) 
/Y1W=2rri .\-t· 

-~ 

The function IYi is holomorphic in both the upper and 
lower half-planes away from the real axis of l:. Its 
limiting values are (from above) 

- 1 J~ dA'M(.\') 
/Jr('\)=~M(A)+2rr/ _00 .\'-.\ 

(from below) 

- ! - _1_ ') foO d.\' M(.\') 
I'll (.\) =- 2 M(A) + 2rr/ _00 A' _.\ 

so that 

M(.\) =/Y1+(.\) - /YJ -(A). 

Because of Eq. (B1), in tends to zer~) faster than 1/1: 
as 1:_ 00 • By use of the definition of fr, Eq. (30), we 
obtain 

f '" M(A) 

dA OIfn- .\-1/01 + 1:) 
-'" 

= f~ d.\[/Y1+(.\)-lh-(A)](2+aA-0I1;+ 2rrOi 
-'" 

(oO d/1f(OI/1). ~-1 ( ) 
XPJo A+1/0I_1;_/1-2101f(-1-0I'\+0I1:1 B2 

The denominator vanishes at a point AO, say, in the up
per half-plane of A, this point approaching A=- 2/01 as 
a grows smaller. It follows then that the contribution to 
the integral coming from ,I}] - (A) vanishes. (Close the 
contour by a large semicircle in the lower half-plane: 
the integrand is holomorphic inside. ) For the other 
contribution, we make use of a contour closed in the 
upper half-planeo There is a pole at A = AO, with residue 

IJn.\o) 
a+0(0I2) , 

and so the integral (B2) equals 2rri times this. Now 

lim ;Yt+(.\o) =limLl/+(- 2/a) =0, 
",-0 ()I + 0(02) Q..o a 

since /Y1 (1:) - 0 as I: - 00 faster than 1/1;. But since 

lim O'H+(- A - 1/ 0+ t) = 2, 
Q..o 

it is immediate that 
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f '" dAM(A) 

l!~ 00 aH+(- A - 1/01 + 1;) 

=0 

= j"'dAM(.\)lim 0[[+(_A
1
_-1/0+1:)' 

.<:10 a...o 

One may now replace M by M in the above equation. 
since 

1 
of'r(- A - 1/ a + 1:) 

tends uniformly for fixed 1: to ~ for - ~ c,; A'" t The con
ditions for the Lebesgue theorem (see again Ref. 9) are 
now satisfied, so that 

f
~ d.\ f/(.\+ 1/0) 

lim aH(- A-I/O + 1:) 
ar:.() .00 

f
+~ H(A + 1/0') 

= dA lim Qfi+(- A _ 1/0 + t) 
.00 a....o 

=2 f+'" dAlimH(A+1/O')=2. (B3) 
_<:10 0..0 

We must now look at the integral 

J~~ d~ HWH(t - O. 
This may be expressed as 

.!. j'" d.\H(.\)H(O' t - A) 
o 0 

where 

IH(A) = H(~) 
= 02~ f(A)[(1- A- 20j ~ f(jl)djl)2 +402f2(.\)1-1. 

rr rr 0 jl-.\ 'J 
The mean value theorem gives an estimate of the inte
gral for small (1; it is 

40'4 t-2 f 2(0!:f) for 0 c,;f c,; 1. 
7r 

It is now clear that the second term on the right-hand 
side of Eq. (46) vanishes uniformly as 0: - 0, and the 
first term, when multiplied by 0, tends to t by Eq. 
(B3). Thus indeed 

uk(T) - 2 uniformly in T as 0'-0. (B4) 

For the next stage of the proof, we require a refine
ment of Eqso (52) and (54)0 It has already been stated 
that the convergence in these results is uniform with 
respect to To We now claim that convergence holds also 
in the Ll norm. This means, for Eq. (52), that 

lim 1, ~ dTI exp(i7/ o)fl (T) - exp(iP7) exp(- 27) I = 0 
",..0 0 (B5) 

and there is a similar result for Eq. (54). Equation 
(B5) holds because everything is a Fourier transform 
of something else, as follows: 

lim 1, 00 dT I exp(iT/ o)fl (T) - exp(iPT) exp(- 21') I 
Q..o 0 

= limJo '" d1'l r: dA exp(- i.\ T) 
Q..o 

x [H(.\ + 1/0) -limH(.\ + 1/ 0)]1 
",..0 
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x I N(,>, + 1/ a) - limN(,>, + 1/0) I 
"..0 

= lim 27T I H(1/ a) - limfW/ 0) I = O. 
"..0 "..0 

The usual Fourier inversion formula has been used and 
is valid because 

N(,>, + 1/ a) = If/('>' + 1/ a) I 
is, for each value of 0, an Ll function, L e. , 

J~ 1f/('>'+I/a)ld'>'<<x>. 
-~ 

The argument above is clearly valid also for Eq. (54). 

Next, let us examine the quantity 

JQ[F(8)+i j,B dT, F(T')h(8- T')]. 
o 

This equals 

exp(- 2i8/ a)[ JQ exp(2i8/ a)F(8)] 

+ i foB dT' exp(- 2 iT' / a)(l/ a)[ Va exp(2iT' / a)F(T') 

(B6) 

XaJz(8- T')]. (B7) 

Let the expression in square brackets be denoted by 
R(T', 8, 0). Then the integral term in the expression 
(B7) can be written, after a change of variable T' = OU, 

as 

I
B /" i 0 du exp(- 2iu)R(au, 8, 0). 

Now, because ah(T) converges uniformly in T to 2 as 
a - 0, it follows from Eq. (54) that, for any 8, 
R(au, 8, a) can be made, for small enough a, as close 
in the Ll norm as we please to R(au, 8,0), which is 

2iV2/7T Q exp(2iPau) exp(- 4Cl!u) 

for any value of 8. Therefore the integral under con
sideration can be made as close as we please, uni
formly in 8, to 

(B/" (2)1/2 
i J

o 
du exp(- 2iu)2i -:;; Q exp(2iPau) exp(- 4o.u) 

=i(~)1 /2 Q 1- exp(- 2i8/ Cl!) e~(2iP8) exp(- 48) 
7T 1- Cl!p- 2zCl! 

Similarly 

exp(- 2i8/ a)(va exp(2i8/ a)F(8») 

is as close as we please, uniformly in 8, to 

i-/2/7T Q exp(- 2i8/ a) exp(2iP8) exp(- 48)1 

so that the expression (B6) is close, in the same sense, 
to 

. (2)1/2 
Z - Q 

7T 

x _ 
[ 

1 
1- Cl!(p+ 2i) 

Cl! (P+ 2i) exp(- 2i 8/ Cl!) exp(2iP8)exp(- 48)J. 
1- Cl!(P+2i) 

(B8) 

Finally, we may consider 

)/2 f T d8 exp(i?;8)fl (T- 8)[F(8) + i f/ dT' F(T')h(8 - T')]. 
o 

This may be written as follows; 
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f T d8 exp(i?;8) exp(i8/Cl!){exp[i(T- 8)/ Cl!]fl(T-8)} 
o 

xVn [F(8)+i Ia B 

dT' F(T')h(8- T')l 
Here 

exp[i(T - 8)lil (T- 8) ~ exp[iP(T- 8) 1 exp[ - 2(T- 8)] 

and this result, coupled with the uniformly approximat
ing expression (B8), means that everything except the 
preliminary exponential factors in the integrand is close 
in Ll norm to 

(2)1/2 
i -:;; Qexp[iP(T- 8)]exp[-2(T- 8)] 

x [1- a(p + 2i) exp(- 2i8/ Cl!) exp(2iP8) exp(- 48) ] 
1- a(p+ 2i) • 

For fixed T, then, the integral is close, in the 
ordinary sense, to 

exp(- iT/ Cl!) r d8 exp(i?;8) exp(i8/ Cl!) 
Cl! Jo 

X{!;y/2Q exp[iP(T- 8)l exp[- 2(T- 8)l 

x [1 - Cl! (p+ 2i) exp(- 2i8/ a) exp(2iP8) exp( - 48)J 
1- Cl!(P+ 2i) 

This expression may be evaluated, and it equals 

i exp(- iT! a)~(ipT) exp(- 2T)v'2;1TQ 
1 - a(P + 2i) 

[~[i(?; -p)T) exp(2T) exp(iT/ Cl!) - 1 
x 2a+i(1+0!(?;-P» 

+ (p+ 2i)[exp(i(?; +P)~~T) e~-iT/a) -I} ] 
2+i(~P) 

Provided, then, that?;?- 0, and a < 1/2P, it is clear that 
this expression is bounded uniformly in 1; and Cl! for 
fixed T. If this bound is called N, then the inequality 
(55) is proved. 
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A reformulation in a superspace is given for Van Hove and Janner's perturbation theory based on the two
resolvent method for nonequilibrium quantum statistical mechanics. This is attained by introducing an 
ordered superoperator in the supers pace. As an application of our formalism, the derivation of an 
asymptotic generalized master equation in a Markovian form is given. Further, it is investigated how a 
quantum subdynamics theory similar to the Brussels school's one can be formally constructed. Our 
subdynamics theory is formulated on every eigenspace of a superoperator (the ss-Hamiltonian) of which 
the eigenvalue is related to the intrinsic parameter E of Van Hove and Janner's generalized master 
equation. 

1. INTRODUCTION 

Through the formulation of generalized master equa
tions, the study of irreversible processes in nonequili
brium quantum statistical mechanics has recently made 
remarkable progress. In this direction there are two 
different approaches. 

One of them, developed by Van Hovel and by Janner, 2 

is based on the "two-resolvent method," where the von 
Neumann equation is solved by using the two resolvent 
operators of the total Hamiltonian in the ordinary 
Hilbert space and by perturbation theory. They have de
rived a generalized master equation which gives the mi
crocanonical distribution function as the asymptotic 
solution in time, 

Another approach developed by the Brussels school 
led by Prigogine3- S is based on the "one-resolvent meth
od," where the von Neumann equation is solved by using 
the single resolvent superoperator of the so-called 
"super-Liouvillian" in the superspace by perturbation 
theory. They have derived another generalized master 
equation which gives the canonical distribution function 
as the asymptotic solution, One of the interesting re
sults of this method is the discovery of the "subdynam
ics" theory, They show that the exact time evolution of 
a large system governed by the von Neumann equation 
can be decomposed into two independent evolutions 
occurring in the complementary subspaces; one of 
these evolutions is exactly governed by the asumptotic 
master equation and another by the complementary 
master equation describing the short time behavior of 
the system, Recently, as an extension of the work of 
Pytte,9 Grecos et aL 10 has shown that without the per
turbation schemes this subdynamics theory can be re
formulated on the basis of the eigenvalue problem of the 
collision kernel of the generalized master equation un
der an assumption of the analytic properties of the 
resolvent. 

In this paper we give a reformulation of the two-resol
vent method given by Van Hove and by Janner into the 
superspacell

-
15 and show how the superspace provides 

a suitable mathematical background for the two-resol
vent method. And, as an application of this reformula
tion, we show that it is possible to construct formally 
a quantum subdynamics theory similar to Brussels 

school under a similar argument to that of Pytte and 
Grecos et alo in the one-resolvent method, Namely, we 
set up the assumption that in the two-resolvent method 
the Singularities of the product of the two analytically 
continued resolvents near the real axis are isolated 
simple poles arising from the eigenvalues of the col
lision kernel of the generalized master equation, 

Our reformulation in the superspace is achieved in a 
very natural way by introducing an "ordered super
operator" which is a linear operator mapping the super
space on itself, As a result, we can introduce the two 
basic ordered superoperators, the "symmetrized super
Hamiltonian" and the "antisymmetrized super
Hamiltonian" (the so-called super-Liouvillian), which 
are related to the two intrinsic parameters of the two
resolvent method, respectively, We derive a master 
equation for the asymptotic evolution superoperator in a 
Markovian form under the above-mentioned assumption 
and show that one of the parameters, E, in this equation 
is an eigenvalue of the symmetrized super-Hamiltonian, 
Then, from this asymptotic evolution superoperator, we 
construct two fundamental projection superoperators of 
the subdynamics theory, This fact shows that the sub
spaces projected by these projection superoperators lie 
completely in an eigenspace of the symmetrized super
Hamiltonian, We further show that one of these sub
spaces contains the microcanonical stationary solution 
of the von Neumann equation characterized by an eigen
value of the total Hamiltonian of the system in the or
dinary Hilbert space, 

In the next section we give a brief explanation of the 
superspace. In Sec. 3 the perturbation theory given by 
Van Hove and by Janner is reformulated in terms of the 
superspace. In Sec, 4 we give the master equation for 
the asymptotic evolution superoperator, Section 5 is 
devoted to deriving the exact stationary solution of this 
master equation, Then we show that this solution is just 
the projection superoperator which projects the micro
canonical subspace characterized by an eigenvalue of 
the ordinary total Hamiltonian, Finally, we given the 
quantum subdynamics theory in Sec, 6. 

2. FORMALISM 
We start with a brief explanation of the superspacell - 15 

which is the mathematical foundation of our theory, 
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As in the ordinary formulation of quantum mechanics 
the following is assumed: The quantum Hilbert space .fJ 
is spanned by the basic set {I 0' >, I i3),. .. }, which are 
eigenstates of an observable with discrete eigenvalues 
(for simplicity, our discussions are restricted to the 
case of discrete spectra), This basis forms a complete 
orthonormal set as usual, that is, 

As is well known, linear operators in .pform a vector 
space under their addition and multiplication by num
bers, Hence, a new vector space, conSisting of the 
operators {X, y, .. } in.fJ, is introduced and these ele
ments are represented by curly ket-vectors {IX), I Y),-··} 
as in Dirac's notation. Then, in this vector space, 

I A X + Il Y) = A IX) + III Y), (2.2) 

where A and Il are numbers. Adjoints of the curly ket
vectors are represented by bra-vectors. {(X I , (Y I,oo.}, 
Further, the inner product between these vectors is 
defined by 

(2,3) 

where tr means the trace in.p. This has the properties 

(X I Y)* = (Y Ix)' (2.4) 

where the asterisk means complex conjugate, Thus, we 
have a unitary space which is called the superspace, 15 
(or the operator space), and its element supervector (s
vector) or superstate (s~tate), 16 The dyad operator, 
I 0'><f31, constructed from basic set in .p is particularly 

denoted by 10', (3) in 15, It is characterized by (2.1) as 
orthonormal, 

(0' , f31 0' ' , f3') = /) "', ", I) a, a' , (2. 5) 

and for any s-vector, IX), the following expansion holds, 

(2.6) 

Therefore, the set of 10', (3) forms a complete orthonor
mal basic set inl5, The trace of the operator X in .p is 
expressed in @; by 

tr[X] =:0 (0',0' IX) = (lIX), 
" 

(2,7) 

where 1 is the unit operator, 

Superoperators (s-operators) A, B, C, 0'0, which map 
the space 15 onto itself can be introduced, The adjointl5 
s-operator A t of A is such that 

for every s-vectors IX) and I Y), and Hermitian and a 
unitary s-operator are defined by the s-operators satis
fying At=A and A~ =AAt=1, respectively, where 1 
is the unit s operator, The eigenvalue problems in @; 

are just the same as in.p: 

A IA)=aIA), (2.9) 

where a is a number, then IA) is called a supereigen
vector of the s operator A, and a is its eigenvalue, 
The well-known properties of the eigenvalues and the 
s-eigenvectors for a Hermitian and a unitary s-operator 
also hold; that is, the orthogonality of the s-eigenvec
tors and the spectral resolution of these s-operators, 
etc. From (2.6), we see that dyads of the orthonormal 
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basic set in @; form the idemfactor, 

:0 10',0")(0',0"1=1, 
Ci!,a' 

Then, we can express a s-operator A with its tetradic 
elements (0',0" IA I f3, f3') by 

A=:0 :0IO',O")(f3,f3'I(O',O"IAIf3,f3'), (2,11) 
o:~al B.6' 

We now introduce an ordered s-operator, which plays 
an essential role throughout this work, as follows: 
Corresponding to two operators A and B in.fJ, the or
dered s-operator (A 1\ B) is defined such that 

(A/,. B) IX) = lAX B), (2.12) 

for any s-vector IX)' From this definition, we can 
easily obtain the formulas as, for the addition, 

(A 1\ C) + (B 1\ e) = [(A + B) 1\ e], 

(A 1\ B) + (A 1\ e) = [A 1\ (B + e)], 

and for the product, 

(A 1\ B)(e 1\ D) = (Ae 1\ DB), 

(2.13) 

(2,14) 

From (2,8), the adjoint of the ordered s-operator has 
the property that 

(2,15) 

Further, it is particularly convenient for brevity of 
our formalism to introduce the one side s-operators, 
which are defined such that either A or B in an ordered 
s-operator (A 1\ B) is the unit operator in.p, They are 
symbolized by the notations as 

(2,16) 

where A> is called a left-hand side s-operator (1. s
operator) andB< a right-hand side s-operator (r.s
operator), respectively. As easily seen, these one 
side s-operators have the following properties, 

(2,17) 

and these permit us to express any ordered s-operator 
by the sums and the products of the one side s-operators, 
Here we summarize the useful formulas satisfied by 
the one side s-operators without proof [hereafter, the 
upper symbols> (the lower symbols <) always have to 
be taken together]: 

(A+B):t =Az+B';, 

A> B> = (AB», NB< = (BA)\ 

(A")~= (An", 

1 (l)Z 
A<:-z = A-z 

(2,18) 

(2,19) 

(2,20) 

(2,21) 

(2,22) 

The commutator [A,B]±=AB±BA in .pand its n-fold 
commutator can also be expressed by the one side s
operators in the abbreviated form as 

I [A, B].) = (A> ± N) I B) = (B<± B» IA), 

I lA, lA, eo. [A, B]. ···1.].) = (N ± N)" I B), 

(2,23) 

(2,24) 

Now we will give a general formalism necessary to 
study the irreversibility of many-body systems in the 
superspace, We consider the spatially homogeneous 
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system for which the Hamiltonian consists of a sum of 
an unperturbed Hamiltonian Ho and a perturbation V, 
i. e., 

(2.25) 

and assume that the whole set of eigenstates 10' > of 
Ho, i. e., 

HoICi>=E"Ia>, (2.26) 

forms a complete orthonormal basic set as (2.1) and 
the Hilbert space.p describing the system can be 
spanned by them. Here, we denote by 0' a collection of 
the quantum variables characterizing an eigenstate of 
Ho, and fa is the unperturbed energy of the system. To 
simplify the mathematical arguments, we treat the 
system to be enclosed in a box as usual and 0' to be 
discrete. However, since we are considering a physical
ly very large system having many degrees of freedom, 
the state density is practically so dense that we may re
place the summation over the state by its integration if 
necessary. 

In quantum statistical mechanics, the physical states 
of the system are described by the denSity operator 
which is expressed by a s-state as Ip(t» (density s
state) in @iand governed by the von Neumann equation, 

with the definition, 

II "'H>-H<. 

(2.27) 

(2.28) 

(We use the unit n=1). We call the s-operator ii anti
symmetrized super-Hamiltonian (a. s-Hamiltonian) or 
super-Liouvillian, and H> and H< are called one-stde 
s-Hamiltonians. Since 1P and H< are Hermitians, H 
is also Hermitian. 

For the unperturbed Hamiltonian Ho' we can also de
fine one-side s-Hamiltonians H~, H~ and the unper
turbed a.s-Hamiltonian H0"'.m-H~. They satisfy the 
following eigenvalue equations, 

H~ia,a')=E"ia,a'), Ho<la, a')=£",. ia,a'), 

Hoi a, 0") = (E" - E ",) i 0', 0"), (2. 29) 

and s-eigenstates 10',0") form a complete basic set in 
@i. 

The density s-state has the following properties: 

(0', a' Ip(t»=(p(t) /0', 0"), 

{a,alp(t)):;.O, (1Ip(t»=1, 
(2.30) 

which correspond to hermiticity, positive definite, and 
normalization, respectively. The expectation value of 
an observable A is given by 

(2.31) 

In order to separate the denSity s-state into two parts, 
the diagonal part and the nondiagonal part, it is con
venient for us to introduce projection s-operators 
(projectors) defined by 

P","Ep,/p,/, e",l-p, 
" 

(2.32) 

with p" '" i Ci > < 0' /, from which it follows that 

(2.33) 
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By using these projectors, the denSity s-state is decom
posed into two parts: 

Ip)= IPa) + IPna), 

IPa) '" pip), /Pna) '"' e ip), 
(2.35) 

where the diagonal part /Pa) is called the vacuum com
ponent and the nondiagonal part /Pnd) the correlation 
component. 3 

On the basis of the one-side resolvent s-operators, 
i. e. , 

1 (1 \Z 
RC(z)= Hf:_z = H-z"/ ' (2.36) 

the formal solution of the von Neumann Eq. (2.27) can 
be obtained by the two-resolvent method of Van Hove 
and Janner such as 

with the time evolution unitary s-operator, 

U(t)= e- iiit 

= (;!t) 2 J rdz Jr. dz' e- j <0-.')1 R>(z)R«z'). 

(2.37) 

(2038) 

Here, the paths of integrations rand r' indicated in 
Fig. 1 are any positive contours completely enclosing 
the real axes in complex z and z' planes, respectively. 
For t * 0, the paths of z and Z' either on upper or on 
lower half planes shown in Fig. 1 do not contribute to 
(2.38). Then, by interchanging the integral variables, 
it can be written by 

U(t)= ;::dEU E(t), 

with 

U E(t)= (~~1)2Jdl e-iltR>(E - tnR«E - tn, 

(2.39) 

(2.40) 

where s(t) '" tf I t I and the path of integration y is any 
positive contour completely enclOSing the real axis in 
the complex l plane. 

On the other hand, for t = 0, it is noticeable that all 
contours shown in Fig. 1 contribute to (2.38) and 
hence UE(O) can be written with (2.39) by 

(2.41) 

where 77 is a small positive quantity. Here, a symme
trized super-Hamiltonian (s. s-Hamiltonian) if is defined 

r 
z 

r' 
z' 

FIG. 1. Contours r and r'. 
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by 

(2,42) 

and)\ is the projector which belongs to an eigenvalue E 
of H 0 It can satisfy the relations of the spectral resolu
tion, 

Ii = f: dEFEE, 

FEFE,=O(E-E')FE, r: dEPE=L 

(2,43) 

(2,44) 

From the fact that H is commutable with ii , FE is also 
commutable with Ii and hence we get 

(2,45) 

3. PERTURBATION THEORY 

Here, we will discuss a reformulation of the pertur
bation theory given by Van Hove and Janner1,2,17 in 
terms of the superspaceo 

The one-side resolvents R>(z) and R«z) satisfy the 
integral equations, 

R«z) =R;: (z) - R; (z)V(R"(z), (301) 

with the unperturbed one-side resolvents of H> and H<, 

< 1 (1)~ Ro (z)= Jj'i- == H- , 
o -z o-z 

(3,2) 

(We note here that the relations which are given by 
dropping the symbols> and < from the above and 
forthcoming relations for one-side s-operators hold 
among the corresponding operators in (;0) Their iter
ated solutions are 

R~;(z)=R~ (z) f, {- V;?:R; (zl}", (3,3) 
h=G 

Using the projectors P'" in (2,32) for anyone-side 
s-{)perators A':, we can define their diagonal parts, 
A! -='£ap~A"P~ and their nondiagonal parts A~d 
-= 6",(1 - p,,)A p,., Then, the one-side resolvents are 
decomposed into the two parts as 

R<'(z)=D~(z)+R~(Z), D"(z)-=R}(zL (3,4) 

From (3 0 1), we have 

R~=- R}(V~R~)nd=- R}(V~D~)nd- R~(V~R~>nd' (3 0 6) 

(For simplicity, the complex variable z is omitted ex
cept when needed for clarityo) Iterating (3 0 6), we can 
get 

R;a == {t (- R~V~)khndD~, (3.7) 
k:l 

with the definition 

(3.8) 

which is called the topological irreducible nondiagonal 
part. 1, Substituting (3.3) into (3.7) with (3.4), we de
rive 

(309) 

Let us define a s-Operator Nl.(z) by the integral equation 

(3,10) 
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and multiply both sides by D<, Then, if we ignore the 
contribution from the terms of the occasional equality 
occurred between the intermediate states (these terms 
are called interlocking terms by Van Hove and he dem
onstrated that their contribution is proportional to one 
over the volume and thus vanishes in the limit of a 
large system19), we can find that DLN<DL satisfies the 
same Eqo (3,9) as R"!o Thus, putting R~==DL,Ve..v"l.in 
(3,4), we obtain 

R~ == D<+ D~N<D~, (3,11) 

By iterating (3.10), a solution for Nf: is derived as 

N<= {-~ V«- D~-v"l.)khnd' (3012) 

where { hna is defined as 

(3,13) 

It stands for the irreducible nondiagonal part of Van 
Hove and means a nondiagonal part which does not con
tain any equal state to another among the intermediate 
states 0 Further, with defining the irreducible diagonal 
part { ha by 

t"8CD hd = «('008 )tndC tn4) D)d' (3014) 

as-operator G"l.(z) is introduced by 

G"l.(z) == {_ t V"l.(_ D~(z) ve.)khd' (3015) 
k=O 

Then, using (3.12) and (3 0 15), we can rewrite (3.5) as 

D~=R~+mG~m. 

This has a solution for D 

D~(Z)== H~ _~i(z)-z' 
which implies that 

D> (z) I a, i3 ) = D" (z) I CI , i3 ), 

D«z) I (l', {3) = DB (z) I (l', {3), 

with the definitions 
1 

D",(z)~<(1'ID(z)I(1')== D() , 
E,,- "z-z 

G",(z)~ «1' I{- V+ VD(z)V 

- VD(z)VD(z)V+···}idl a ). 

(3, 16) 

(3017) 

(3.19) 

(3,20) 

In this perturbation theory, the analytic properties of 
the function D,.(z), Gll/(z), and (ClIN(z) 113) [-=N",/l(z)] of 
(3.12) have been investigated in detail by Van Hove 1

•
19 

and by Hugenholtz20 in the limit of a large systemo 
Their results are the following: Since the Hamiltonian 
is Hermitian, its resolvent R(z) is holomorophic in z 
out of the real axis and Rt(z) = R(z*), Then, the above 
functions have the same analytic property and hold the 
reality conditions 

D,,*(z)=D,,(z*), G~(z)==G,,(z*), N"a*(z)=Na",(z*), 

(3 0 21) 

GO/(z) and N"a(z) are bounded on the real axis and have 
finite discontinuities across the real axis in a certain 
interval, As can be seen from (3,19), D,,(z) also has 
finite discontinuities of the same kind, and in addition 
it can have poleso That is, for z approaching a point 
E on the real axis with ±i1) where 1) >0, Ga(z) becomes 
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as 

limCa(E± in) ==Ka(E)± iJ a(E), 
"~O 

(3.22) 

with Ka(E) real and J",(E) real nonnegative. Then, we 
get 

Da(E± iTj) == [E", - E - K",(E) :fiJ a(E)j\ (3.23) 

and see that Da(E) has poles only when the equation, 
E",-E-K",(E)==O, has roots in certain regions of E 
where J ",(E) = 0 is satisfied. 

In this case where D",(E) has poles, the state QI is 
called nondissipative and otherwise dissipative. Our 
purpose is to study irreve rsible processes of large 
quantum systems, therefore we restrict ourselves 
to treating dissipative systems throughout this work. 

Now, on the basis of (3.11) we can formulate the 
perturbation expansion for the product R> R< decomposing 
into four parts, i. e., a diagonal part, a creation part, 
a destruction part, and a propagation of correlations 
part, in a similar way to the Brussels schooL 3,5 By 
using projectors P and Q in (2.32), R>R< can be written 
as a sum of four terms as 

R> R< == P R> R<P + QR> R<P + P R> R<Q + QR> R<Q, (3.24) 
and using (3.11), we obtain the following relations: 

P R> R<jJ == P]» dP + P D> D<N> N<D> dP, 

[2R>R<jJ==Q]»N>D>D<jJ + QD>D<N<dP 

+ QD>dN>N<]»dP) 

P R> R<Q = P D> f'I> ]» D<Q + P ]» D<N<dQ 

+ PD>dWN<]»D<Q, 

QR>R<Q = QD>D<Q +Q]»f'I> D>D<Q + Q]» dN' D<Q 

+ Q]» d N> N<D> D<Q 0 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

Further, putting the iterated expansion (3.12) into the 
above relations and rearranging them, we can derive 
an integral equation for P R> R<jJ from (3.25) and we can 
represent the other terms by its functionals. The de
tails of the derivation will be explained in Appendix A 
by the means of a diagramatic method. Here, we will 
describe only the results 
P R>(z)R«z')P 

= PD>(z)D«z')P + PD>(z)d(z') 

x PW(z, z')P R>(z)R«z')P 

= PD>(z)D«z')P +PR>(z)R«z')PW(z,z')P 

x ]»(z)D«z')P, 

R>(z)R«z') 

= [P + QC (z, z')P ]R>(z)R«z') 

x [P + PD (z, z')Q] + [2.1 (z, z')[2, 

where irreducible s-operators are introduced by 

W(z, z') = P{N>(z)N«z')}irrP, 

the creation s-operator by 

QC(z, z')P = [2 []» (z)N>(z) + D«z')N'(z') 

+ ]»(z)d(z'){N>(z)N'(Z')}ir,.]P, 

the destruction s-operator by 
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(3.29) 

(3.30) 

(3.31 ) 

(3.32) 

PD (z, z')Q == P [N>(z)LY(z) + N«z')D«z') 

+ {N>(z)N«z')}irr LY (z )d(z')]Q, 

and the propagation of correlations s-Operator by 

Q.1 (z, z')Q == Q]»(z)d(z')[I + N>(z)D>(z) 

+ N«z')d(z') + {N>(z)N«z')};,.,. 

XLY(z)D«z')]Q, 

(3.33) 

(3.34) 

with {N> N<hrr of which the tetradic element is given by 

(QI, f3 I {f'I>(z)N'(z' )}irr /Y, 5) 

=(QlI{B[- V(- D(z) V)kld Iy> < 5 I 
k=O 

X~[_ V(-D(z')V)J]nd};,.,.If3). (3.35) 

The subscript "irr" means that all intermediate states 
are unequal to each other and to the initial and final 
states. Here, we remark that in our dissipative sys
tems the irreducible s-operators W, [2C P, PD Q, and 
Q.1Q have the analytic properties being finite and dis
continuous across the real axis in z and z'. 

A formal solution of (3.29) can be derived as follows. 
From (3.17) we have 

]»(z) - d(z')= [z - z' - m + H~ + C>(z) 

- C«z')]D>(z)D«z'), 

and taking the P -P component of it, we get 

~(z, z') == [z - z' + g (z, z')] 

x P ]»(z)D«z')P, 

(3.36) 

(3.37) 

where the s-operators, which are commutable with 
each other, are defined by 

~(z, z');: P []»(z) - D«z')]P, 

g (z, z');: P [C>(z) - C«Z/)]P. 

(3.38) 

(3.39) 

Then, by the aid of (3,29) and (3,37), we obtain the 
formal solution 

P R>(z)R«z')P == [z - z' - X (z, Zl)]-I ~(z, z') 

==~(z, z'}[z - z' - X(z, Z')]-I, 

with the definitions of 

X (z, z');: [~(z, z')W(z, z') -g (z, Z/)], 

X(z,z');: [W(z,z') ~ (z,z') -g(z, z')], 

which are called collision s-operatorso 

(3.40) 

(3.41) 

(3.42) 

Thus, on the basis of the expression of (3, 30) with 
(3.40), we can arrive at our basic representation for 
the evolution s-operator as 

UE(t) 

or 

== S(~j2 1, d1 e-ilt{(p + nc (l)P) (21ft r <: E 

x [(l- XE (Z))-I ~E (l) 

~E(l)(l- XE(l))-1 ](P + PfJE(l)Q) 

+ Q.1E(l)Q} (for UO), (3.43) 

where the abbreviated notation J E(l);: J (E + 1/2, E -1/2) 
is used. 
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In concluding this section, we will list some relations 
satisfied by our s-operators: 

A(Z,Z')=-A(Z',Z), Cj(z,z')=-Cj(z'z}, 

(O', O' IW(z, Zl) I (3, (3) = ({3, f3IW(z ' z) 10', O'), 

(3.44) 

(3,45) 

(O', O' Ip R) (z )R«z') P I (3 , f3 ) = ({3 , (3lp R> (zl)R«z) P I O', 0'), 

(3.46) 

(O', O' /6(z, z') / O', O') = (z - z'):0 (Q', Q' Ip R>(z )R«Z/)P / $ , f3), 
6 

(3,47) 

(O', Q' I Cj (z, Zl) / O', O') = 0 (O', Q' IW(z, Zl) A(Z, Zl) I {3, {3), 
6 

(3.48) 

X(z, z') = PHQC (z, z')P, X(z, z') = PI) (z, zl)QHP. (3,49) 

These relations will be needed in the following sections 
and the proofs for some of them will be given in 
Appendix B. 

4. ASYMPTOTIC EVOLUTION S-OPERATORS 

We will now discuss the asymptotic time evolution 
s-operator for U E(f) under the assumption of the analytic 
properties of the functions introduced in Sec. 3 and de
rive the master equations. 

In our dissipative system, the integrand in (2,40) or 
in (3,43) has a finite discontinuity along the real axis 
of 1 in the limit of a large system and can be analyti
cally continued into the upper or lower half-plane corre
sponding to the time being positive or negative, respec
tively, Then, the time evolution of U E (t) may be deter
mined by the structure of its analytically continued s
operator, 

Our assumption is that "the analytically continued 
s-operators for D~(E + tll, N«E + tll, and {N'>(E 
+ il)N«E - il)hrr are regular near the real axis, and the 
singularities of the product, R(zl>(E + tl)R<~l«E - tll, 
near the real axis are isolated simple poles arising 
[Z - Xi~)(lrr1 or [l- :Xi')(l) ]-1 as the eigenvalues 1 j 
(j = 0,1,2, '00), of the collision s-operators xlzl(l) or 
xizl(Z)." [Hereinafter, the symbols (+) and (-) stand 
for the analytically continued s-operator from the upper 
and lower half-planes across the cut along the real 
axis, respectively, and upper (lower) symbols must 
be taken together,] According to (3,40), the sets of 
the poles of [l- xl"'l(Z)]"l and [1- xi·l(Zll-l must be coin
cident and to (3,47), they include the point l=O, 

Now we define the asymptotic evolution s-operators 
~~"')(t) and ~i·J(t) for t > 0 and t < 0, respectively, as 

~(zJ(t) == ~J dl e- ilt R<zl>(E + '-Z)R('J«E - '-Z) E (21Ti)2 Yo 2 2 , 

(4.1) 

where the contour'}'\) encircles the poles at l = I j counter 
clockwise, by excluding all other singularities in the 
continued planes, 

To determine the supereigenstates of the coUision s
operators and to evaluate P ~~.)(t) p, we first rewrite 
P R> R<p in the neighborhood of each pole I = I j as 
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P R(.»(E + ~l)R(')«E - ~l)P = [1- xi"') (I) ]"l/lW(z) 

=Ag'(l)[l- >Zi"')(lj}]-l, 

With the relation XA=6X' and (3,40), AW(l) satisfies 

AE(±J.l(l) l- xj;"') (lj) 6("'J(l)=6<:J(ll l-XrUj ) , (4,3) 
1- xi:zl(l) E E 1- X.Ezl(Z) 

and 

AWU)= [1- aX~')(I)]-lAii'(l) 1/:lj 

= Al"')(l)(I - axi')(l) ]-1 II:lj' (4.4) 

where 0= alal, We may now state our assumption, 
which leads to lj being the eigenvalue of the collision 
s-operators, that 

Xl'l(l jM W ([j) = 1 JAW([j) = A ii) (Z j)'x:l:l(l j), (4,5) 

i.e., Aln1j) Ix) and (Y!AlfUJ) are a right and a left 
supereigenstate with the eigenvalue Ii' respectively, 
where IX) and (Y I are arbitrary s-states. 

To evaluate the integral for P ~(P(t)P in (4.1), we 
expand Aij>U i ) in (4.2) about the points li' 

A("'J(l)=A(z)(I.)+aA<~l(Z)1 (I_Z)+ooo (4.6) 
E; E; J EJ I: Ij 1 , 

and replace xl"(lj) or nil(li) by Ii in the term having 
the factor AW(l) in this expansion of (4.2). Then 
taking the residues of (4. 2) at l = l j' we obtain 

P ~i"'l(t)P 

== s(tJ '6 e- H jtA (i)([.) 
21Tl ; E; J 

(4,7) 

Since the poles are in the lower (upper) half-plane for 
t> 0 (t < 0), the terms in the right-hand side of (4.7) 
tend to zero except the one belonging to the zero eigen
value of the collision s-operators Xlzl(O) and xi/leO), 
when the time increases (decreases), 

We will now derive a time evolution equation of 
P ~lz)(t)P in a Markovian form, For this purpose we 
expand the collision s-operators about their regular 
point 1=0, that is 

xl"') (I)A ij>(li) 

= ~ ~a" X <iJ(l) I l~A ("')(1.) 
"';-6 n! E 1=0 J EJ J 

(4,8) 

Alj>Uj)Xt·l(lj) 

= t ~ Ii' (z)(IY",(zJ(l.)]"a" X-<:l(l) I _ , 
"=0 n! EJ J LXE 1 E 1-0 

These equations and (4.5) show that X},i'(lj) and xl')(Ij) 
are the solutions of the following equations, respectively, 

pr(iJp = t.2- a"X(z)(Z) I _ (pr!z)p)" (4 0 10) 
E "=0 n! E 1_0 E , 

(4.11) 
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with 

P rl")PA kj)(lj)= IjAW(Zj) 

=AW(Zj)Prk")P. 
Using these s-operators, we can rewrite (4.7) as 

P"Zl')(t)P = e-iPr1;')Ptp "Zl")(O)P 

(4.12) 

= P"Z~')(O)Pe-ipr~P pt (4.13) 

Then, taking the time derivative of (4.13), we get the 
Markovian master equation 

iotP "Zl') (t)P = prl')p "Z£')(t)P = P ~l')(t)prl')p, 

(4.14) 

with the initial condition 

P "Z(')(O)P = ~ BA (')(Z ). 
E 27Tt j EJ j (4.15) 

The remaining components of "Z~z)(t) can be evaluated 
in similar ways. Since QClz)(Z)P, PfJ~')(Z)Q, and 
Qj~z)(Z)Q have no singularities at lj' (4.1) together with 
(3.30) yields 

"Z (z) (t) = s(~) B [P + rIC (.) (l·)P) e- il jt A(') (z) 
E 27Tt j l( E J EJ J 

x [P + PfJi·)(lj)Ql. (4.16) 

Expanding QC~')(Zj)P and PfJ<:)(l)Q about the origin, 
we get from (4.16) 

"Z~")(t) = [P + Qa:1;") P) "Zi")(t) [P + PIDiz) Q), (4.17) 

where the time-independent s-operators Qa:kz) P and 
PDl')Q are defined by 

na: (')P = f: 2. anne (')(Z)P 1 _ (P r(z)p)n (4.18) 
l( E n';-6 n! l(' E 1-0 E , 

(4.19) 

Equation (4.17) shows that the correlation components 
of "Z i')(t) are given by synchronous functionals of the 
vacuum-vacuum component through the action of 
Qa:l*)P and PDi·)Q. 

In order to understand the role of our evolution 
s-operator, "Z i')(t), we now rewrite (4.14) in a form 
with the time-dependent collision s-Operator xi')' (t) 
defined by the inverse Laplace transformation of 
xi')(Z) as 

xl')(Z) = 27T jo'~ dt e+iltxi')' (t), (4.20) 

Substituting (4.20) into (4.10), we have 

P ri')p = 27T fo'~ xi')' (T)e+ iPr it)p T. (4.21) 

Then, acting this s-operator on the left of (4.13), 
we obtain 

iotP"Z i·)(t)P =27TJo'~dTX1;z)/(T) P "Z iz)(t- T)P. (4,22) 

The master equation (4.22) must be compared with 
Van Hove's generalized master equation 

(4.23) 
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where 

fE(')(t) = (;;!~2 J, dl e- ilt t..lZ) (1), (4.24) 

and this can be derived from taking the time derivative 
of the P -P component of (3.43) and using the convolu
tion theorem of the Laplace transformation. The inho
mogeneous term, (4,24), vanishes when 1 t 1- <X) for 
dissipative systems. Hence, we may say that (4.22) 
and therefore (4,14) is the asymptotic master equation 
which describes the long time behavior of U E (t). 

With similar calculations we can easily obtain the 
other equations symmetrical to (4,22) and (4,23) as 

io t P "Z J/)(t) P = 27T r~dT P "Z J,')(t - T) Pxl'l' (T), (4,25) 
o 

iOtPUE(t)P = fi')(t) 

+ 2" J t liT PUE (t - T) P5ijz)' (T), 
o 

(4.26) 

where xj')' (t) is the inverse Laplace transformation of 
X~z)(Z). 

(±, 
5. STATIONARY SOLUTION OF "i.E (t) 

In this section, we will derive an exact stationary 
solution "Zi;(') of "Ziz)(t). 

For the stationary solution, "Z ~(.), we have 

0tP"Z"E(')P =0, 

and then combining (4 .. 15), we get 

prl·)p"Z"t;(·)P = p"Z~(·)prJ,')p =0, 

(5.1) 

(5.2) 

By substituting (4.10) and (4,11) into (5.2), it follows 
that 

xJ,')(O)P"Z~(')P = P"Z'i;(') Pxi')(O) =0. (5.3) 

Equations (5.2) and (5.3) show that P "Z'J/z)P is a solu
tion belonging to the zero eigenvalue of the eigenvalue 
equations (4.5) or (4.1210 Thus, we find that the sta
tionary solution is equivalent to the solution "Z if)(t) in 
the limit for It 1- 00. 

Further, by using (4,18) and (4,19) for (4,17) and 
also (5.2), each components of "Z i;(') is expressed by 
a functional of P"Z~(')P as follows, 

"Z ~(') = [P + QC ~')(O)P p; ~(')[P + PfJlz)(O)Q). (5,4) 

In order to find the solution of P"Z~(±)P, we rewrite 
(5,3) by the definitions of X and X as 

ql±)(O)P"Z~(')P = t..~')(O)Wi±)(O)P"Z~(±)P, (5.5) 

P"Z~wpC; i±)(O) = P"Z~(·)PWi±)(O)t..i±)(O)o (5.6) 

Then, if we put 

(0',0' Ip "Z~(±)P 1 /3, {3) = (0',0' I t..i±) (0) 10',0' )Fiz)(/3), (5.7) 

the tetradic elements, (0',0' 1 and 1/3, {3), of the right
hand side of (5.5) becomes 

(0',0' 1 t..iz) (0) 10',0') B (a, QI 1 wi±) (O)t..i') (0) Iy, y)Fi±)(/3), , 
(5.8) 

and using (3.48), we can see that (5.8) is just equal to 
the tetradic element of the left-hand side of (5 0 5). 
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Therefore, (5,7) is the solution of (5,5) with unknown 
function F~') ({3L 

To determine F~')({3), we put both sides of (4.1) be
tween (()I, ()I I and I {3, !3l and take the summation over ()I. 

Then, if we use the relations (3,46), (3,47), and 
(3.44), and perform the contour integral around the 
pole at 1 = 0, we can obtain 

Further, by putting (5,7) into the left-hand side of 
(5.9), the function F~')({3) is determined as 

(5.9) 

F(')({3)=~ ((3,{3Ib.i')(O)I{3,{3) . (5.10) 
E 21Ti~)y,ylb.l')(0)ly,Yr 

Finally, we get the solution for (5,5) from (5.7), 

PL;e(,)p = P IQE)(QE IP 
E (11 QE) , 

(5.11) 

based on (B3) in Appendix B, where QE is defined by 

QE= -2
1

. lim[R(E+i11)-R(E- i7))], 
1Tt "~O 

with 7) > 0, QE is the projection operator in .t> belonging 
to an eigenvalue E for the total Hamiltonian H, In a 
similar way we can see that (5,11) is also the solution 
of (5,6), 

In order to get the complete expression for ~~(,), 
we substitute (5,11) into (5,4) and use the relations 

IR(z)-R(z'»=lP +QC(z,z')Pl 

x I R(z) - R(z'», 

(R(z*) - R(z'*) 1= (R(z*) - R(z'*) I 
x [P + PD (z, z')Ql, 

(5,13) 

(5.14) 

which is derived from (B4) in Appendix B, and then we 
arrive at the same solution for t> ° and t < 0 as 

L;e(')-lim~(±)(tl_IQE)(QEI =pe 
E -t~,~ E - (liQE) - E' (5.15) 

This solution is equivalent to the one derived by Van 
Hovel and by Janner2 for UE(±oo). Further, we note 
here that this is the proje£tor belonging to an eigenvalue 
E for the s-Hamiltonian, H in @5 and the value of E co
incides with the eigenvalue for the total Hamiltonian H 
in.p. This is also the projector belonging to the zero 
eigenvalue for the a. s-Hamiltonian, ii, and then 

1111 = EP~, H~ =0, (5,16) 

1111, = o(E - E')11 , (5.17) 

Therefore, by the use of this projector we can project 
the stationary solution of the von Neumann equation, 
and the expectation value of any observable A in sta
tionary systems can be written as 

where 

(5.19) 

and 
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PE = (QE Ip(O». (5.20) 

Here, (A)E is the microcanonical average of the obser
vable A on an energy Shell, and PE is the probability 
distribution of the initial state on this energy shelL 

6. QUANTUM SUBDYNAMICS 

We now introduce a s-operator defined by 

nl'):= ~ i')(O), 

which will play the essential role as a projector in our 
quantum subdynamics theory, 

We first show that this s-operator satisfies one of 
the basic relations, 

where U (t) is the complete evolution s-operator defined 
in (2,38), These relations show that nl·) projects the 
asymptotic evolution s-operator from the complete 
evolution s-operatoro It can be easily seen from (6,2) 
that nl') is commutable with the a.s-Hamiltonian, H, 
and thus ~ i')(t) is a solution of the von Neumann 
equation. 

We will here prove the equality in the left-hand side 
of (6.2), For this purpose it is sufficient, because of 
(4,17), to prove 

Pn~')U(t)= PL;l')(t). (6.3) 

By putting U(t)=exp[-iHtl. (4,16) and (6,1) into (6,3), 
and then by comparing the terms proportional to the 
same order on t in both sides of (6,3), we see that if 
the relation 

~Alf(l)[P + PDi')(lj)Qlfl" 
J 

= ~ [Xk')(lj)l"A~j)(lj)[P + PDi')(lj)Ql, 
J 

is satisfied, (6,3) also holds, where we have invoked 
(4,5), We prove (6,4) by induction: Forn=O, this is 
trivially true, Assume that (6,4) is true for given n 
and consider 

~Alj)(lj)[P + PDi')(lj)QlHn+! 
J 

= ~ lxi·)(l·) l"A l·j)(l.)[P + PDl')(l.)n lH, (6,5) 
j J J J < 

If the relation 

R('»(E + tZ)R(f)«E - ~l)ii = ii R('»(E + MR(fl«E - tll, 

which leads together with (4,1) to 

P~ 1')(t)H = p!i"zl')(t) 

holds, the right-hand side of (6,5) can be rewritten in 
the following form, 

~PH[P + QCl')(lj)Pllxl')(lj)l" 
j 

xAW(lj)[P + PDl±)(l)Ql 

= 6 lxi')(lj)ln+IAij) (lAP + PDi')(lj)Ql, (6,8) 
1 

where we have used the relation obtained by comparing 
both sides of (6.7) based on (4,16), and used the rela
tions (3.49) and PHP =0, The induction hypothesis 
(6.4) is thus extended to the value n + 1. In view of 
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(2.36), (6.6) obviously holds for l in the upper (lower) 
half-plane, when t > 0 (t < OL The analytically continued 
s-Operators are no longer in the form (2.36), but it can 
be shown that (6.6) holds as before for all regular 
points in the continued planes (see Appendix C). Hence, 
the proof of (6.3) is fininished. The proof of the rela
tion ~ it)(t) =U (t)nit) is quite analogous to the present 
one. 

Our next task is to prove the other important rela
tions in the subdynamics theory, L e., 

11 nit) = Enit ) = nit)lI, (6.9) 

nit)ni~) = OlE - E' )nit). (6.10) 

These relations show that ni') is the projector belonging 
to an eigenvalue E for the s. s- Hamiltonian, 11. This is 
the very point at which our quantum subdynamics 
theory is different from that of the Brussels schooL 6-8 

That is, our projector nit) lies completely in the 
eigenspace FE' and hence with (6.2), the asymptotic 
time evolution described by Z it)(/) is entirely contained 
in a subspace nit) of the eigenspace PE • 

To prove (6.9) and (6.10), we use the relation 

IIRC±»(E + illRCT)«E- ill 

= ER C±) >(E + iZ)RCT) «E - tz) 

+ HRc±»(E+ to +RCT)«E_ ill], (6,11) 

which can be obtained from (2.36) by analytically con
tinuing to the lower or upper half-planes in Z (See 
Appendix C). From (6.11) and (4.1) (for t=O), we get 

HAn C±) - En Ct) + ~j. dZ.!.[Rc±»(E + '!'Z) + RCT)«E .!.l)] 
E - E (21Ti)2 '0 2 2 - 2 , 

(6.12) 

but the second term in (6.12) vanishes because of the 
basic assumption, which leads to the regularity of R Ct » 
and R CT)< in the neighborhood of the points l == l J' Hence, 
the equality in the left-hand side of (6.9) is proved. The 
proof of the relation Enit ) = rrl±)11 is quite analogous to 
the present one. 

Because of the hermiticity of II, it is evident from 
(6.9) that the projectors nkt ) belonging to different 
eigenvalues are orthogonal with each other and hence 
nJ:t)nif,) is proportional to 15(E - E')ni±) , Its proportional 
coefficient is determined as unity under the relations 

15 (E - E')~ = lim nit)U (t)niPU (t') 
t ... ±oo 

t, .. :t: oo 

which projects out the contribution describing the 
short time evolution from U (t) in the eigenspace PE • 

Combining (6.14) with (2043)-(2.45), (6.2), (6.9), 
and (6.10), we can easily get the following relations: 

llfii±) == Efiit ) = fiitV{, 
m±)ITi~) = 6(E - E')TI1±), 

ITit)U (t) ==U (t)TIi±) = 25i±) (t), 

nit)ITi;) = nj,.~)ni±) = o. 

(6,15) 

(6.16) 

(6 0 17) 

(6 0 18) 

These relations show that the time evolutions of ~ it)(t) 
and ~ i±)(1) in the subspace nit) and in its complementary 
subspace nit) of an eigenspace PE are governed inde
pendently with each other by the von Neumann equation, 
and are entirely contained in each subspace, respec
tively. From these facts, we may conclude that our 
quantum subdynamics theory has been constructed on 
every eigenspace PE belonging to the s. s-Hamiltonian, 
II, which is quite different from the one of the Brussels 
school. 

Let us now concentrate our attention on the subspace 
nit). As ni±)U (t) satisfies the von Neumann equation, we 
get by the use of (4.17) (for t == 0) 

iotpnC±)U(t) == pf/ni±)U(t) 

On the other hand, by using (4,10), (4.18), and (3.48), 
it follows for the kinetic s-operator (J rl±)(J that 

(Jrlt )p = PHQcrit)P, (6,20) 

and hence (6.19) together with (6.20) is consistent with 
(4.14). Similarly, we can easily get the relations 
symmetrical to (6.19) and (6.20) as 

iotU(t)ni±)P = U (t)ni±)P D1±)QHP, (6.21) 

with 

pri')p = PD'Il)QHP, 

which is also consistent with (4.14). In this way, we 
again arrive at the same equations which have been 
derived in Sec, 4. 

We now turn our attention to the complementary 
subspace rrit) and show that it has the properties sym
metrical to the subspace nit). Using (6.18) and (4,17) 
(for t=O), we obtain 

o=pni±)ITit)=(pnC±)p + pni')Q)ITi±) 

= Pni')p (P + PDi±)Q)ITi±), 

= lim nj,.±)nWU (t + t'), (6.13; and hence (as pni±)p *0) 
t"::i: DO 

t' ~;teo 

which are given by (5,15), (5.17), and (6.2). Hence, 
(6.10) is proved. 

As can be seen from the definition (6.1), ni') is con
structed from the contribution of a part of the contour 
integral over Z for PE • Therefore, we can introduce 
another important projector fiit) as the remainder after 
the subtraction of niz ) from the complete projector 
PE' Le., 

ITi±)=PE-ni±), (6.14) 
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PITi') == - pvit)QITi'); 

Similarly 

(6.24) 

(6.25) 

Using them together with (6.17), we get the relation 
analogous to (4.17) as 

"iiz)(t) = [Q - PDi±)Q] ~ iz)(t)[Q - Q<ri±)(J]. (6.26) 

Hence, we see that the independent component is now 
the correlation-correlation part, Q~i·)(t)Q, and 
other components are its functionals in contrast to 
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the subspace n1±). 
In order to get the kinetic equation for Q~1±)(t)Q, 

we put 

QL, i±)(t)Q = e-iQe1±)Qt QITi±)Q = QITi±)Qe-iQe1±)Qt, (6.27) 

and hence 

ia tQ~i±)(t)Q = Qei±)QI: i±)(t) Q = !2~i±) (t)Qe1')Q. (6.28) 

To derive an expression for Q81')Q, we start from 

ia tQI: i')(t)Q = ia t QU (t)IT1')Q =QH~i±)(t)Q 

= QHQEt')(t)Q + QHPI: ~±)(t)Q 

= (QHQ - QHPDi')Q)Q~1±)(t)Q. (6029) 

By comparing this equation with (6.28), we obtain 

Q81')Q = QHQ - QHPDi')Q; 

similarly 

Qe1')Q = QHQ - QfXi±)PHQ. (6.31 ) 

The relation (6.30) and (6.31) are comparable with 
(6.20) and (6.22), by noting PHP =0. 

Before closing this section, let us see what the pro
jectors PE , ni±>' and ITi±) are, when the strength of 
the interaction is zero o By noting Ci')(l) =Di±)(l) 
=xi±)(Z)=xi±)(l)=0 when V=O, it is easily seen from 
(2041) and (4.16) that 

FEa=&;la,i3lo(E_E,,;Ea) (a,13I, (6032) 

ni±d= lim 2±1. P[R~(E±i1))-R~(E'fi1))]P 
~ - a rrt 

= ~ I a , a)o (E - E ,,)(a , a I , 
Oi 

(6.33) 

and hence 

ITi±d = &;Ia, i3l0(E _ Ea ;EB )(a, 131, (6 0 34) 

at-a 
where the suffix "0" means that the interaction is zero. 
Therefore, we obtain 

and conclude that n1±d and IT1±a) are the PEa components 
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E< 

FIG. 2. Geometrical representation of the superspace: ab
scissa: the eigenvalue of Er-; ordinate: the eigenvalue of H>. 

1096 J. Math. Phys., Vol. 19, No.5, May 1978 

~f P and !2 belonging to the unperturbed s. s-Hamiltonian, 
Ha, respectively 0 

7. DISCUSSION 

In this section we discuss our results which are 
obtained in the previous sections. The perturbation 
theory of Van Hove and Janner has been reformulated 
into the superspace by introducing the ordered s-opera
tor 0 Then, under the assumption for the analytic proper
ties of the product of two resolvents, the master equa
tion for the asymptotic evolution s-operator has been 
derived in a Markovian form on the basis of the eigen
value problem of the collision s-operator of the Van 
Hove and Janner generalized master equation. 

As we have shown, our reformulation in the super
space has saved the very complicated calculation of 
the two-resolvent method in the ordinary space, and 
our ordered s-operator makes it possible to decompose 
each term in the perturbation theory into a product 
form in very natural ways. This favorable feature will 
allow for practical application of the two- resolvent 
method to physical problemso When the system in which 
the quantum statistical effects cannot be neglected is 
treated, the contraction must be considered to deal with 
the vacuum-to-vacuum transitions due to the quantum 
statistical effect in the perturbation theory, 4,21 and it 
can be seen that on the basis of our formalism the cal
culation can be easily performed in the two-resolvent 
methodo We will discuss this problem elsewhere. 

We have further constructed the quantum subdynamics 
theory on every eigenspace of the s. s- Hamiltonian, if. 
Our results may be illustrated briefly by means of two
dimensional Cartesian space as shown in Figo 2, where 
the abscissa is the eigenvalue E< of the r. s-Hamiltonian 
H< and the ordinate is the eigenvalue E( of the 1. s
Hamiltonian H>, respectively 0 There, the eigenspace 
FE corresponds to the line E> + E( = 2Eo This line is 
decomposed into the two complementary parts by the 
projectors ni±) and Ui±) 0 The line E> = E< represents 
the eigenspace belonging to the zero eigenvalue of the 
as Hamiltonian, Ho The intersecting point of these 
lines represents the microcanonical subspace charac
terized by the eigenvalue E of the ordinary total 
Hamiltonian, and it is projected out by the projector 
F~o This point is contained in the part corresponding 
to ni') 0 After the atomic time scale, the contributions 
from the points on ITi±) immediately vanish o The con
tributions from the points on n1±) are exponentially 
dumped, except the contribution from the intersecting 
point on ~, being governed by the asymptotic master 
equation, (4014L 

Finally, we would like to remark upon the advantage 
of the two-resolvent method: That is, it makes it pos-

FIG. 3. Diagrams for PI.RI\R)P corresponding to (AI). 
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FIG. 4. Diagrams for P(R/\R)P: expanded form. 

sible to discuss various descriptions for quantum sys
tems, like the kinetic description for irreversible pro
cesses, the S-matrix formalism for scattering pro
cesses and the ground states or metastable states of 
the systems, as mutually complementary aspects of 
large quantum systems under a unified criterion of the 
"dissipativeness" of systems. l,2,l7-20,22 We believe that 
our formalism offers a suitable background to discuss 
these problems. 
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APPENDIX A 

We wi.ll derive (3.29) and (3.30) by means of a dia
gramatic method. We represent the ordered s-operator 
(A /\ B) as the following figure, 

AlB, 

where a vertical solid line is drawn to represent the 
symbol" /\ " at the corresponding location, and the 
same letters A and B are used to represent the corre
sponding diagrams to the operators A and B for the 
moment. In our diagram, the product is defined in 
accordance with (2.14) as 

A/B* C/D=AC/DB. 

In other words, when we decompose a diagram into a 
product, we put the innermost fragment of the diagram 
on the right-hand side in the product. Now, we repre
sent (3.25), i.e., 

P(R/\R)P = P(D/\ D)P + P(DND/\ DND)P, (Al) 

as shown in Fig. 3. That is, a resolvent R is repre
sented by a rectangle with horizontal solid lines. The 
horizontal solid line shows D. The operator N is repre
sented by a semicircle drawn with oblique lines. In our 
diagrams the difference of the states is expressed by 
the difference in height of the horizontal lines. Thus, 
the projectors P at the left-hand side and the right-

FIG. 5. Diagrams having no common intermediate states in 
both sides. 
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FIG. 6. Diagram for P 
{DND;\ DND}irr P. 

hand side in each term of (Al) are expressed by the 
fact that the outside and inside horizontal lines in the 
corresponding diagrams are equal in height among 
themselves, respectively. (We also label the horizontal 
lines with the same Greek letter to express the same 
states, if necessary.) Further, a potential, - V, is 
represented by a vertical wavy line. Then, the series 
expansion of P (R /\ R) p, obtained by substituting (3.12) 
into (Al), is represented as shown in Fig. 4, where 
the horizontal broken line is drawn to emphasize that 
the outside horizontal lines in each diagram are equal 
in height among themselves. The suffix "ind" in N 
is expressed in this figure by the fact that all horizontal 
lines belonging to N are different in height from each 
other. 

Let us now derive (3.29) from (2.25). From the 
right-hand side of Fig. 4, we first lump together the 
diagrams having a single potential to the right of the 
vertical solid line [see Fig. 5 (a)], having two potentials 
to the right of the vertical solid line [see Fig. 5(b)], 
and so on, but having no intermediate states which are 
equal to the intermediate states on the opposite Side 
of the vertical solid line. Here, the semicircle ex
presses that there are no intermediate states equal 
to the ones on the OPPOSite side of the vertical solid 
line. Then, summing up all diagrams obtained by the 
above procedure, we get the diagram shown in Fig. 6. 

From the remaining diagrams in Fig. 4, we next 
lump together, as shown in Fig. 7, the diagrams in 
which the rightmost intermediate state is equal to a 
state on the opposite side, the second, the third, and so 
on. Substituting Figs. 6 and 7 into Fig. 4, we get the 
relation shown in Fig. 8 which is just the diagrammatic 
representation of (3.29). 

A similar procedure is valid to derive (3.30) for 
(3.26)-(3.28). Here we only give the outline of its 
derivation. Equation (3.26) is represented by the dia
grams as shown in Fig. 9, where the projector Q is 
expressed by the fact that the outside horizontal lines 
in each of the diagrams are different in height. Ana
logously, the third term in Fig. 9 is rearranged into the 
diagrams shown in Fig. 10. From Figs. 9,10, and 8, we 
get the relation shown in Fig. 11. Similarly, we get 
the relations (a) and (b) in Fig. 12 from (3.27) and 
(3.28), respectively. Combining Figs. 8, 11, and 12, 
we get the diagrammatic representation of (3.30). 

APPENDIX B 

Proof of (3.45): From (3.25) and (3.29), we get an 
integral equation for W, 

FIG. 7. Diagrams having common intermediate states in both 
sides. 
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FIG. 8. Diagrams corresponding to (3.29). 

W(z, z')= PN>(z)N«z')P 

- W(z, z'} P [j> (z )D«z ')P N> (z)N«z') po 

Solving this equation by iteration we get 

W(z, 2: ' ) == P W(z)N«z')P - P N>(Z)N«ZI)P 

XD>(z)D«z')PW(z)N«z')P +"'. 

(B1) 

(B2) 

By this equation, the symmetric property (3.45) can 
be easily proved. 

(3.46) can be proved analogously by using the iterated 
solution of (3.29) and the symmetric property (3.45L 

Proof of (3.47): From the definition of.6., (3.38), we 
get 

(01, O! 1.6.(z, Zl) I O!, 01) == (01, O'IR(z) - R(z')) 

== (z - Z')(O' , O'IR(z)R(z')) 

= (z - ZI)(O', 0' IP R> (z )R«z') P 11), 

(B3) 

where we have used the following relation, 

R(z) - R(ZI) == (z - z')R(z)R(z'). (B4) 

By (2.7), the right-hand side of (B3) is just equal to the 
right-hand side of (3.47). 

Proof of (3.48): From (3.40) we get 

C; (z, z')P R>(z)R«ZI)P 

== .6.(z, z')W(z, Zl) P R> (Z)R«Z') P 

+.6.(z,z') - (z - zl)PR>(z)R«Zl)P. (B5) 

Putting this equation between (0', 0' I and 11), we get 

(0',0' I C; (z, Zl) 10/,01)(0',0' I R(z )R(ZI)) 

== 2:)(0', O! IA(z, Zl) 10', 0')(0', (l' IW(z, z') 113, 13) 
B 

x (13,131 R(z)R(z ')) 

== 2:) (01, 0' I R(z )R(Z'»)(O' , 0' Iw (z, z ') I 13, j3) 
B 

X (13, 131.6.(z, Zl) I 13, j3), (B6) 

where we have used the relation (B3) and (B4). Dividing 
both sides by (0', O! I RR), we just get (3. 4S). 

Proof of (3.49): We prove here the left-hand equality 
in (3.49). The proof of the right is quite analogo~s to 
the present one. From (3.32) and the relation PHoQ =0, 
we have 

+ 

FIG. 9. Diagrams for Q\R/\ R)P corresponding to (3.26). 

1098 J. Math. Phys., Vol. 19, No.5, May 1978 

FIG. 10. Diagrams forQ,(DND/\ DND)P. 

pilQcP == P(V>Qn>W - V<QD<N<)P 

+ P [V>Q D<N< + (V>Q n> N> D<N<)i~rlP 

- P [V<QD>N> + (V<QD<N<D>N»irrlP. (B7) 

Putting the expansion for N~, (3.12), adding P(V>- V<)P 
=0 to the first term of (B7), and using the definition of 
c~, (3.15), we can reformulate (B7) to 

pliQCP = - P (c> - c<) P + P (n> - D<) P (N) N<)iTr P . (BS) 

The right-hand side of this relation is just equal to the 
definition of X, (3.41). 

APPENDIX C 

Proof of (6.6) and (6.11): Our proof is only for the 
analytically continued functions from the upper half
plane. The proofs for the ones from the lower half
plane are quite analogous to the present ones. We 
change the variable I to 2l and drop the notations (+) and 
(-) for simplicity. Let I be a regular point in the lower 
half-plane and expand R>R< about a point lo in the upper 
half-plane, 

R> (E + I)R«E - l) 

== ~ n~ a? [Wee + Z}R«E - 1)] 1/=1
0 
(l- lo)" 

~ .(l-., 1 
==~~ (n-m)!m! [a~-mR>(E+Z}l 

x [ar R«E - 1)ll/=/o(1- lo)" 

= t t R> (E + lolR«E - loHR> (E + lo)n-m 
n=O m:::O 

(C1) 

Each term in the right-hand side of (Cl) is commutable 
with ii, and hence (6.6) is proved. 

Let us also expand R> + R< about the same point, 

R)(E + 1) + R«E - 1) 

= t -.!, a~ [R>(E + Z) + R«E - Z)lll=lo(l- 10 )" 

"=0 n. 

= "~([R>(E + 10)),,+1 - [- R«E - lo)]"+l}(l- lo)" 

= t t [R>(E + 10 ) + R«E -lo)]W(E + lo)]n-m 
n=O m::O 

x [- R«E - lo)]n(1-1 0 )", 

where we have used the identity 

FIG. 11. Diagrams for (j(R,\R)P withQ.C P. 
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n 
~l _ bn+1 = 1: (a _ b)arr-mbm, (C3) 

~ 

Putting the relations 

R>(E + lo) + R«E - lo) = 2(H - E)R>(E + lo)R«E - lo), (C4) 

which can be easily obtained from (2,36), and then 
(Cl) into (C2), we get 

R>(E + Z) + R«E - Z) = 2(H - E)R>(E + l}R«E -l), (C5) 

which is just identical with (6. 11), 
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It is shown that the natural connections defined on real and complell Stiefel bundles over Grassmannian 
manifolds are sourceless gauge fields corresponding to the gauge groups G = SOCk), k = 2,3,.·· and 
U (k), k = 1.2 ... ·• respectively, Stiefel bundles and their connections are important in view of their 
universality: Any gauge field, with group G. defined on a compact manifold may be obtained by 
embedding the manifold in a Grassmannian of sufficiently high dimension, 

INTRODUCTION 

Electromagnetism is a gauge theory1; gauge fields are 
believed to playa role in the description of strong2 and 
weak3 interactions; in a somewhat different sense, 
gravitation also corresponds to a gauge field. 4.5 Until 
recently, most of the solutions of the gauge field equa
tions considered by phYSicists were topologically tri
vial; They could be continuously deformed into the zero 
field. A notable exception was the electromagnetic field 
of a magnetic pole. 6 Solutions of the sourceless Yang
Mills equations which are not homotopic to zero have 
been found by Belavin, Polyakov, Schwartz, and 
Tyupkin.7 They have been given a physical interpreta
tion, 8,9 generalized10.11 and shown to be associated with 
a problem in algebraic geometry. 12 Another method for 
obtaining topologically nontrivial solutions of the Max
well and Yang-Mills equations has been described in 
Ref. 13. The method is based on the observation that 
the magnetic pole of the lowest strength and the pseudo
particle solution of the Yang-Mills equations corre
spond to the natural connections defined on the Hopf 
bundles S3 ~ S2 and S7 - S4' respectively. In the present 
paper, we generalize the results on the gauge fields 
associated with Hopf fib rations to Stiefel manifolds con
sidered as principal bundles over Grassmannians. The 
structure (gauge) group of these bundles is one of the 
groups G=SO(n), n=2,3, ... , U(n) or Sp(n), n 
= 1,2, . " . Each of these bundles has a natural connec
tion14 and its gauge field (curvature) is sourceless. We 
give the details of the proof only in the real and complex 
cases, leaving the quaternionic bundles for further 
study. 

GAUGE FIELDS AND CONNECTIONS 

To fix the terminology, let us recall 15 ,16 that a 
(smooth) principal bundle conSists of: 

(i) a (smooth) fiber bundle 11: P-M; 

(ii) a Lie group G which acts on P smoothly and free
ly to the right: There is a differentiable map 0: P xG - P 
such that 0. Q °0 = 0ba and 0. = idp - a = e, where oa(P) 

alOn leave from the Institute of Theoretical Physics. Warsaw 
University. Hoza 69, Warsaw, Poland. 

= o(p, a), PEP, a, bEG and e is the unit element of G; 
moreover, 

(iii) the action of G is compatible with the fiber bundle 
structure: 11 0 6 a = 11 and any point in M has a neighbor
hood U such that 7T- 1(U) is isomorphiC to UXG. 

If UcM is open, the s: U-P is called a (local) sec
tion if 7T oS = idu; if U = M, then such an s is called a 
global section. A principal bundle P is trivial, i. e. , 
isomorphic to the product M x G, if and only if it admits 
a global section. 

Any homomorphism of Lie groups h: G - H induces a 
(derived) homomorphism of Lie algebras, h': G' - H' . 
For example, if G=H and ada(b)=aba-\ then Ada=ad~: 
C' - G' defines the adjoint representation of G in its Lie 
algebra. The action of G on P induces a homomorphism 
of Lie algebras 0': G' - Lie algebra of vertical vector 
fields on P, given by o'(A) = vector field tangent to the 
curve t - O.xotA' A E G'. Let T denote the tangent func
tor. A connection on P may be defined by a connection 
form w, i. e. , by a map w: TP - G which is linear on 
the fibers of TP- P, equivariant under the action of C, 

w o To.=Ada - 1 o w, aEG, (1) 

and such that 

w(o'(A)) =A, A E G'. (2) 

The vector space horpP = {u E ToP I w(u) = o} is called the 
horizontal space at PEP, verpP = {u Eo: TpP I T7T(zd= o} is 
the vertical space at p, and there is a unique decompo
Sition 11 == hor u + ver u corresponding to TpP = horpP 
+verpP. If p: G- GL(V) is a representation of G in the 
vector space V, then the V -valued k-form q:, on P is 
said to be of type p if 6: if> = Pa-l 0 cp, where 0; rp is the 
pullback of </> by 0 •. The k-form hor rp defined by 
hor</>(u u u2 , •• , ,uk)= q:,(horll u horu".,. ,horuk ) is then 
also of type p and Dq:, = hor dtp is a (k + 1) -form of type 
p, called the covariant exterior derivative of rp. For 
example, the connection 1-form w is G' valued, of type 
Ad, and n=Dw=dw+~[w, w] is the curvature form. 
The k -form cp is called horizontal relative to 11 if 
<p(U u 112 , ••• ,Uk) = 0 for any 1/2' ••• , Uk E TpP and 
u, E: ver.P. 

The covariant exterior derivative of a horizontal V-
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valued form of type p is given by the formula 

DrJ>=drJ> + p'(w)ArJ>, 

where p' (w); T P - L (V) is obtained by composition of w 
with the derived map p': G' - L (V) and the wedge sign 
implies both the exterior multiplication of forms on P 
and the evaluation map L (V) x V-V. For example, n is 
a G' -valued horizontal 2 -form of type Ad, and since 
AdA (B)= [A, B] (A, B EO G') we have Dn= dn + [w, n]= a 
(the last equality is the "Bianchi identity"). 

In a gauge theory, the total space P of the bundle is 
interpreted as the space of phase factors, 17 M is the 
space-time manifold, G is the gauge group, w is the 
gauge potential, and n is the gauge field. 

In theoretical physics, one usually works with local 
sections of the bundle and the corresponding pullbacks; 
S : U - P is then called a local gauge, r = S * w is the 
potential and s*n is the field strength in gauge s. The 
map 5a : P - P is interpreted as a gauge transformation 
of the first kind. If S : U - G, then s': U - P defined by 
s '(x) = 5(s(x), S(x)) is another local sectiono We say that 
the local gauge s' is obtained from the local gauge s by 
the gauge transformation of the second kind S. Assuming 
G C GL(V), we may write the relation between r and 
r'=8'*was 

r' = S-I rs + S-1 dS. 

To construct a gauge theory, one should 

(i) choose a gauge group G and consider prinCipal 
G-bundles endowed with connections, 

(ii) specify the type of particle(s) coupled to the gauge 
field: this is done by picking out the representation(s) 
p : G - GL (V); wavefunctions of particles of type pare 
then given by a-forms of type p; rJ> oS is the wavefunction 
in gauge s; 

(iii) make an assumption about the field equations 
satisfied by the gauge field. 

For example, in electromagnetism the gauge group is 
U(l), all its irreducible representations are of the form 
Pn : U(l) - U(l), where Pn(u) = 1/n, n EO Z, U EO U(l). A 
particle of type Pn is simply a particle of electric charge 
n and the covariant exterior derivative of its wavefunc
tion is 

DrJ>=drj)+nwrJ>. 

Since U(l) 3u = expiA, where A EO R, the Lie algebra of 
U(l) is iR and the form w is purely imaginary. The 
Maxwell equations on Pare dn = a and d* n = 41T*j, where 
j is the I-form of electric current and the star appear
ing on the left of a horizontal form denotes its dual with 
respect to the metric lifted from the base space. In an 
SU (n) theory, one often takes p = Ad; rp is then called 
a Higgs field. In this case, n is assumed to fulfill the 
field equation 

D*n=41T*i. 

In the sourceless case, which is the only one considered 
here, 

(3) 
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STIEFEL BUNDLES AND GRASSMANN MANIFOLDS 

Stiefel bundles over Grassmann manifolds l8
•
19 gener

alize the Hopf fibrations 

S2n-1 - CPn_1> 

S41!-1 - HP n-l> 

(4) 

(5) 

which are known to admit sourceless, topologically non
trivial gauge fields. 13 

Let F be one of the following: the field R of the reals, 
the field C of complex numbers, or the division algebra 
H of quaternions. If z EO F, then z = z for F = R and z is 
the conjugate of z for z EO C or H. ConSider the right 
vector space F n and the scalar product defined by 

(ujv)=u".J'", u=(u",), v=(v c.), v=(va)EFn• (6) 

The unit coordinate vectors in F" are e"" (II = 1, ... ,n 
and thus u = L: ll"E",. Here and in sequel, summation is 
understood over the range indicated by a pair of re
peated indices. 

Let Un(F) be the connected component containing the 
unit of the (Lie) group of linear transformations a: F n 

- F n
, au= (L: a= 1 a ",alla) , preserving the form (6). If 

a = (a OIB) and a+ = (ii 8") is a transpose conjugate matrix, 
then (6) is preserved, (aulav)= (ulv) provided that a+a 

=1. Depending on the field, the group Un(F) is the group 
of rotations, the unitary group, or the symplectic group 

) 

SO(n) for F= R, 

Un(F) = U(n) for F=C, 

Spin) for F=H, 

and its real dimension is tn(n + 1) dim~ -no 

For k= 1,2, .. " n one defines a k-frame u in F" as 
the ordered set (Ul> ••• , Uk) = (u) = 11 of k orthonormal 
vectors, 

(U j !U)=5ij, ujEFn, i,j=l,o>.,k. 

Each vector u t is the n -tuple of elements of F, u t = 
= (u",), Q' = 1, ... , n. We put 1= n - k and make the set 
of all k-frames in F n into a manifold. The connected 
component of (E I1 ••• ,E k) in this manifold is called the 
Stiefel space Vn)F). The group Un(F) acts on Vn.k(F) 
to the left by (a,u)-au=u', u~i=L:8a"BllBi' This action 
is transitive and the stability group at (e I> ••• ,E k) is the 
subgroup U1(F) of Un(F), consisting of aU matrices of 
the form 

(~~+a] , 
where (aAB) EO U/(F), A,B=k + 1, 0" ,n, Therefore, 
V n. k(F) may be identified with the left coset space 
Un(F)/U1(F) and, under this identification, the canonical 
projection 

1To: Un(F) - Un(F)/U1(F) = Vn.k(F) (7) 

maps 
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into the l?-frame u = (u), where u; =:: L: ",e",a",;. 

The group Uk(F), which may also be considered as a 
subgroup of Un(F), acts on Vn,k(F) to the right: (u,a) 
-Oa(U)=lIa=u', 1(~i=L:jU",Pji, a=(ai)EOUk(F). The 
quotient of V n,k(F) by this action is a set Gn, k(F) which 
can be given the structure of a differentiable manifold 
of real dimension equal to !? • I dimRF 0 This Grassmann 
manifold may also be described as the set of all 
(oriented for F = R) k -planes through the origin in Fn: 
If It', /I EO V n,k(F), then u and u' span the same (oriented) 
k-plane if u' = ua for some a EO Uk(F), 

The Stiefel bundle 

7T • V n)F) - Gn , k(F) 

with group Uk(F) reduces for k= 1 to (4) or (5), depend
ing on whether F= Cor H; moreover, Vn)R)= Gn,l(R) 
= 5 n_1 • 

The canonical I-form on Un(F) 

w=n+da=(w",B) 

has values in the Lie algebra of Un(F), i. e., each of the 
component forms W",B (QI, (3 = 1, ..• ,n) is F -valued and 
waB + w",s=O. The form W is left invariant, right 
equi variant, 

O~W= AdQ-,<.c', for any a r= Un(F). (8) 

and satisfies the Maurer-Cartan equations 

(9) 

The forms W"'j (0' = 1" .. ,n; j = 1, ' '" k) are horizontal 
relative to 7T o • It follows from (8) that the forms Wi; are 
invariant under the action of U1(F) on Un(F) to the right; 
therefore, they project to forms on Vn,k(F), which will 
be denoted by the same symbols, Moreover, the forms 
(wij) satisfy on Vn,k(F) conditions (1) and (2): They de
fine the natural connection on the Stiefel bundle. 14 

Similarly, the quadratic form L: '" ,j W"'jW",; is invariant 
under U, (F) and defines a Riemannian metric dl 2 on 
Vn,k(F), 

,£.W",;w",j=7T;dI2
• 

"'.) 

The quadratic form 2:A,jWAjWAi on Un(F) is invariant 
under the action of both U,(F) and Uk(F). Therefore, it 
is the pullback of, or projects to, a Riemannian metric 
ds 2 on Gn,k(F) 

and 

~ WAj WA;=(7To7To )*ds" 
A.; 

d1 2 = 7T*(ds)2 + L WijW ij on Vn,k(F), 
i,j 

(10) 

The metric on V n, k(F) is of the type considered in 
generalized Kaluza-Klein theories. 16 For k = 1, dZ 2 

reduces to the natural Riemannian metric of a sphere 
whereas ds 2 is the Fubini-Study metric of a projective 
space (F = C or H)13 or the natural metric of a sphere 
(F = R). The metrics dl" and ds 2 are positive definite 
and invariant under the action of Un(F) on Vn)F) and 
Gn)F), respectively, 

It is clear from (10) that Un(F) considered as a bundle 
over Gn,k(F) may be viewed as a restriction of the bun
dle of orthonormal frames of Gn,k(F), corresponding to 
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the canonical injection Uk(F)xUI(F)-Uk.I(F). The form 
0ijWAB + 0ABWij on Un(F) defines a Levi-Civita connec
tion for Gn,k(F). Its curvature form is 0ijQAB + 0ABQij' 
where, by virtue of (9), 

and 

The form Qij (or Q.4.8) is the pullback to Un(F) of the 
curvature form of the natural connection on V n, k(F) 
(or Vn,,(F)). 

PROOF OF D * n = 0 

ConSider the following 1= (n - k)-forms on Un(F): 
1 

<Pil ;2'" i/ = IT EA1 ,"A I W Ali/\WA2i2i\.· •• i\.WA / il , 

(11) 

where EAI"'A I is the Levi-Civita symbol. The <P's are 
symmetric in the indices i 1> ••• , i I' These forms are 
horizontal relative to ITo' For F = R they are also in
variant under the action of SO(l) on SO(n). Therefore, 
they are pullbacks by IT of forms on Vn,k(R) which will 
be denoted by the same symbols, For F= C, the 21-
forms 

J/il"'ili\./)!jl'''j/ (12) 

are invariant under the action of UU) on U(n). By using 

E EB1B2"'BI_OB10B2"'0BI 
A IA2"' A / - [AI A2 A/I 

and Eq. (11), the projections of (12) onto Vn,k(C) may be 
represented as an equivariant homogeneous polynomial 
of degree I in Qij' 

Evaluating the covariant exterior derivative of :jJ on 
Vn.k(R), using the Maurer-Cartan equation (9) and 
W AB + W BA = 0, one obtains 

D:jJil''' i /=O on Vn,k(R). (13) 

It follows directly from the Bianchi identity that covari
ant exterior derivative of (12) is zero. 

The 1;0 • I form on SO(n) given by 

(14) 

is invariant under both SO(k) and SO(l); therefore, it 
projects to a nonzero form of maximal degree on G n , k(R) 
which may be identified with the volume !?I-form. The 
form (14) considered on U(Il) changes by a phase factor 
under the action of U(k) and U(l), Therefore, the form 
1]i\.7] projects to a volume element on Gn",(C). In this 
case, the volume element is an invariant polynomi.al of 
degree 1< • I in Q. 

The volume elements define orientation on the 
Grassmannian, which, together with the Riemannian 
metric ds", enables us to define and compute the dual 
of any form on Gn,k(F) or of any horizontal form on 
Vn,k(F). In particular, for F=R we obtain 

*[2 .. 0: E. .3 ... ·k E .1.2k· •• E.l.2 .k 
IJ t} 11 11 1212'" 12 IlIz' •• t I 

·[2.1.2i\.Q.C2i\.···i\.Q.l.2!\'l'.l ."i\.···i\1J1. k "· 
t 112 13 t3 tIt I t"1'" till' •• ! 1 
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The Bianchi identities, together with (13), imply that 
the curvature form nij is sourceless, 

D*nii=o. (15) 
In the complex case, the form *nij is of even degree 
and may be represented as an (equivariant) polynomial 
of degree k • 1 - 1 in no Therefore, Eq. (15) holds as a 
consequence of the Bianchi identities. 

EXAMPLES 

The simplest examples correspond to F = R and l = 1. 
In this case we have the fibration 

SO(n) = V n,n-1(R) - Gn,n_1(R) = 5n-1 

and the corresponding SO(n - 1) -gauge field is simply 
the Levi-Civita connection of the sphere 5"_1' When 
standard parametrization is used, the metric of the 
sphere is ds 2 = W~1 + W~2 + .•. + w~ n-U wn1 = dfJl> Wn2 

= sinfJ1 dfJ2 , •• • , W nn- I = sinBl sinB2 ••• sinBn_2 dBn_1 and 
nij = wniA/.JJni' 

In the complex case the fibration corresponding to 
l = 1 is 

SU(n) = V n , n_I(C) - Gn , n-l(C) = CP n-1 

with the gauge U(n -1). For n= 2 this reduces to the 
Hopf fibration 53-52' The gauge group is U(l) and the 
connection corresponds to the magnetic pole of lowest 
order. For 11=3 the fibration is SU(3)-CP2 , the gauge 
group is U(2) = U(1) xSU(2) and the connection decom
poses into the "electromagnetic instanton" and the solu
tion recently found by C. N. Yang. 20 For instance, with 
Fubini-Study m,~tric on CP2 

ds
2 

= W31 W 31 + W32W 32 ' 

W 31 = ()'('-;"{i sinfJ coSd>[(1/a2
) d /J. - sin2 B sin\6 dv 1 

- cost! cos¢ dB + sinfJ sin¢ d¢}, 

W32 = ae-iv{i cos & sinfJ sin¢ dv - sin¢ d fJ 

- sin&cos&cos¢dd>}, 

a=(sin2&sin2¢+cos2etl/2 and nij=I~3;Aw3j' 

The case k = 1 is trivial when F = R and reduces to Hopf 
fibration (4) for F= C For low dimensions the isomor
phism between different groups or Lie algebras leads to 
a correspondence between different Grassmannians and 
the solutions of gauge equations. 

CONCLUDING REMARKS 

The importance of the Stiefel bundles and of the 
corresponding natural connections lies in their uni
versality: If G is an orthogonal, unitary, or symplectic 
group, then any principal G-bundle P with connection W 

can be obtained by embedding its base space M in a 
Grassmann manifold lV of sufficiently high dimension. 14 

Clearly, the connection on P, induced by the embedding 
k : M - lV, in general will not correspond to a sourceless 
gauge field. An interesting problem is to characterize 
the embeddings k which lead to sourceless gauge fields. 
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A simple example of such an embedding is known in the 
case of magnetic poles: For any integer rn, the 
embedding. 

k m :52 -CPm 

is given in terms of homogenous coordinates by 

km(z u Z2) = (z,;" (';')1/ 2 Z~-I Z2' .•• , (;) 1/2 Z,;,-p Z~, ••• , Z~) 

pulls back the natural connection on the U(l) -bundle 
52m +1 -CP m to L(rn, 1) - 52' where L(m, 1) is the lens 
space. 

The method described here is easily generalized to 
noncompact groups, By replacing the positive definite 
form (6) with 

one is led to the groups 

l
SO(P,q) for F=R 

Up,q(F)= U(p,q) for F= C 

Sp(p,q) for F=H 

and fiberings 

Uo)F) - Vp,/);m,n(F) = Up,Q(F)IUp_m,q_n(F) 

- Gp,a;m,n(F) = U/),q(F)/Up_m,Q_n(F) XUm,n(F). 

The corresponding Stiefel bundles, with connections 
which are also sourceless, are defined over an indefi
nite Grassmann manifold in which metric (10) is re
placed by metric with signature 

[dimRF(nz(p - Ill) + /1(q -11)), dimRF(n(p -111) 

+ l1I(q -11» J. 
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Radiation (damping) in a universe with topologically closed 
space sectionsa) 
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Institut fur Theoretische Physik der Universitiit Wien, Boltzmanngasse 5, 1090 Wien, Austria 
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A soluble model for an interacting oscillator -field system discussed previously is reconsidered with 
Minkowski space replaced by a Lorentzian static manifold with topologically closed space sections. It is 
shown that the general solution to the dynamical equations is-in the technical sense-almost periodic in 
time. In the case of the Einstein universe a more detailed discussion is presented, containing especially a 
study of the "thermodynamic limit" in which the radius of the universe tends to infinity. 

I. INTRODUCTION 

This work concerns itself with the dynamics of a 
system in which a harmonic one-dimensional oscillator 
interacts linearly with a scalar massless field in 
(3 + l)-dimensional spacetime. It grew out of a study of 
an analogous sytem in Minkowski space. 1 There it was 
shown that, provided the Cauchy data have finite energy, 
the system, though reversible, has a certain "dissipa
tive" property, The energy of the oscillator vanishes in 
the limit as time III - cO. The finite- energy solutions 
may hence be described by saving that they correspond
to an incident wave which excites an initially (with t 
- - 00) quiescent oscillator which then reradiates the en
ergy thus acquired to infinity" 2 

If in this set up one replaces Minkowski space by a 
spacetime with topologically closed (in particular com
pact) space slices, a new situation arises, First, the 
total energy is now always finite. Second, related to the 
first, energy cannot "escape to infinity." It is hence to 
be expected, that the dissipative behavior in the sense 
mentioned above will strictly be absent here. 

Preliminary attempts to integrate the equations in 
special cases by a rather "brute force" method, as 
outlined in the Appendix, suggested (but failed to prove) 
that the system might behave quite analogously to a 
quantum system in a finite volume, the wavefunction of 
which, due to the discreteness of the energy spectrum, 
is an almost periodic function of time. (This is, of 
course, the quantum analog of Poincare recurrence; 
see, e. g., Ref. 3.) 

Since that is a typical Hilbert space result, it seemed 
natural to tackle the present problem in a Hilbert space 
formulation which is introduced in Sec, II. Section III 
contains the proof of almost periodicity. In Sec. N the 
solution to the Cauchy problem is written down more 
explicitly. To obtain more concrete information, we 
specialize the underlying manifold to be the Einstein 
universe in Sec. V. We show that, letting the radius 
(\ of the universe tend to infinity, one recovers the time 
evolution in Minkowski space (provided an obvious 
identification between the fields in the two models is 

a)Work supported by a stipend of the Bundesministerium rur 
Wissenschaft und Forschung. 

made). ConSidering the asymptotic behavior of the 
oscillator in the two cases, this especially implies non
interchangeability of the limits t- cO, P - 00, a fact 
familiar from nonequilibrium statistical mechanics, 
From local causality arguments it is clear that the 
closed topology, though decisive for the asymptotic 
behavior, cannot have any impact on the oscillator for 
times t " P 1T. It is shown that its motion is (again with 
suitable modifications) in fact, equal to the one in flat 
space. This is not unexpected on grounds of the local 
conformal flatness of the Einstein universe, from which 
the absence of tails in the radiation follow, In the 
appendix a heuristic argument is given which should 
serve to show that the almost periodic motion of the 
oscillator is turned into damping if the universe con
tains matter which absorbs radiation. In view of the 
results in Ref. 4 it seems likely that incorporation of 
the cosmic expansion in the model has a similar effect. 

II. THE MODEL 

We consider as spacetime Jf a smooth manifold of the 
form M = RI XN, where N is a closed, orientable 3-
manifold. ;11 is endowed with a line element g of 
Lorentzian signature and a global timelike Killing vec
tor field %t. In terms of the set of equations to be 
described shortly one can without loss of generality 
assume g to be conformally rescaled such that 

ds 2 =g ",vdx" dxv = dl2 
- Yij(x) dx' dx j 

(J1,v=O, .. "3;i,j=1,.,,,3), 

(2.1) 

where} jj(X) is a Riemannian metric on N_ The model 
consists of a one-dimensional harmonic oscillator 41(/) 
coupled to a scalar massless field <l>(x, /). The equa
tions are (c=lI1=l); 

::2 Q(t) + w~Q (I) = Q (I) + w~Q(t) 
= AfdV p(x)<l> (x, I), (2.2a) 

(I' + ~)<l>(X, I) =(f~ - 6 + 3:)<l>(X, I) 

= Ap(X)Q(I) (dVP = 1), (2.2b) 

Here dV = (det)'ij)1/2 d3x is the invariant volume element 
on N. 1.=g"'vV'",V'v, 6=y

ij
V' i V'j, R is the scalar curva

ture on ,H, w~ is the spring constant, ,\ is a coupling 
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constant, and p(x) is a prescribed scalar E: C~(N). We 
further assume the three-scalar curvature 3R on N to 
be positive, R = 3 R > O. 5 The equations are invariant 
under conformal transformations which do not involve 
time. 

By Cauchy (initial) data to the system (2.2) we mean 
a quadruple 1 f) = 1 Q, Q = P, <I> (x), .p (x) = II (x), where 
<I>,n E: COO(N) and which, for later convenience, is 
allowed to attain complex values. 

Use will be made of the following (Sobolev) spaces: 
~(N)=L2(N), conSisting of complex-valued square 
integrable functions u(x) on N: (u lu) = f dVlu(x) 12 < ro, 
HI (N) (i = 1,2) of functions whose weak derivatives up 
to the ith order are in L2(N). The following known prop
erties of the positive operator L = - A + R/6 will be 
used in a crucial way (see, e. g., Ref. 6): 

(A) L with the domain D(L)=H2(N) is self-adjoint in 
Jtl(l'v~; 

(B) L -1 is a compact operator which implies that the 
spectrum of L consists of isolated eigenvalues Vi with 
0< VI < Vz <, •• of finite multiplicity. 

To introduce a norm into the space H of Cauchy data 
If)= IQ,p,<I>,n), the total conserved energy seems to 
be a good candidate, 

E(f) = Hwt I Q 12 + Ip1 2] + M(<I> IL<I» + (II III)] 

-~[Q(pl<I»+Q(<I>lp)l. (2.3) 

Let $ = <I> - AQL -lp• Assume that w5, AU and p(x) are 
arranged in such a way that 

(2.4) 

[For given A, p(x) this can always be achieved by 
making the "bare" spring constant W6 sufficiently large.) 
E can now be written 

and is hence greater then or equal to 0 and equal to 0 
if and only if 1 f) = O. Henceforth we write EI/2 (f) = Ilfll . 
II 1/ constitutes a nOrm in H which is obviously induced 
by 

UII f2) = MwF~IQ2 + i\P2) + M (<I>I I L<I>2) + (IIjln2) J 

A - I -2[Ql(P <I>2)+Q2(<I>tlp)], (2.6) 

The completion of H in the norm II II is given by R2 
tB Hl(N) tB If!(N) which will also be denoted by H. 

We now write (2.2) in "first order form" 

of = 'AF 
at l '" 

where (in obvious notation) 

A='!~~5 ~ A(~I ~) 
i 0 0 0 1 • 

Alp) 0 -L 0 

(2.7) 

(2.8) 

Energy conservation implies that A is symmetric with 
respect to () in D(A)=R2tBJ!2(N)tBHt(N). [Contrary to 
quantum mechanics, which (2.7) reminds one of, A has 
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nothing to do with the energy of the system. It would 
rather be appropriate to call it the "frequency 
operator. "} 

III. DYNAMICS 

Theorem 1: A is self-adjoint. 

Proof: Define for Irnz "* 0 the following quantities: 

I J.L(z» = (z2 - L)"llp), (3.1) 

D(z) =z2 - w~ - 1t2(p / J.L(z» 

=Z2 _ (;)2 _ A2Z2(J.L(0) I J.L(z», 

B(z) = D(z)(Z2 - L)"t + A2/ J.L (z»(J.L (z) /' 

(3.2) 

(3.3) 

A straightforward calculation gives for the resolvent 
R(z) = (A - zrt of A, 

(3.4) 

Using self-adjointness of L with D(L) =Jt2(N) in J:fl(N), 
inspection of the structure of R(z) shows that it maps 
H into D(A) = R2 $ H2 (N) tB Ht (N) for Irnz "* 0 which im-
plies 1 that A is self-adjoint, Q, E. D. 

Self-adjointness implies that A generates a strongly 
continuous one-parameter group of unitary transforma
tions U(t) = exp (iAt), 8 The unique solution (in Hilbert 
space) to the Cauchy problem is therefore given by 

/ f(t» = exp(iAt) I f(O» , 

This can also be written as an inverse Laplace 
transform 

1 f'+iC 
/ f(t» = Ic~~2:;; ,-lc ds exp(st)R(- is) / f(O» 

(3.5) 

(t> O,E~' 0) (3.6) 

which will be useful later on. 

It is still to be seen that the time evolution maps 
Coo data into themselves, However, a result of that sort 
is known for the inhomogeneous wave equation with 
more general source p(x, f), 9 In our case p(x, f) E: Coo (N) 
for all t, Also, as a consequence of the strong continuity 
of the evolution, p(x,t)=p(x)Q(t) is itself continuous in 
t, Under these conditions the assumptions of Ref. 9 
are valid. 

Theorem 2; The spectrum of A consists of isolated 
eigenvalues of finite multiplicity and is symmetric with 
respect to the origin, '0, w_2 < W_t < 0 < WI < w2 <, • 0 

with W_i = - W io 

Proof; Consider R(O) =A -I, For what follows it is 
convenient to set 1t = 0 in the inner product (2,6) and 
observe that this yields an equivalent norm on H 
(though, of course, A is now no longer symmetric). We 
now write A-I in the form 

(3.7) 

It is easily seen that both terms in (3,7) are bounded 
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operators in the "A =:: ° norm" and hence in the energy 
norm, The first term in (3.5) is of finite rank and 
therefore compact The second term reads 

;(Wijl-t: I ~ ~ d + flnitemnk. (3.81 

One has to worry only about the first term in (3.8), 
It is bounded since 

(rlrr I Lr1II) + (<l? I <l?) 

~ IIL- t !IL2 (II !II)+C(<l?IL<I» 

~ D[(<l? I L<l?) + (II III)], 

It is also self-adjoint, Furthermore its square is 

(wijr2~\ 
~ I ~ LV-I) 

(3.9) 

which is compact by statement (B) in Sec, n. By a well
known theorem this implies compactness of this opera
tor itself. Henc e A-I, as a sum of compac t operators, 
is compact, and the spectrum of A is purely discrete 
and of finite mUltiplicity. The symmetry of the spec
trum with respect to the origin is a reflection of Eqs, 
(2. 2) being real and follows from inspection of the 
resolvent (3.4) or else from the eigenvalue equations 
to be investigated later. Q. E. D. 

From this theorem it follows that the general solution 
to (2.2a) and (2,2b) is of the form 

~ 

I f(t» = 0 exp(iw;t)a j I f i), a i E C, (3.10) 
i= .. OO 

Ifl) being the complete set of eigenfunctions, The sum 
(3.10) converges uniformly in t in the norm II II, This 
implies uniform convergence of the corresponding sum 
in the expression for Q(t), Q(t) contained in (3,10) and, 
in the C~ case, for the ones for <l? (x, t), 4? (x, t) almost 
everywhere in N, ThUS, by a general theorem, 10 Q(t), 
Q(t) and, almost everywhere in N, <l?(X, f), ci>(x, l) are 
almost periodic functions of time, 

This result exhibits the fact that the system-strictly 
speaking-does not have any tendency to reach a "state 
of equilibrium" for arbitrary large times where all the 
energy has been dissipated into the field degrees of 
freedom. We say "strictly speaking," because it is 
physically obvious and it will be shown in Sec, V in the 
case of the Einstein universe that there are means of 
escaping the implications of that result, Either one 
performs a limit, where the "radius" P, of the universe 
(defined suitably) tends to infinity, before the limit 
t- 00. Or, more generally, one proves that, confining 
the support of <l?, .J, at t = ° to a region of length l « P, 
which contains the support of p and provided A2» P, -1, 

the system does come to equilibrium in the above sense 
if only observed on a time scale t < p'rr. 

As preparation we need more information on the 
spectral properties of A. 

IV. EIGENVALUES AND VECTORS OF A 

Writing down the eigenvalue equation for A implies 
two equations which can be immediately arrived at by 

1106 J. Math. Phys., Vol. 19, No.5, May 1978 

formally inserting an exponential ansatz into (2.2), 
Q (t) =:: exp(iwt)Q"" <l?(x, t) == exp(iwt)<l?", (x): 

(- w2 + w~)Qw == A(p I <l?w), 

(_w 2 + L) I <l?w) = AQ", Ip), 

and noting that 

I fJ == I Q"" iwQ", , <pw(x), iw<l?", (x», 

(4.1) 

(4.2) 

(4.3) 

Due to compactness of L -lone can apply Fredholm 
theory to (4,2), Let Ai be the subspace of IfJ(N) spanned 
by the eigenvectors L I Vi i) = Vi I Vi J)' Then the following 
cases (listed in increasing generality) have to be 
considered: 

(A) Ip) is orthogonal to Aj for some i 

This implies that (4,2) may be solved for w2 = Vi to 
give 

I ~ (v,lp)lvi) I <l?.,,r.) == AQ.,,,,,. u + const v;), 
t i=1 Vi - VI 

1*1 

[We assume {I Vi)} to be an orthonormal system in 
:EfJ(N), ] Equation (4,1) now gives 

(4,4) 

f-Vi +W2 -A2Vi B !(VJIPlL.:.]Q.,,,,, =0. (4,5) L 1=1 vi(Vi - VI) ; 
itl 

(4.5) is clearly solved by Q.,,rVi = 0, If, by aCCident, the 
term in brackets in (4,5) vanishes for the considered 
i, then Q",,; may be not equal to 0, and hence the eigen
spaces H,,; C H for eigenvalues w == ± iii; have a degenera
cy in addition to the one present in Ai' 

(B) I p) is orthogonal to a proper subset of Ai 

Now ± rz;; appears as an eigenvalue of A as well, but 
necessarily Q"""j = P"""i == 0, This can be described by 
saying that the modes of the free field do not couple to 
the oscillator, They will, however, not occur at all in 
the coupled system in the general case where 

(e) Ip) is not orthogonal to any \ Vi,) 

Now we have to take w2 *" Vi' In this case (4,2) has the 
unique solution 

(4,6) 

which, inserted into (4,1), gives 

[- w2 + (;)2 _ A2W2(p I (L -w2rlp)]Qw = - D(w)Q", = O. 

(4.7) 

Hence the eigenvalues w with w2 *" Vi are given by the 
solutions to the equation 

D(w) = w2 - w2 + A2W 2(p I (L - w2)-lp) = O. (4.8) 

D(w) is real analytic in the open intervals (± rz;;, ± ~) 
and has poles at w2 = V I' Furthermore one notes that 

(4.9) 

Hence simple graphical argument shows that there is 
exactly one zero ± WI of D(w) in each of the intervals 
(- rz;;, - ~), respectively (~, I!i;), with i 
= 1,2,' ,. and Vo == O. All of these are simple zeros. 

This result is important because it says that pertur-
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bations of the given metric in N such as distortion of 
symmetry or increase of the volume of N which will in
crease the density of eigenvalues of the operator L, will 
do the same to the coupled system. These perturbations 
will thus, roughly speaking, tend to increase the re
currence time of the systemo This is expected on intui
tive grounds, since the almost periodic behavior of, 
say, the oscillator is due to the fact that waves, after 
emission, agitate the oscillator again after having 
"travelled round the universe. " Perturbations will, of 
course, in general decrease the efficiency of this 
process of "self- interaction via topology" and make it 
negligible for the actual universe (if it turned out to be 
closed), From the point of view of physical effects the 
situation is less ridiculous in the case of, for example, 
a radiating body enclosed between ideal reflecting 
walls, a problem which may easily be modeled by 
making minor changes in the present work. 

Despite the fact that some more progress in the 
study of our system might perhaps be attainable on 
grounds of general theorems, we now prefer to make 
life much easier by specifying the manifold N to be S3. 

V. THE EINSTEIN UNIVERSE 

Now the Lorentz metric is given by 

ds 2 = dt2 - A 2[da2 + sin2a dS1 2], (5. 1) 

Here 0 '" a '" rr, dS12 = d[J2 + sin2[J d «J2 is the line element 
on the 2- sphere. There are coordinate singularities at 
0',,9=0,rr. 

For p we take for simplicity a point distribution at 
0'=0, 

1 5'(0') 
p(x)=p(a)=- 2rrA3 sinO' ' (5.2) 

According to (2.4), the singular nature of p demands a 
"renormalization" W6 - 00 0 Therefore, to be completely 
rigorous, one would have to take an extended p = p, 
with, 

. 1 5' (a) 
hmp, = - -3 ---
,-0 2rr A sma 

and take the limit E - 0 in the final results. Such a 
procedure has been described in detail in ReL 1 for 
Minkowski space and will be Simply omitted here since 
it does not add insight to the problem. 

For S3 the eigenfunctions of L are the well-known 
hyperspherical harmonics!! which we denote by Inlm) 
with n = 1,2, ' , . ; 0'" l '" n - 1; -l '" m '" l, One has 

n2 

Llnlm)= A2Inlm), 

In X space we have 

1 sinna 
I nOO) = (27T2 A 3) 1/2 sinO' 

(5.3) 

(5.4) 

which is all of Inlm) which will be needed, p may be ex
panded in the distributional sense as 

Ip)= ~ (2rr2~3)372 InOO), (5.5) 

so one is in case (B) of Sec. N, By eigenfunction sum-

1107 J. Math. Phys., Vol. 19, No.5, May 1978 

mation we obtain 

A sinwA (rr - a) 
4rrA sinO' sinwA rr 

(5.6) 

Since attention will be restricted to the motion of the 
oscillator, we only have to consider the eigenvalues of 
A which are not equal to ± nlA, These are the solutions 
wi(W_i ) to the equation 

_ 2r 
D(w) = w2 

- w2 - 2rw cotw,~rr + Arr =0 

The associated normalized eigenvectors are 

Ilw;)=ci1 11,iw l ,<P wp iWi¢wj)' 

where 

c1= ---D(w) [
w d ] 
2 dw W'Wi 

Using (5,7) this gives 

(5.7) 

(5.8) 

c? = ~(".!~ + (;)2) +.£.. + rOrrw~ [1 +(wr - w
2 
+ 2rIArr) 2J ' "' A 7T 1\ I 2rwj 

and (5,6) may be written 
(5,10) 

A [ wI - (;)2 + 2r I A rr 
<p w,(o)=-4 (J .- coswiAa- ---2r --

, 1T \ sma Wi 

xsinwiA a l (5,11) 

Spectrally decomposing i l(t» = exp(iAt) I f(O» yields 
~ 

I let»~ =.6 exp(iwjl)(fwi /.t(0» Ifw/>. 
$=_00 

(5,12) 

This means for Q(t), 

Q(/)= t exp~[W~q-iWi(J 
1._00 2c j 

+ wi(<pw.1 <p) - iw/(<pw.I,I,) I, 
I , 

where Q, Q, <P, and <i> are the Cauchy data, 

Next we ask what happens to our solution in the limit 
A - 00, To clarify what we mean by this limit we note 
that the manifold (:1I/i ,KR) which we take to be the 
Einstein manifold with the line 0'= 7T removed can be 
regarded as limiting to Minkowski spacetime with 
A - ce, To this end apply the coordinate transformation 
r = alA before taking the limit in the metric (5,1). 
[A more precise formulation of such a limIting process 
is afforded by viewing the collection (JIR,K!,) as a five
manifold to which Minkowski spacetime can be attached 
as a boundary given by A = 00 (see Ref, 12), 1 In the 
application of A - 00 to the initial value solution 
(Q(t),<p(t») it is to be understood that Q(O), Q(O) is kept 
fixed, while <p(0), 4>(0) are supported in 0", Q '" llA <rr. 
We take <p(0), <i?(0) to be functions solely of a, for sim
plicity, Define oi>(Aa,O)=¥(r,O)=<p(a,O) and ~ 
analogously and regard them as functions on R~ with 
support in 0"" r "" 1, fixed during A - oc. 
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Lemma: With the limit understood in this sense, 
(Q(t), <I> (x, I» tends to the Minkowski space solution with 
A -C/), 

Proof: Consider for the moment only the Q, Q terms 
in Eq. (5.13), From the general discussion of the zeros 
of D(w) and (5,10) one observes that the sums get re
placed by integrals. The surviving terms are 

Q(/) = C(t)Q + G(t)Q, (5. 14) 

(5.15) 

The integrand in (5.15) has a typical Lorentzian shape 
which is characteristic for resonance scattering of light 
in the presence of damping (see Refs, 13 and 14), 

Performing the integration by contour closing gives 

, sin(w2 - r 2)1/2t 
G(t)=exp(- r!t!)(w2_ r2)172 , (5,16) 

Therefore, if <I> (x, t) =.j, (x, t) = 0 at t = 0, the oscillator 
suffers exponential damping in both time directions. 
Defining, as in Ref. 1, 

- fdrt -<p(r)=r -<I>(x 0) 
41T " (5,17) 

fdrl .. 
'X-(r) =r -<I>(x 0) 

41T " 

one gets for the remaining terms 

A J~ t dr[ G (t - 1')J;(1') + G (t - r)X (1') 1. (5,18) 

The Eqs. (5.14), (5,15), and (5,18) are in full ac
cordance with Ref. L An analogous statement may be 
shown to be true for <I> (x, t) in the limit A - 00, which 
proves the lemma. 

The result just obtained is, however, just a special 
case of the next one, (We treat them separately, be
cause the methods of proof are different and interest
ing in themselves, ) 

For reasons described in the Introduction, there is 
to be expected a close Similarity of the motion of the 
oscillator for t <A 1T with the one in flat space (A = 00). 
More specifically, this will-for causality reasons
hold for the Q, Q terms in (5.13) for t < 2p 7T and for 
the <I>,.r, terms only for I <A 1T. 

In order to check this, it is convenient to work in the 
representation. (3.6). Using (3,4), (3.6), and (5.7) we 
get for the Q, Q term 

1 f ,+/00 ex (s!) 
Q(t)=- ds----~~ 

27Ti . s2+2rscothA1Ts+w -2r/A7T 
c_lOO 

x[sQ+Ql (t>0). (5.19) 

Now the denominator in the integrand in (5,19) may be 
split up 

1 
S2 + 2rs cothA 1TS + w2 - 2 riA 7T 

_ 1 + t 
- S2 + 2rs + w2 _ 2r/A7T res, (5.20) 

where the rest consists of exp(- 2A7TS), exp(- 4P7TS) 
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multiplied by terms which are regular and vanish with 
I S I - 00 in the half plane Res;, O. Therefore, for 
0< t < 2P 1T we are left with 

1 f.'+IOO exp(st) . 
Q(t)=27Ti <_;00 dSs2+2rs~r/p;[sQ+Q]. 

(5. 21) 

Here 112 = w2 - 2r / A 1T plays the role of w2 in the flat 
case, We assume that 112"> O. Then (5,21) may be 
integrated to give 

Q(t) = H(t)Q + H(t)Q, 

where 

(5.23) 

Defining 

<p(a) = A sino: f~~ <I> (x), 

f drl • 
X(a) =A sina ~ <I> (x) 

(5.24) 

the <1>, <I> terms become for 0 < t <A 1T 
r t IA • 

AJo da [H(t-(\ a)<p(a) +H(t-A O')X(O')l. (5,25) 

It should be noted that the process just described may 
be used to calculate the explicit solution in every 
interval nA 7T < t < (n + l)A 7T. Essentially the expression 
corresponding to H(t) will pick up terms fk (I< nL 

From Eqs. (5,22), (5.23), and (5.25) the statement 
made at the end of Sec. III may easily be made precise 
in the following lemma, 

Lemma: Let l/(\ =O(E), 1/m =O(E), and l-t/A1T 
= 0(1). Then Q(t) = O(e-1!') with E - 0, 
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APPENDIX 

The formalism described in this work to deal with 
the Cauchy problem for a specific field-particle sys
tem relies heavily upon energy conservation and the 
related self-adjointness of the operator which generates 
the time evolution. This means, for example, that the 
presence of absorbing matter is discarded. This will 
not be very relevant for the asymptotic motion of the 
oscillator in the case of open space sections, but will 
be critical in the closed case, To see this we use the 
following heuristic argument. 

Consider, again, the wave equation 

( R) A o'(a) 
~+ 6" <I>(X,t)=- 21TA3 sinO' Q(l) (AI) 

in the Einstein universe, A "retarded" solution of (AI) 
is given by 
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A { ~ cp(x,t)=4 P,' Q(t-p'a}+ 6 [Q(f-p'a-2vp'7T) 
7T Sina ... =1 

- Q(t+p'a - 2VP,7T)]} (A2) 

It is retarded in the sense that cp (x, t) = 0 for t <p, a if 
Q = 0 for t < O. [The sum in (A2) will not in general con
verge. Hence our manipulations are to be regarded as 
purely formal and are justified only by the fact that the 
pairs (Q, cp) we end up with are actually solutions of 
(Al) together with (2. 2a). ] Inserting (A2) into (2.2a) 
leads, after renormalization, to 

Q(t) + 2rQ(t) + 4r is Q(t - 2vp' 7T) + (.L2Q(t) = 0 (A3) 
11=1 

which may be viewed as an analog to the Lorentz-Dirac 
equation of electrodynamics in the present circum
stances. It looks time asymmetric, but it is not. Using 
(A3) at time t - 47TP, and subtracting from (A3) yields an 
equation which is manifestly time symmetric with re
spect to t - 27TA. Hence, for any Q(t), which solves (A3) 
for all times, Q(- t) is also a solution. For this to be 
the case it is crucial that the factor in front of the in
finite sum in (A3) is twice the coefficient of Q(t). In
serting the ansatz Q(t) = exp(iwt) into (A3) and summing 
up the series formally, one arrives at the "characteris
tic equation" D(w) =0, which is familiar from Secs. 
ill and V. Its having only real solutions is, of course, 
guaranteed in the preceding treatment by self-adjoint
ness of the operator A. 

Imagine now an absorbing medium uniformly dis
tributed in the universe. We model the presence of 
absorption primitively by replacing (A3) by 

~ 

Q(t) + 2 rQ(t) + 4r 0 a-vQ(t - 2 vp' 7T) + (.L 2Q(t) = 0 (a' 1). 
vol 

(A4) 

It is not difficult to convince oneself that the zeros of 
the corresponding characteristic equation now move to 
the upper half of the complex w plane. 
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One should, of course, also try to incorporate the 
expansion of the universe p, =A (t) into the model. Then 
Eq. (A3) (absorption is discarded now) becomes 

~ 

Q(t) + 2rQ(t) +4r 6 Q{j-I(f(l) - 2V7T]} + (.L2Q(t)=0, (A5) 
"=1 

where 

f l dt' 
f(t) = A (I') . 

In view of the results obtained in Ref. 4 it seems likely 
that the cosmic expansion [J(t) < 0] also turns the 
periodic solutions of (A3) into damped ones, However, 
I have been unable to prove this, 
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Coherent states and stochastic formulation of quantum 
mechanics 
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For physical systems with Hamiltonians analytic in the position and momentum operators the diagonal 
matrix elements of the density operator in the coherent state representation may be considered as a phase
space probability measure in the stochastic formulation of quantum mechanics. The correspondence rule 
relating quantum-mechanical observables to ordinary functions in phase space is obtained. It is shown that 
the dynamics of the time-dependent phase-space probability densities is again representable in the form of 
a stochastic process. 

I. INTRODUCTION 

The physical meaning of a stochastic formulation of 
quantum mechanics may be concisely elucidated by the 
following problem, Given a quantum-mechanical system 
in the state described by the density operator p and 
given an observable A, find a phase-space probability 
measure p(q,P) and a corresponding function A(q,P) 
such thatl 

TrpA = J dqdpp(q,P)A(q,P), (1, 1) 

From the pure operational point of view the two ap
proaches are equivalent, Both furnish the same one-to
one correspondence between well-defined mathematical 
objects and the outcomes of physical measurements. 
Both lead to the same results once this correspondence 
is established, Nevertheless, the stochastic formulation 
of quantum mechanics has several attractive features, 
The first is a conceptual one, It is the fact that the quan
tum behavior of a system (like uncertainty relations, 
etc, ) can be explained by the probabilistic nature of the 
process of measurement in the phase space, More pro
saic, but not less important, are the practical implica
tions of putting quantum and classical statistical mech
anics upon the same formal basis, 

A stochastic formulation of quantum mechanics in
volves, baSically, two interrelated problems, These 
are the determination of the probability measure p(q,P) 
and the establishment of the proper correspondence 
between quantum-mechanical observables A and ordi
nary functions in phase-space, A(q,p), The first at
tempts in this direction ran into the difficulty of dealing 
with quasidistributions, Complex distributions had been 
introduced by Dirac2 and investigated by Prugovecki3, 4 

in the framework of complex probability measures, The 
Wigner distributions5 which are not positive definite 
were exploited by MoyaL 6 It was shown later by Cohen7,8 

that these probability measures are not unique and there 
exists, in principle, a whole set of distributions satisfy
ing the same conditions, Consequently, no unique cor
respondence rule can be forced, 

A positive definite probability measure in phase
space was recently introduced by Prugovecki, 9 Analyz
ing the process of measurement10,l1 which in reality is 
not arbitrarily controllable he introduces the concept 
of a fuzzy phase space. A point in the ordinary phase 

space, (q, P) E: r, represents the outcome of two simul
taneous infinitely sharp measurements of position and 
momentum, However, every conceivable act of mea
surement is accompanied by unavoidable imprecisions. 
Incorporating them as a part of the observed phySical 
reality, Prugovecki attaches to the outcome of each 
position and momentum measurement, q and P, the 
corresponding normalized confidence measures Vq and 
v;, which describe the accuracy calibration of the mea
suring instrument. Thus, a point in the fuzzy phase 
space is defined as the fourtuple ((q, vq ), (p, v;)) E: (r, v). 
The equivalence of non relativistic quantum mechanics 
based upon sharp and fuzzy measurements was proved 
by Ali and Doebner, 12 

One encounters here a completely new approach which 
ascribes to every measuring !nstrument I(X q , )(p) the 
confidence measures 9 Xq and XI>' depending on the accu
racy calibration at q and P. It can be shown13 that the 
existence of a fuzzy phase-space representation depends 
on the precision of the measuring instrument, In fact, 
such representations do not exist unless the standard 
deviations of Xq and XI> (multiplied by 12) satisfy the in
equality 

(L 2) 

for all degrees of freedom Ii'. 

Thus, in this formalism the uncertainty relations 
stem from a postulated quality of the measuring pro
cess itself and not from the commutation relations of 
quantum-mechanical operators, There is a limit, there
fore, in the accuracy calibrations of physical instru
ments. In the optimal case when nature is observed by 
optimally accurate instruments 1., the probability den
sity p(q,P) turns out to be a diagonal matrix element of 
the density operator p in the coherent state representa
tion,14 These representations are specified by a positive 
parameter s, referred to as the instrument 
c harac teristic. 

In the present note we shall follow a somewhat more 
conservative path. Our intent is to show that exactly 
the same family of optimal probability measures may 
be derived without reference to the limitations of the 
process of measurement. They follow straightforwardly 
from the properties of the coherent states, Every co
herent state representation depends on the physical 

1110 J. Math. Phys. 19(5), May 1978 0022-2488/78/1905-1110$1.00 © 1978 American Institute of Physics 1110 



                                                                                                                                    

specifications of the harmonic oscillator which gener
ates it. The later can be described by a single positive 
parameter equivalent to the mentioned instrument cha
racteristic, s. For every s and for every given opera
tor A, we derive a correspondence rule establishing 
the explicit form of an ordinary function A (q, p) satisfy
ing (1.1). The rest is a matter of interpretation. 

The coherent states of a harmonic oscillator have, 
in modern terms, a considerably long history. First 
introduced by Schrodinger15 for the description of non
spreading wavepackets having oscillatory properties, 
they reappear in the works of Glauber16 and Sudarshan 
and Mehta17, 18 in their investigations of coherent light 
sources. From this time they are known as the "co
herent states," though the importance of these repre
sentation spaces, as it was quickly recognized, reaches 
beyond the quantum- mechanical treatment of radiation 
fields. One finds them being used, for instance, in the 
stUdies of phonons in crystals, 19 superconductivity, and 
superfluidity20 and in the quantum-mechanical descrip
tion of phase and angle variables. 21 The concept of co
herent states was suggested as a convenient mathemati
cal tool for various statistical mechanical calculations. 22 

Let us briefly review the main properties of the co
herent states which will be used in the subsequent dis
cussion. We start with a single-mode harmonic oscil
lator with the Hamiltonian 

(1.3) 

Where, in terms of position and momentum operators, 

a = [i/(2nl71w)!/2](p - imwq), [a, at] = 1 (1. 4) 
at = [_ i/ (2Iimw)1 /2] (p + imwq). 

The stationary eigenstates of the oscillator are the 
number states 

corresponding to the energies 

En=nw(n+~). (1.6) 

The normalized vacuum state is 

10) = (171 w/rrlt)! /1 exp(- II/wq2/21i)0 (1.7) 

In the physical Hilbert space spanned by the number 
states the ladder operators (104) are given by 

at In) = (n + 1)1/2 111 + I), a I n) =n1/2In - I). (1. 8) 

Obviously, a I 0) = O. The coherent states are defined as 
the eigenstates of the annihilation operator, 

(1. 9) 

where 0, the eigenvalue of a non-Hermitian operator, 
is a complex number. These states can be derived USing 
the Weyl operator 

D(a) = exp(aat - o*a), 

which has the following properties, 

Dt (a) = D-!(o) (unitary), 

Dt(o) =D(- 0), 

[a, D(a)] = O!D(O!). 
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(1. 10) 

(l.lta) 

(1. ltb) 

(1. Hc) 

Applying the last equation to the vacuum state, we 
derive, for the functions obeying (1.9), 

la) ==D(O!) 10). (1.12) 

Since (1.10) can be rewritten as 

D(a) = exp(- t I O! 12) exp(O!at ) exp(- a *a), (1. 13) 

Eq. (1.12) furnishes the expansion of an arbitrary co
herent state in terms of the number states, 

(1. 14) 

The coherent states span a Hilbert space of entire an
alytic functions. The mathematical properties of these 
spaces had been studied by Bargmann. 23,24 In general, 
they arise when one is looking for a natural represen
tation space for complex linear transforms of the posi
tion and momentum variables preserving the canonical 
commutation relations. 25,26 The states (1. 14) are not 
orthogonal for O! "* f3. This is the consequence of dealing 
with an uncountable overcomplete set of functions. The 
inner product of two coherent states, as it follows from 
(1.14), is given by 

(aim = exp(a*i3 - tlal 2 - HSI). (1.15) 

The completeness of this set of states is manifested by 
the relation 

rr-lj d2a la)(01="6ln)(nl=1, (1. 16) 
n::O 

where the integration is carried out over the entire 
complex plane, d2a =dRead ImO'. This equation is an 
immediate result following from (1. 14) and the formula 

(1,17) 

The coherent state representation has an attractive 
feature pointed out by Carruthers and Nieto, 21 It con
sists of the possibility of confining the calculation of 
measurable physical quantities to operations on diagonal 
matrix elements exclusively. In order to elucidate this 
important fact we note, first, that for every function 
having a Taylor expansion equation (1. 17) leads to the 
following identities: 

(1. 18a) 

(10 18b) 

Consider, now, two operators, say p(at , a) and 
A(at, aJ, which by assumption are analytic in at and a. 
This means that they are expandable in terms of these 
operators and can be represented in the form of a con
vergent ordered double series (finite or infinite), 

A(at a) =;; A (at)ma n 
, ~I m,n . (1.19) 

m,n 

Calculating the diagonal matrix element of the product 
Ap in the coherent state representation, we derive 

(olAp I a) =rr-1 I d2(3(a IA I (3)«(3lp I 0) 

=rr-1j d2!31(0Im 1
2A(o*,(3)p((3*, a) 
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=7T-1 exp(- 1 0'12)0 Am,n(a*)m f d2{3 
m,n 

x exp(a*{3- 1!51 2W[exp({3*a)p({3*, a)J 

= exp(- 1 a 12)A(a*, oloa*) exp( 1 a 12)p(u*, a), 

(10 20) 

the last equality following from (1, 18a), Thus, the 
mean value of an arbitrary observable A will be given 
by 

(1. 21) 

provided, of course, that the analyticity assumption 
(1,19) holds, 

This result of Carruthers and Nieto provides, sur
prisingly enough, a solution of the original problem. One 
has the positive definite function (a 1 pia) which may be 
viewed upon as a phase-space probability density. 21 The 
fact that it is subjected here to certain differential op
erations prescribed by A(o*, 0100*) is hardly an ob
stacle, One can easily reformulate (1.21) integrating 
by parts and, thus, establish a proper correspondence 
between the observable A and an ordinary function 
A(o*,o) in the stochastic formulation. Finally, ~me 
might prefer to complete the task by the unsignificant 
change of notation: Rea -q, Ima -p, d2a -dqdp, 

Equation (1,21) implies that the whole information 
about the quantum-mechanical system carried by the 
density operator p is conveyed by its diagonal matrix 
elements in the coherent state representation. There
fore, the off-diagonal matrix elements of p in this rep
resentation have to be related somehow to the diagonal 
ones, This connection is found in Sec, II, where we 
show that the former are integral transforms of the 
later, In Sec, ill this relationship is exploited in order 
to establish the mentioned correspondence rule between 
observables and ordinary phase-space functions. As 
expected, we obtain a result which could be deduced 
straightforwardly from (1,21). However, having such 
a "diagonal" representation we are in a position to do 
more than a mere confirmation of known results. In 
Sec, IV we investigate the dynamics of the phase-space 
probability densities. We show that the time propaga
tion of these distributions can also be given a stochastic 
interpretation, 

II. INFORMATIONAL COMPLETENESS OF THE 
DIAGONAL MATRIX ELEMENTS 

An arbitrary coherent state, (L 12), depends, in 
general, on the complex number 0 and the physical 
parameters of the oscillator such as mass and fre
quency, However, the explicit structure of the creation 
and annihilation operators (1. 4), as well as of the vacU
um state (1,7), indicates that every value of mass and 
frequency of the representative oscillator can be re
normalized by a proper choice of the length scale. 
Therefore, the physical specifications of the harmonic 
oscillator chosen to generate the coherent state repre
sentation can be described by a single parameter. 
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Let us introduce the dimensionless operator, 

,!=qIA, (2. 1) 

where A is the unit of the length scale. Respectively, 

(2,2) 

defines a dimensionless momentum operator. With these 
definitions the creation and annihilation operators (1,4) 
become 

at (s) = (2)"1/ 2(s-1/,_ is'!), 

a(s) = (2)-11 2 (s-1/, + is'!), 

where 

(2.3) 

(2.4) 

is a dimensionless parameter, The properly normalized 
vacuum state can be written, similarly, as 

(2.5) 

Thus, the dimensionless parameter s solely de
scribes the dependence of the whole representation 
space on the physical properties of the generating oscil
lator. This dependence will be inherited, certainly, by 
the matrix elements of an operator in the coherent state 
representation, It has nothing in common with the dy
namical variable under consideration and reflects ex
clusively the choice of the representation space, In 
essence, a matrix element depends on s in the same 
manner as, for instance, the distance traveled by a 
particle depends on A in (2.1), This is the dependence 
of a quantity representing a physical reality on the adopt
ed scale of measure. In the fuzzy phase-space formula
tion this parameter s is referred to as the instrument 
characteristic. Here, however, where the measuring 
process is not apparent in the formalism the adoption 
of this terminology would be not appropriate, Bearing 
in mind that we are dealing with the same parameter, 
we shall refer here to s as the scaling parameter of the 
coherent state representation space, 

Our intent is to use this s dependence of the matrix 
elements. To this end we calculate, first, the s deri
vative of an arbitrary coherent state, It is continuous in 
s and from (1, 12) it follows that 

(a/2s) 1 a, s) = [(alos)D(a, s)]1 0, s) 

+ D(a, s)(olas) 10, S), (2.6) 

This procedure is well defined since the variation of s 
does not affect the domain of definition of the operators, 
In fact, the operator a(s ') can be written as a linear 
combination of a(s) and at(s) taken with coefficients de
pending on sand s,'. The operator a(s), therefore, is 
differentiable with respect to s. And so is every func
tion of these operators. The index s in the notation of 
operators and states will be neglected below for eco
nomy of script. 

The differentiation of the Weyl operator, (1, 10), 
term by term yields 

~ 1 n 
~ D(a) = 0 - '0 (Clar - o*a)n-m 
as n,1 n! m.1 

A. Lanke 1112 



                                                                                                                                    

Now, from the explicit expressions for the operators 
at and a, (2.3), we have 

(2.8) 

whence 

Every density operator has to satisfy these 
requirements. 

The solution of the partial differential equation (2.18) 
is 

00 

x 0 sn-mWm,n Wm(a* + !3)\{In[i(a* - /3)], 
m,n.O 

(2. 19) 

(2.9) where Wm,n are constant independent of a* and (3 as 
well as of sand 

Taking into account the commutation relation 

[aa-a*at, aat - a*a]= a 2 _ (a*)2, (2.10) 

Eq. (2. 9) can be rewritten as 

1 00 1 n 
(a/as)D(a) = - - 6 1 6 {(n - m)[a2 - (a*)2](aat _ a*a)n-2 

s ",,1 n m=l 

+ (aat - a*a)""l(aa- a*at )}, 

which after simple algebra becomes 

"a D(a) = _ 1: D(a)[ aa - a*at + t a 2 _ t(a*)2]. 
uS s 

(2.11) 

(2.12) 

The second term in (2. 6) follows straightforwardly, 

a~ 10)==~[(~r-~JIO). 
Thus, substituting 

'1= (s/12) (a +at ), 

we have 

(2.13) 

(2.14) 

(a/aS) I 0) = (1/2s)(at )21 0). (2.15) 

Together with (2. 12) and (2. 15) Eq. (2. 6) yields 

(a/as) I a) = 2~ D(a)[2(a*at - aa) - a 2 + (a*)2 

+ (a t )2110). (2.16) 

Finally, making use of (l.llc) and (1.4), we derive 

a 1 
as I a) == 2S[ (a t)2 - 0'2] I a) 

=.1. [(~ + l.a*) 2 _ a 2] I a) 2s aa 2 , 
(2. 17a) 

and similarly 

(2. 17b) 

In these calculations a and QI* have to be considered as 
independent variables. 

The coherent states form a complete space for every 
s. Considering it as a varying parameter, we have for 
an arbitrary matrix element of an operator p 

2s~s(alpJi3)= [(a~*+tar +U!3+ t (3*) 2 

- (a*)2 - (32J<a Ip I i3). (2.18) 

In the following we suppose that p is a self-adjoint 
Hilbert-Schmidt operator belonging to the trace class. 
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(2.20) 

stands for the analytic continuation of the parabolic 
cylinder functions28 satisfying the weighted orthogonality 
condition 

(2/7T)1/2 j d2y exp[ - I Y 12 + ti + t(y*)2] \{I m('y)\{In(Y) 

= lim, n' (2.21) 

These equations can be easily checked using (1.18) and 
the integral representation for the Hermite polynomials, 

Hn(y/f2) = (2n / 2/7T)j d2z(z*)n exp(-lzJ2- tz 2 +yz). 

(2.22) 

Taking the particular case a = (3 = an + iar, we derive 
for the diagonal matrix elements 

(alpla)=exp(-laI 2) 6 sn-mwm,n\{lm(2an)\{In(2ar). 
m~n=O 

(2.23) 

It follows, thus, that the constants Wm• n are real. In 
terms of the diagonal matrix elements they are given 
by 

W m, n = 4s m-n J d2 a exp ( I a 12) 

X(a Jp I a) \{1m (2a n)\{In(2 a r). (2.24) 

These quantities, in principle, are measurable. A 
straightforward calculation (see Appendix) shows that 

[m nl 
Wm,n=(2n+m-1mlnl7T)1/2 ~ (-i/2)J 

j:lO 

x [j I (m - j)! (n - j)! 1-1 /2 Tr {Pr m-J/, n-J}, (2.25) 

where [m,n] stands for the smaller of the two positive 
integers m and n. 

We encounter here a remarkable property of the co
herent state representation. Every off-diagonal matrix 
element of p can be expressed in terms of the diagonal 
ones. Substituting (2.24) into (2.19), we derive 

(a Ipl (3) =7T-1 J d2y(ylp I y)K(y, y* la*, (3) 

xexp[- t(la 12 + 181 2)], 

where 

(2.26) 

K(y, y* I Q*, (3) = 47T exp( I y 12)(5 \{I m(2YR)\{Im(a* + 8») 

x (i \{In(2Yr) \{In[i(Q* - (3)]). (2.27) 
n.O 
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The sums in this expression can be evaluated. For 
a real x and complex 1/ we have 

ro 

E >¥m(X) \j'!m(rl) 
moO 

= (27Trl12 exp[ - Hx2 + 1h 1 6 (2-m
/ m!) H ",(x/J2) 

Hm(TJ/m 
moO 

Xexp(-I zI2-h2-tZ*2+xZ+1JZ*) 

= (27T)-1 exp[ - (X - 1/)2/8] J dy exp[iy (X -1])], (2.28) 

after the integration over Rez has been carried out. 
Making use of this expression, we write, finally, 

K(y,y* I a*, 13) = 7T-1 exp[t( I y 12 + a*y + y*{3 - a*(3)] 

x J d2z exp[ (0'* - y*)z* - (B - y)z 1. 
(2.29) 

Thus, it has been shown that every off-diagonal ma
trix element of the operator p in the coherent state 
representation (2.26) is nothing but an integral trans
form of the diagonal ones. The kernel of this transform
ation given by (2.29) is hOlomorphic with respect to the 
complex variables 0* and 13 defining the representative 
states, The whole information about the quantum-mech
anical state of the physical system as well as the chosen 
representation is conveyed by the real and positive de
finite diagonal matrix elements, (y I ply). Neither the 
kernel nor the exponential factor in (2.26) depend on 
the scaling parameter of the representation space, S. 

They are, in this sense, universal, and the matrix 
diagonal of the density operator in this representation 
is informationally complete. These facts prove to be 
very instrumental in the stochastic formulation of quan
tum mechanics. 

We would like to note at the end that, for a = (3, the 
kernel, as might have been expected, furnishes an iden
tity transformation: 

K(y, y* 1 a*, a) = 7T exp( 1 a 12)O(YR - aR)5(Yr- ar) 

=7T exp(1 a 12)o(2l(y_ aL (2.30) 

III. THE CORRESPONDENCE RULE 

Consider a quantum-mechanical observable, A (1' t), 
which, by assumption, is an analytic function of the 
operators'/, and/,o By this we mean that in terms of 
the operators a and at, (2,3), the operator A may be 
represented as given by (1.19). Our aim is to express 
the expectation value of this observable in the quantum
mechanical state p, 

(3.1) 

in the form of a stochastic average, (1.1). 

To this end let us substitute into (3.1) the integral 
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transform (2,26) and 

(3.2) 

following from (1.19) and (L 9). With these substitu
tions (3.1) yields 

where 

xexp{i3*Q_10'\2_1!3\2} o A m•n(;3*)m Cl ". 
m.n 

(3.4) 

The integral in (3,3) has acquired already the de
sired form. In order to complete the task one has to 
evaluate explicitly the integral (3,4) which does not 
depend on the particular quantum-mechanical state of 
the system, Substituting (2.29), we observe that the 
(3 integration can be carried out immediately using 
(1. 18a). The result is 

A (y*, y) = exp(~ h 12) '0 Am,n1T-2 J (PZd2
(j (h * - ~{}'* - z)mO' n 

m," 

xexp[- 3\ a \2/2 + ~(O'y* + O'*y) 

+ (0'* - r*)Z* - (CY - y)z 1. 

Now, introducing the change of variables, a 
- Cl' - 2z*, the integration over z becomes feasible, 
We have 

m," 

xexp[ - (101 2 + Q{'* - 3a*y)/6j. 

In order to calculate the remaining integral, 

- 3a*y)/61, 

(3,5) 

(3.7) 

it is convenient to introduce the generating function, 

Ym(i:)=0 1m.n(?;n/nl) 
n;O 

X e xp[-<I O' I2 +Cl'}*-3O'*y)/6+?'n:'1 

whence 

(m,n} 

= 2m+13,,+1 exp(- ~ It I z) '0 (- 1)1< 
k.O 

x c;) (~) f?! (y*)moo) n-k. 

Substituting this expression into (3.6) we derive, 
finally, 
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[m.n] 

A() *, y) =:0 Am, n(y*)myn '0 (- l)k 
m, n k=O 

(3,10) 

This is the "classical" function corresponding in the 
stochastic formulation to the quantum-mechanical 
operator, 

A (at ,a) = 0 Am, n(at)ma n• (3.11) 
m, n 

It might be convenient at this stage to recover the 
usual phase- space notations, The complex number y is 
the eigenvalue of the annihilation operator a, (2,3), For 
this reason let us write 

(3, 12) 

where q = s i2Re} and p = S-1 12lmy are c-number, In 
this notation 

(3,13) 

and the integral (3,3) attains the form of (1,1) with 

(3,14) 

and A(q,P) following from (3,10) after the substitution 
of (3, 12L 

It can be easily seen that when the quantum-mechani
cal observable is a function of the operator S-I,+ is; 
(or of its Hermitian conjugate, S-I,_ is/,) exclusively 
then the corresponding ordinary function in the stocha
stic formulation preserves the same functional form, 
The correspondence rule in this case (and in this case 
only) turns out to be merely a replacement of the oper
ators by c-numbers, 

(3, 15) 

However, an operator which depends on l' and/, in a 
different manner will alter its functional form as pre
scribed by (3.10L 

Let us rewrite this expression in terms of q and p, 
Suppose that we are looking for the correspondence rule 
for an observable 

(3,16) 

Then, taking into account (2,24) and the relation be
tween Tr{pt m t n} and the coeffic ients W m, n [see Appen
dix Eq, (A3) ] it follows that 

where the superscript s indicates that the average has 
to be taken with the probability distribution p(q,P;s), 
Consequently, functions of the position or momentum 
operators exclusively (m = 0 or n = 0) are subj ect to the 
following correspondence rules; 

A(f) ~ A (s)(q) =:0An,o(s/2)nHn(q/s), 
n 

A(f) ~ A (s)(p) =:0Ao,n(2srnHn(sp), 
n 
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(3,18) 

(3,19) 

IV. TIME-DEPENDENT PHASE-SPACE DISTRIBUTIONS 

In the preceding sections P was considered to be an 
arbitrary density operator, In general, for a physical 
system not necessarily in the state of thermal equili
brium it is time dependent, The dynamics of this op
erator is governed by the well-known von Neumann 
equation, 

(4,1) 

This equation determines, in principle, the state of 
the system at an arbitrary time t provided the initial 
state (say, at t = 0) Po is known, Speaking in operational 
terms, it predicts the outcome of a determinative mea
surement performed on a quantum-mechanical system 
after a preparatory measurement l1 had established the 
state Po, 

The same, obviously, applies to the probability den
sities in the stochastic formulation of quantum mecha
nics which are nothing but the diagonal elements of this 
operator in the coherent state representation, Here, 
however, due to the existence of the integral transform, 
(2,26), the variation in time of the phase space proba
bility density, (ylptly), attains the form of a stochastic 
process again, The time-dependent probability density 
becomes an average of a certain time- and system
dependent function taken over the whole phase space 
with the initial distribution (y I Po I y), 

In fact, the formal solution of von Neumann's equa
tion is 

Pt=UtpoVi, 

where 

Ut = exp(- iHt/1l) = u:.t 

(4,2) 

(4,3) 

is the unitary time evolution operator, It follOWS, thus, 

(ylpt Iy) =7T-
2 f d2ad2{3(yl Ut I a)(alpo I (3)(i3 I Vi) I y) 

= 7T-
1 f d21)( 1) I Po 11) 7T-2 f d2ad2 i3 

xexp(-~I al 2 
_ ~1(312) 

x(y I Ut I a)K(1), 1)* I a*, t3)(i31 Vii y), (4.4) 

where the second equality results from the substitution 
of (2,26). 

In the subsequent we shall confine the discussion to 
the case of system Hamiltonians, H(r'f)' which are 
analytic in, andt ' The time evolution operators of 
such systems undergo the expansion (1,19) and 

(4,5) 

where Ut(a*, (3) is a holomorphic function, 

Let us investigate in some more detail the integrand 
of (4,4), To this end we observe, first, that the func
tion K, (2,29), can be written formally as a matrix ele
ment of a certain operator in the coherent state repre
sentation. It is easy to check that 
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exp{- ± I a 12 - ± I !312)K{7], 7]* I O!*, m 
= exp{~ 17] 12)1T-1 J d2z £ [(- t)"/n!] exp{7]Z - 7]*Z*) 

,.,0 

This expression can be simplified. We have 

(O! I exp{ {h + z *)at } {atra" exp{ {h* - z)a} 113) 

= (a/az*)"(- %z)"(o lexp[(~7]+z*)at] 

x exp[ (~7]* -z)a] 113). (4.7) 

Now, substituting (4. 7) into (4. 6) and integrating by 
parts, we derive 

exp[- ±la\2_ ±\!3\2lK(1),1)*ICI*,13) 

= exp{- 11) 12)(0' 111(1), 1)*) I 13), (4.8) 

where the operator 

depends on the complex parameter 1] and is self-adjoint. 
This becomes clear after changing the sign of the inte
gration variable, Z - - z, in the expression for the 
Hermitian conjugate, 

(4.10) 

Furthermore, from (4.8) and (2.30) it follows that 

Trl1(1], 1]*) = 1 " 1]. (4,11) 

Thus, substituting (4.8) into (4.4), we derive 

In this equation the variation in time of the phase
space distribution function itself may be given a sto
chastic interpretation. The probability measure is de
fined by the initial distribution and is independent of 
time. The sample space consists of the elementary 
events which are the diagonal matrix elements of the 
self-adjoint operator 11(1].1]*) brought into the right 
time by the unitary transformation: Ut reflecting the 
properties of the physical system under consideration. 
At t = 0 this function is concentrated infinitely sharp 
around the point y. With time, however, it propagates 
over the whole 1]-space. The phase-space probability 
density at y and l> 0 becomes a stochastic average of 
this function taken with the initial probability measure. 

APPENDIX: THE DERIVATION OF EQ. (2.25) 

Let us start with the calculation of the trace of P. 
From (2.23) and noting that 

exp(-laI 2)=(21T)1/2lj!0(2aR)lj!0(2a r ) (Al) 

[see (2.20) j, it follows immediately 

Trp=1T-1 J d2(\' (0: Ipl 0:) 

= (2/1T)1/2 'B Wm,"s"-m J d20!\lJo(2a R )'l'0(2(\'r) 
m," 
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x 'l'm (20! R)'l' "(20! r) 

- {81T)-1/2 w: - 0,0' (A2) 

ThUS, the first element of the double series W m," 
represents the trace of p. We turn, now, to the proof 
of a more general statement, namely, 

(M NJ 
Tr{ptMt1=(2M+N81Trl/2 Ij iiM!N!(j!t1 

i=O 

x[{M - j)! (N - j)! ]-1/2WM_i ,N_j, 

where [M,N]=min(M,N). 

(A3) 

In order to prove this relation, consider the matrix 
element (a It M t Np I O!). From (1.14) and (2.3) itfollows 
that 

= i N2-(M+N) /2SM-N exp(- IO! 12)(0!* + o/aa *)M 

x (Cl'* - a/aa*)N exp{1 O! 12)(0! Ip IO!), 

and, therefore, 

x J d2
(\' exp{- 1Cl' 12)(Cl' * + o/aa*)M{O!* - a/aO!*)N 

(A4) 

Xexp{iaI 2)(0!\p\Cl'). (A5) 

At this stage it might be convenient to introduce the 
ladder operators 

a k = O!k + ~(O/aO!k)' 
(k =R, 1) (A6) 

a~= O!k- ~(a/OO!k)' 

satisfying the usual commutation relations, 

(A7) 

and such that 

a k'l' m(2 Cl'k) == m l /2'l' m-l (2 O!k), (A8a) 

(A8b) 

Now, substituting 

a/aO!* =~(a/aCl'R) + h(%O!J) 

and (2.23) into (A5), we derive, using the notation (A6), 

Tr{ptM tN) =iN2-l (M+N >/2SM-N 6 s"-mW m," 1T-l J d2Cl' 
m," 

Xexp(-\Cl'\2)(aR- ia I)M(a1-iaJ)N 

X\IJ" m(2 Cl'R)\IJ"n(2 Cl'I)' (A 9) 

Many terms in this sum vanish. Since the trace of an 
operator is an invariant, it is representation indepen
dent and, thus, the final result has to be independent of 
the scaling parameter s. It is clear, therefore, that in 
the double sum of (A9) survive only those terms for 
which 

m-n=M-N. (AlO) 
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Hence, the operators eo Rand .. J acting on different sub
spaces commute. Consequently, one may apply straight
forwardly the binomial theorem expanding (A9) into 

Tr(Prt N) 

=2- W+N)/2(2/1T)1/2 B Wm,ntt (_i)M-k_j(M)(~) 
m,n k=Oj=O k J 

(All) 

Consider the last integral. It vanishes in the follow
ing cases: 

(i) N - j > n: Because the successive application of 
"'I to \{In(20'1) will by (ASa) inevitably render the factor 
a 1 \{I 0(2 0'1) =0. 

(ii) n > N - j - M + k: Because the joint action of the 
ladder operators in the integrand transforms \{In(20'I) 

into \{In_N+J+M-k(20'I), which is orthogonal to the vacuum 
state for all n when this inequality is satisfied. 

Thus, the contribution of the last integral is zero 
unless 

N - j,;; n,;; (N - j) - (M - k). (A12) 

Since N - j and M - k are by definition nonnegative inte
gers, (A 12) is satisfied if and only if 

k=M, n=N -j, (A13) 

and, consequently, the integral is 

Furthermore, from (A 13) and (A 10) it follows that 

m =M -j?- 0, (A15) 

whence 

[M,N) 

= (2 M
+
N21T)"1/2 Po iJWM_J,N_J(f) [(N _j)! ]1/2 

(A16) 

The summation here is restricted by the smaller of 
the two positive integers M and N since, by (A15), j 
cannot exceed M. 

In order to complete the proof of (A3) we have to cal
culate in (A16) the remaining integral. This is simple 
enough. Using (AS), we have 
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=tMl /[(M _ j)! ]1/2. (A17) 

Substituting this value into (A 16) and simplifying the co
efficients, one readily obtains (A 3), 

As a corollary it follows that 

Tr(prM) = (Ml /2 MS1T)1/2WM,O, 
(A1S) 

Tr(PfN) = (Nl /2N S1T)l 12WO,N' 

Now, consider Eq. (A3) with M = m - k and N =n - k 
for all values of k such that 0,;; k,;; [m, n]. This leads 
to a system of [111, n] + 1 linear equations in W m ' . -J .n-J 
with a triangular matrix which can be easily inverted. 
The solution of this system yields Eq. (2.25). 

lFor brevity we shall consider one-dimensional systems. 
The generalization to higher dimensions is trivial. The limits 
of integration are (- 00 ,00). 
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The group structure of pseudo-Riemannian curvature spaces a) 

Hans Tilgner 

Mathematische Physik, Freie Universitiit Berlin, 1 Berlin 33, F. R. Germany 
(Received 5 August 1977) 

The linear conformal group G (pseudo-orthogonal automorphisms and dilatations) on a pseudo-orthogonal 
vector space induces an action in the space of pseudo-orthogonal curvature structures, which leaves Singer 
and Thorpe's direct decomposition in trivial, non-Einsteinian and Weyl curvature structures invariant. It is 
shown that the condition of a curvature to be homogeneous, reductive, or symmetric is G-invariant. A 
condition for a non-Weyl curvature to be symmetric is formulated explicitly. Nomizu's injection of the 
Jordan algebra of Lorentz-self-adjoint matrices is used to describe some G-orbits of non-Einsteinian 
curvatures. The Duffin-Kemmer-Petiau meson triple allows the construction of a cosmological model 
with trivial curvature. 

1. INTRODUCTION 

Given a pseudo-Riemannian manifold (IX, T), the 
unique torsion free Levi-Civita connection V' induces the 
pseudo-Riemannian curvature structure R by 

R (X, Y) = V' x V' y - V' y V' x - V' [X, YI 

for vector fields X, Y on 111. R is skew symmetric in X 
and Y, fulfills the first Bianchi identity> (C. 3) below, 
and defines a section R (X, Y) in the pseudo- orthogonal 
Lie algebra bundle over ;Y; 0 Singer and Thorpe! 
conversely defined a curvature structure on a pseudo
orthogonal vector space as a (1, 3) tensor with the three 
C axioms, The linear space spanned by these curvature 
structures can be taken as a typical fibre of a vector 
bundle over ;Y; in which the Levi-Civita curvature tensor 
field is a section, This C1Irvature bundle is the 
associated bundle of the principal fibre bundle of pseudo
orthogonal frames over ;Y; with respect to the action of 
the pseudo-orthogonal group on the (1, 3) tensors on 
a pseudo-orthogonal vector space. The special types of 
pseudo -Riemannian manifolds (of constant curvature, 
Einsteinian, etc.) usually are defined in terms of this 
Levi-Civita section. Petrov was the first to give a 
classification of curvature structures on four-dimen
sional Einstein spaces. 

In Sec. 2 we repeat the general theory of pseudo
orthogonal curvature structures in a formulation which 
was first given by Singer and Thorpe. Additional results 
can be found in Refs. 2-5 and in a little different 
notation in Refs. 6-9. We follow this latter notation 
and use especially Nomizus' construction of curvature 
structures by means of elements in the Jordan algebra 
[with respect to the anticommutator {A,B}=~(AB+BA)] 
JA(V, (,») of (, )-symmetric endomorphisms on the 
pseudo-orthogonal vector space (V, (, »). In Sec. 3 
Nomizus' injection of this Jordan algebra into the 
curvature space is used to decompose this space with 
the help of the Weyl and the Einstein projector. The 
linear conformal group G, i. e., the group of pseudo
orthogonal transformations O( V, ( , » = {G E Gl(V, R)/ 
( Gx, Gy > = ( x, y) for all x, Y E: V ~ and dilatations, operates 
on the curvature space with kernel Z2 in such a way 
that this decomposition is invariant. In Sec. 4 curvature 

a)Dedicated to Gunther Ludwig on the occasion of his 60th 
birthday. 

structures which are defined by decompositions of 
Lie algebras and a <G-invariant chain of specializations: 
homogeneous, reductive, Lie algebraic, symmetric, 
Lie algebra are discussed. It is shown that to be 
homogeneous, reductive, .. " is a common property 
of all structures in a <G-orbit. A necessary and 
sufficient condition for a curvature with vanishing 
Weyl component to be symmetric is derived. The 
action of O(V, ( , » on the Jordan algebra JA(V, ( , » by 
automorphisms is used to apply Helwig's results on 
idempotents in real simple Jordan algebras to the 
Lorentz case and to describe a class of orbits with 
vanishing Weyl component. The G-orbit classification is 
quite simple in the one-dimensional space of trivial 
curvature structures which decomposes into the point 
zero and two orbits of positive, resp., negative trivial 
curvature. In Sec. 5 we use the well-known matrix 
representation of the Duffin-Kemmer-Petiau triple 
over (V, ( ,» to construct two examples of 
pseudo-Riemannian symmetric manifold with canonical 
curvature structure in these two orbits. It was shown in 
Ref. 1 0 that these are covered by suitable hyperboloids, 
in the Lorentz case twice by the de Sitter resp. anti-de 
Sitter spaces. 

In the following (V, ( , » will be a real pseudo-ortho
gonal vector space of dimension t1 > 2. The Lie algebra 
of O(V, ( , » is so(V, ( , ». In the Lorentz case we 
write 0(1, 3;R) for the Lorentz group and SOo(1, 3;IR) 
for its connectivity component of the identity. The 
linear conformal group <G is the group of linear trans
formations in V subject to ( Gx, Gy> = A~ (x ,y >, 
0"* AC c R, its Lie algebra L<G is given by all Q subject 
to < Qx ,y > + (x, Qy > = 2/lo (x ,y >, /lo 0' R, for all x ,y 
in V. A Lie bracket will be denoted by [, J, the 
commutator in an associative algebra by [ , L. 

The whole discussion of curvature structures is local, 
i. e., describes tensors on a tangent Minkowski space. 
Since the linear conformal group <G acts on the space of 
curvature structures as a transformation group, the 
globalization is immediate: The principal G-bundle over 
a pseudo-Riemannian manifold 1M allows the construction 
tion of the associated curvature bundle with respect to 
this G action. 

It remains to study the relation of linear conformal 
transformations on curvature spaces to conformal 
transformations of the base manifolds. 
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2. CURVATURE SPACES 

A pseudo-orthogonal curvature structure on the 
pseudo-orthogonal vector space (V, < , » is a bilinear 
mapping R: VXV- end V, subject to 

(C. 1) R(y ,x) = - R(x ,y) (skew symmetry), 

(C.2) (R(x,y)z,w)+(z,R(x,y)w)=O, 

i. eo, R (x ,y ) E so (V ,( , ». 
(C. 3) R(x ,y)z + R(z,x)y + R(y, z)x = ° 

(first Bianchi identity) 

for x,y,z,w in V. From these axioms one has 

(C.4) (R(x,y)z,w)=(R(z,w)x,y)o 

The linear space of these curvature structures will 
be denoted by curv(V, (, ) L An example for a curvature 
structure can be constructed in terms of a semisimple 
Lie algebra structure [ , 1 on V: Taking for ( , ) the 
(invariant) Killing form, R(x ,y)z = ad([x ,y ])z = 
[[x ,y], zl defines an element R in curv(V, < , ». 

The curvature space curv(V, ( , » always contains the 
trivial curvature structure Ro given by 

Ro(x,y)z=(y,z)x -(x,z)y. 

More generally, given A, B in JA(V, ( , », 
R~,B(X,Y)=HRo(Ax, By) +Ro(Bx, Ay)}=R~,A(X,y) 

defines a new curvature structure R~,B. The Ricci form 
of R E curv(V, < , ) ) 

PR(X,y) = tr(z t- R(z ,x)y) 

is a symmetric bilinear form on V. The Ricci 
trans/ormation LR of R is defined by 

(LRx ,Y) =PR (x ,y). 

It is PR and (,) self-adjoint, Le., in JA(V, (, ». 
The curvature scalar Sc(R) of R is the trace of LR 0 

Since the trace of z t- (x, z)y is (x ,y) one has 

LRA,B=-i(AB+BA-AtrB-BtrA), LR =(n-l)idn> 
° 0 

Sc(R~'B) =trAB - trA trB, Sc(Ro) = n(n - 1), (1) 

and PR (x, y) = (n - 1)( x ,y ). The Ricci curvature 
o 

structure Ric of R E curv(V, ( , » is defined by 
~R,idn, Le., by 

Ric(X ,y)z = i{PR(Y' z}x - PR(X, z)y 

+(y, z )LRx -(x, z )LRy}. 

Writing L R~' B = C, one has 

(R~,B)ic=lt~'idn, R~c= (n -1)Ro, 

n - 2 Sc(R) 
PRicC¥'Y)=-2 - PR(x ,y) +-2- (x,y), 

n - 2L Sc(R}.d S (R·c) ( 1) ( ) LRiC=-2-R+-2-1n' c '=n- ScR. 

(2) 

(3) 

(4) 

The sectional curvature of R is defined by (R(x,y)y,x)/ 
(Ro(x,y)y,x). It is easy to see that Ricciform and 
Riccitransformation are linear in their indices, that 
the Ricci map Ri: R 1- Ric is an endomorphism and Sc 
is a linear form on the curvature space. In the following 
we use the linear map 
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n:A_R~'idn, n:JA(V,(,»-curv(V,(,». 

It is injective and for all R E curv(V, ( , » 

n(LR ) = Ri(R). (5) 

The linear conformal group <G, resp. its Lie algebra 
L<G, acts on curv(V, ( , » by 

(C ·It)(x,y) = CR(C-1x, C-1y)C-\ resp. 

(Q' R)(x,y) = [Q,R(x,y»). -R(Qx ,y) - R(x, Qy). 

These actions make the curvature space a <G-, resp., 
a L<G-module. The kernel of this curvature representa
tion of <G is Z2' L e. , the group acting on the curvature 
space actually is G/Z 2 ; the kernel of the Lie algebra 
representation is trivial. It is easy to verify that 

C·(Q·R)=(G·Q)·(C·Jt), (6) 

which shows that if Q annihilates R, then C . Q annihi-
1ates C ·R. Given A in JA(V, (, », then C 'A=CAC-r, 
resp., Q·A=[Q,A)., againareinJA(V,(,», and 

1 C. RA,B =_RcoA,coB 
o A~ 0 

1 
C· n(A)=2n(C ·A), 

AG 

resp. Q' neAl = n(Q . A - 2I1QA), 

1 
C 'Ro=~Ro, 

C 

resp. Q. Ro = - 211QRoo 

From PC.R(X,y)=PR(C-1X,C-1y), resp. PQoR(X,y) 
=-PR(QX,y)-PR(X,Qy), one shows 

(7) 

(8) 

(9) 

C'LR = A~Lc'R' resp. Q' LR=LQ oR + 2I1QLR' (10) 

Sc(C'LR)=A(/Sc(R), resp. Sc(Q·R)=-2I1QSc(R). 

(11) 

Hence Sc is a <G- resp. L<G-equivariant, linear form on 
the curvature space which is even invariant resp. 
annihilated, under the pseudo-orthogonal subgroup, 
resp. subalgebra. Using (5), (8), and (10) one shows 
that the Ricci map commutes with the multiplication, 
L e. , 

C . Ri(R) = Ri(C . R), resp., Q' Ri(Rl= Ri(Q . R). (12) 

3. INVARIANT DECOMPOSITION OF 
CURVATURE SPACES 

Given R in curv(V, (, », its Weyl curvature structure 
is 

W 2. Sc(lt) ('1T < ) 
R=R- n _ 2 Rlc+(n_l)(n_2)Roc:curv v, ,> 

and its Einstein curvature structure is 

Sc(R) 
C R = R - n(n _ 1) Ro c: curv(V, ( , ). 

Lemma: (a)pWR=O, LWR=O, Sc(WR) = 0, 

Sc(R) 
PCR(X,y)=pR(x,y) - -- (x,y), 

n 
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Sc(R) 
La =LR - ( 1) L R , Sc([R)= 0, n - n 0 

(b) WR-''' ,id = 0, i. e. , Won = ° especially W ito = 0, 

[RA, id = [neAl = n(A - (trA/n)id
n

) especially [Ro = 0, (1'3) 

(c)W, C, { oW, and [ -Ware projectors on 
curv(V, < , » with 

[oW=W=Wo[, 

(d) WoRi=RioI~ =0 and [oRi=Rio[. 

The proof of (a), (b), and (c) is technical, for (d) con
sider the complementary projector Wi of W on to kernW, 
given by 

WiR = (id _W)R=_I_ (2RiC _ Sc(R) Ro\. 
11-2 n-I ') 

Using (a) we get 

WiR =WiWiR =_1_ (2[(id _W)R]iC _ Sc(R -WR) Ro\ 
11-2 n-l I} 

=Wl __ l_ (WR)ic 
n-2 ' 

L e., (WR)ic = 0; the rest is straightforward again. 

Lemma: (a) WH = ° implies 

n(2LR - ~1C~~) idn) = (n - 2)R, 

hence KernW r Imn, 

(b) n oL oWl = Ri, 

(c) L on is injective, hence bijective, (14) 

(d) n is bijective onto kernW and the restriction of 
L to KernW is bijective. 

The proof is straightforward. Summarizing we have the 
commutative diagram of short exact sequences 7 

W 
kernW & ) curv(V, < , » ~> ImW < ) 

L-11L 
Wi 

1
m 

°1 W 
JA(V, <, »\ n 

• curv(V, < , » ~ ImW 
n l 

(1') ) 

which shows how Land Ri are related to each other via 
n and Wi. Obviously 

1 trA 
L -l·A I- --(2RA ,Id --- R ) 

. n-2 0 n-l 0' 

L"l: JA(V, <, »-kernW, 

nolo R _1_ (2L _ SC(R)'d \ 
. I- n _ 2 R n-l 1 n)' 

n- 1:kernW-JA(V, <, », 
with no n-1 =Wl and L -1 0 L =Wi 0 n-l is called the 
deviation map in ReL 70 JA (V, ( , » can be decomposed 
dirf'ctly into the space of multiples of idn and the 
i11(n + 1) -I-dimensional space of traceless endomor
phisms. Hence kernW can be decomposed directly 
into lR Ro and the n-image of these traceless endomor-
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phisms which is exactly Im([ -W). From id=[i 8)[ 
-W EfJW we get 

curv(V,(,»=lRRoEBlm([ -W)EfJlmW. (16) 

Moreover, like Ri, the projectors [ and W commute 
with the action of <G, resp. L<G, which shows that (15) 
is a commutative diagram of <G- respo L<G-modules and 
(16) is a <G- resp. L<G-invariant decomposition. The 
meaning of decomposition (16) was described in Ref. 1 
by the following theorem. 

Theorem: (a) R in lRRo <==> the sectional curvature 
of R is constant, 

(b) R in ImW <==> the Ricci form of R vanishes, 

(c) R in lRRo8ImW<==> LR is a multiple of id
n 

(17) 
(Einsteinian case), 

(d) R in Im([ -W) EfJ ImW <==> the scalar curvature 
of R vanishes. 

Since (16) is <G-invariant the classification of <G-orbits 
reduces to that in the three subspaces o 

Examples of Weyl curvature structures can be 
constructed in the four-dimensional Lorentz case as 
follows: Given (I' in lR, the tracelss nilpotent matrices 

± a ° ° 
- a 0 0 

o 0 0 

o 0 0 

(18) 

are in JA(V, (,» and R~,A =W R~,A* O. Since R~,B is 
linear in A and B such a curvature structure can be 
decomposed according to 

R~ ,B = ~ (R~+B,A+B _ H~,A _ R~,B), 

Le., into "pure" elements R~'c, which from (7) lie in 
"pure·' <G-orbits. 

4. Cll-ORBITS WHICH ARE DEFINED BY LIE ALGEBRAS 

Let lL be a real Lie algebra, lLo a subalgebra in lL, 
and V a complementary subapace to lLo in lL with a 
bilinear form < , ) as above. Writing the typical 
element of lL as K tt' x with K in lLo and x in V, one 
has [K EB x, L EfJ y ] = ([ K, L] + [x, Y]o + [x, L ]0 
-[y,K]o)EB([K,y]v -[L,xlv +[x,ylv). Introducing 
bilinear maps 

C(x,y)=[x,y]o, C :VxV-lLa, 

t(x,y)=[x,y] , t:Vxy-y, 

a linear map e: V - end lLo by 

8 xL=[x,Lja, 8 :xt-8x ' 

and denoting the adjoint action of lLo on V by 
[L, xlv = Lx, the Lie bracket in lL can be written 

l K r,: x, L ([, Y ] = ([ K , L ] + C eX' ,y ) + 8 xL - 6 ~K) 

(f) (Ky - Lx + l(x ,y ». 
The Lie algebra axioms in lL then imply 

(eT.I) C(x,y)=-C(y,x) and t(x,y)=-t(y,x) 

(19) 

(skew symmetry), 
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(CT.2) C(x ,Y)z + C(y, z)x + C(z ,x)y + t(t(x ,Y), z) 

+ t(t(y, z), x) + t(t(z, x),y) 

(Bianchi-Jacobi identity), 

(CT.3) [K,C(Y,z»)=C(Kx,y)+C(x,Ky) 

+ et(y, elK - ley, ezl-K, 

(CT.4) Kt(y, z) = t(Kx,y) + t(x,Ky) + (eyK)z - (e.K)y, 

(CT.5) [K,L)z=KLz-LKz, 

(CL 6) C(t(x ,y), z) + C(t(y, z),x) + C(t(z ,x),y) 

=exC(Y' z) +eyC(z,x) + e.c(x,y), 

(CL 7) e.[K,L)= [ezK,L) + [K,ezL] +eKzL - eLzK. 

We call such a decomposition homogeneous, and 
pseudo-orthogonal homogeneolls if in addition < , ) is 
C(x,y)- and t(x, . )-invariant, Le., if 

(POH.l) < C(x,y)z, w) + < z, C(x ,y)w) =0, 

(POH.2) (I(x, z), w) + < z, lex, w» = O. 

(CT, 3) shows that e is a morphism of the algebra 
(V, t) into the Lie algebra end ILa if and only if K' C = 0; 
(CT. 4) shows that if e vanishes, ILa acts by derivations 
on the algebra (V, tl. On V we have 

[[x ,y), z] = [C(t(x,y), z) - ezC(x ,y)] 

EEl[C(x,y)z + t(t(x,y),z)]. 

Introducing a (trilinear) triple structure on V by 

[x ,J', z] = C(x ,y)z + t(t(x ,y), z) =ad(x ,y)z 

(20) 

(21) 

from (CT. 1) and (CT.2), we get the first two axioms of 
a Lie triple ll ,12 

(LT.1) [y,x,z]=-[x,y,z), 

(LT.2) [x,_v,z]+[y,z,x]+[z,x,y]=O. 

If in addition to the CT -axioms the POH-axioms hold, 
then ad(x, y) obviously is an element of curv(V, < , ) ). 
We call such a curvature structure homogeneous. 

Conversely, given bilinear mappings C : V x V - endV, 
t : V x V - V, and linear mappings ex: end V - end V such 
that the seven CT -axioms hold for the commutator 
[ , 1- in end V, (19) defines a homogeneous decomposition 
IL = ILa EB V, w here now ILa is the Lie subalgebra of 
end V generated by the C(x,y) and the e z •• ·ez'C(x,y). 
The Lie algebra IL with the Lie bracket tI9) is 'called 
the standard embedding algebra of (C,t,e). 

To give an action of G on such homogeneous structures 
(C , t, e ), define 

G ·t(x,y)=Gt(G-1x,G-1y) and (G . e) .. K= GeG-lz(G-1 'K)G-1 

(22) 
and G' C in the same way as G'R in Sec. 2. Then 
(G . C, G . t, G . e) fulfills the seven CT -axioms and the 
two POH-axioms if (C,t,e) does. If ad(x,y) is given as 
in (21), then G . ad is given in the same way by G . C 
and G . t. Hence homogeneous curvature structures 
lie in homogeneous G-orbits. 

More general let (V', < , ),) be a second pseudo
orthogonal vector space and G : V' - V a linear 
conformal mapping, L e., linear with < Gx', Gy') 
= A~ (x' ,y')' and AG '* O. Given a homogeneous structure 

1121 J. Math. Phys., Vol. 19, No.5, May 1978 

(C',t',e') on V' we get a homogeneous structure 
(G· C', G • t', G • e') on V, the latter being defined as 
in (22). This makes curv a covariant functor. Any linear 
conformal mapping G defines an isomorphism 
G*: IL' - IL of the standard embedding algebras by 
G*: K EEl x -GKG-! EEl Gx which commutes with the 
standard involutions K +x f- K - x. The standard involu
tions however are automorphisms of the standard 
embedding algebras only if t and e vanish 
(symmetric case). 

The pseudo-orthogonal reductive structures (C, t) 
on V are characterized by vanishing e, see Refs. 13, 
6, and 14. The (torsion-free) pseudo-Riemannian 
curvature structure CV on V was given in Ref. 13 
by the following construction: For a in ill define 
V'xY = al(x,y) and 

tV(x,y) = V' xY - V'yx - t(x ,y) = (2a - l)t(x ,y), 

CV(x,y)z = V'x V'yz - V'y V'xz - V't(x,y)z - C(x,y)z. 

Then (CT. 2) and (CT. 6) are valid for (CV, tV) only if 
a = t, and in this case 

CV(x ,y)z = Mx, t(y, z» - t l(y, f(x, z» 

- tl(t(x,y),z) - C(x,y)z 

is a solution of the CT -axioms for tV = O. In the 
reductive case again the remaining six CT-axioms 
and the two POH-axioms hold for any <G-transform 

(23) 

of (C,t) and G. (CV)=(G 'C)V, hence reductive curvature 
structures lie in reductive G-orbits in curv(V, ( , ». 
It is straightforward to verify that 

(G·C(z,w»·(G·C)=O and (G·C(z,w»·(G·t)=O 

for G in G. 

A special case of a reductive structure is a Lie
algebraic structure where t is a Lie algebra on V. 
Here (CT.2) splits into the (first) Bianchi identity 

(24) 

for C, which implies C E: curv(V, ( , », and the Jacobi 
identity for t. (POH.2) makes < , ) an invariant form of 
the Lie algebra. Again if (C, t) is Lie-algebraic, 
then (G . C, G . t) is as well; hence there are Lie
algebraic orbits among the reductive ones, In general 
(V, t) is not a subalgebra or homomorphic image of 
its standard embedding. An elementary example is 
given by a semisimple Lie algebra (V, [ , ]) with 
Killing form <,) and C(x,y)=ad([x,y]), t(x,y)=[x,y]. 
Indeed the (split) equations (CT.2), (CT.4), and (CT. 6) 
follow from Jacobi's identity, whereas (CT. 3) holds 
since Lie algebras are Lie triples (see below): the two 
POH-axioms follow from the invariance of the Killing 
form. The Ricci form of C is exactly the Killing form. 

A special case of a Lie-algebraic structure is a 
(ps eudo-orthogonal) sy 11lmetric (or Lie triple-) 
structure with vanishing f. Here C(x,y)=ad(x,y) and 
the associated triple (21) also fulfills the third axiom, 

(LT.3) [u, v[x,y, z]] - [x,y, [u, v, z]]= [[11, v,x),y, z] 

+ [x, [u,L',y], z] 

of a Lie triple, which in fact is exactly (C T. 3) for 
K=C(u,v). Equivalently this can be w~itten 

C(u,v)'C=O for u,v in V. 
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Conversely a Lie triple, i. e., a trilinear composition 
on V subject to the three LT -axioms, defines a 
(symmetric) curvature structure ad if and only if 
ad(x ,Y) is in the pseudo-orthogonal Lie algebra on 
(V, < , » for any x, y in V. In the Lie-algebraic case, 
C lbut not ad in (21)] is already a symmetric curvature 
structure. The first equation (22) shows that symmetric 
curvature structures lie in s:vmmetric ({i-orbits in 
curv(V, ( , ». Symmetric orbits in kernW = Imn can be 
characterized easily: From (8) and (25) the symmetry 
of n(A)=li~·id is equivalent to 

R*·id(lI, /.). n(A)= n(R~·ld(1l ,v), A)= 0 for all /l, v, 

(26) 

since n is injective, hence to R*.ld(U, v) . A 
= [R~' id(lI, z'), A 1- = 0 for all II , Z!, and this is equivalent 
to A2 = Tidn with T in lR. Especially the (trivial) 
curvature structures in lRRo, for which alio = ~(c:l'idn)' 
are symmetric. If <, ) is positive definite, the Jordan 
algebra JA(V, (,» is formal real (or compact) and 
has no nilpotent elements: whence in this case there 
are only symmetric ({i-orbits in Im~ for invertible 
matrices A. If ( , ) is indefinite there are nilpotent 
(necessarily symmetric) orbits, for instance those 
through the matrices (18). Clearly besides the orbit 
{a} there are only the two symmetric ({i-orbits in 
lRRo for positive, resp., negative o!. 

In the same way as in the Lie-algebraic case we get 
a special type of now symmetric curvature structures 
by again taking C(x,y)=ad([x,yll on a Lie algebra 
(V, [, ]) (the first example in Sec. 2, for instance). 
The axiom (LT. 3) is valid for the double Lie bracket 
[[ , 1,] as Lie triple composition. They lie in special 
orbits among the symmetric ones. The specialization 
C = 0 in the general Lie-algebraic case gives a third 
possibility to get a solution of the CT-axioms for a Lie 
algebra. However these three cases have different 
standard embedding algebras. For instance, if C = 0 
we have lLa = {o ~ and the standard embedding becomes 
(V, [ , ]) itself. 

5. TWO MANIFOLDS CONSTRUCTED IN TERMS OF THE 
DUFFIN-KEMMER-PETIAU MATRICES 

In the following we give a matrix description of two 
pseudo-Riemannian symmetric spaces whose canonical 
pseudo-Riemannian curvature structures are lia, 

resp. -lia, using the mcson triples on (V, (, I), see 
Ref. 11, more precisely their representation by 
Duffin-Kemmer-Petiau matrices. 

Let cu' .. ,en be a basis in V in which x has the 
components ~i, Y the components 7Ji, .•. , and in which 
the matrix of < , ) is I. Consider the real traceless 
(11 + I)-square matrices 

W(x)= [0 ~tlJ . 'q 0 . 

The 11 Dujjin-!{cmmey-Peliou matrices are 
W(e i) = f3 i • To check their familiar algebraical 
identities note that 

~( ) 'f{,) r'f(x,y) 0 J 
K x K ,-v = L 0 'I' ~:X;1)tl 
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implies K'f(x)W(y)W(x)='f(x,y )K~(x), from which 

W(x)W(y )W(z) + W(z )W(y )W(x) 

= 'I' (x ,Y )K~(z) '1'( z ,y )K~(x), (27) 

which is a basis free formulation of the well-known 
Duffin-Kemmer-Petiau relations pJJki3 Z + PZPkfJ i 
=likP/+lk /(3i and a representation of the meson 
Jordan triple. It is easy to verify that the spaces 
K'f(V) are closed under double commutation, 

llW(x),W(y )l-,W(z)]_ = 'I' (y, z )K~(x) 

± (z,x)K~(V), (28) 

L e., are Lie triples with curvature structure 'flio• 

Using that the trace of ~.~ 10 is (x,y) we get 
'f~trK'f(x)W(v)=(x,y). Hence the mappings xt-W(x) 
are isomorphisms of pseudo-orthogonal vector spaces. 
The pseudo-orthogonal group of (V, ( , » acts on 
W(V) by inner automorphisms with G = diag(l, G), L e. , 

Je : W(x) I- GK'Cx)C-1 =K'(Gx), 

and this establishes a (global) isomorphism J : G t- J e of 
the pseudo-orthogonal group of (V, ( , » onto that of 
(K(V), trace). This represents the fact that spin zero 
representations of pseudo-orthogonal groups are 
ordinary, not only ray representations. Writing 
c(x)=cos)l-J±(x,x) and s(x) for the corresponding sinus 
series we get 

[

c(x) 

exp()lK'(x» = 

'I' s(x) ; 
-J±(x,x) 

s(x) ~ t] j 
,i±(x,x) 

id
n 
+ - 1 + c(x) ~ g; ~ t] • 

( x,x) 
(29) 

These exponentials generate two closed II-dimensional 
symmetric sub manifolds lM' of Sl(n + 1, lR) which are 
algebraically closed with respect to the symmetric 
composition G LJ H = GHG- 1 in Sl(n + 1, IR). Here 
"generate" means "generate as a symmetric space," 
i. e. , take all finite iJ-products of these exponentials. 12 

It was shown in Ref. 10 by applying the Loos formulation 
of symmetric spaces to the de Sitter, resp., the anti-
de Sitter, hyperboloids that the IIVI~ are two manifolds 
of S1(11 + 1, IR) matrices 

[

1'f2(Z,Z) 'f20',t] ] ·th 2 ( ) 1 
WI ± a + z, Z = ± , 

2ab idn'f2r~ ttl 
(30) 

and O! in IR, Z in V. Note that the matrices (29) are of 
the form (30) for the choice Z = (+ 2 (x, X »-1/2( - 1 
+cos)l-J±(x,x»1/2x . In the four-dimensional Lorentz 
case these two manifolds are covered twice by the 
de Sitter hyperboloids. From the results of Ref. 12 
follows that these manifolds are affine and complete 
with respect to the canonical pseudo-Riemannian 
~-connection of symmetric spaces such that the geo
desics passing through the points idn+1 in 1M" are 
exactly the curves (29). 

Another realization of Ro and the corresponding 
pseudo-orthogonal Lie triple can be given in terms 
of the Clifford algebra Cl(V, ( , » over (V, ( , ». The 
exponential series in C1(V, ( , » guarantees the 
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existences of an n-dimensional pseudo-Riemannian 
manifold, D-generated by the exp/lx with /l in IR and x 
in V c CI(V, < , ». Indeed V embedded in Cl(V, < , » 
is the Lie triple defined by Ro (Ref. 15, p. 232). 
These manifolds are coverings of the I1:vtF. The same 
construction starting from (symmetrized) xy - yx 
E Cl(V, ( , », x ,Y E V, yields the spin coverings of the 
pseudo-orthogonal groups. However, a closed form of 
the points of these coverings corresponding to (30) is 
not known. 

6. REMARKS ON THE CLASSIFICATION OF <Ii-ORBITS 
IN KERN W 

Since dilatations in V act on JA(V, ( , » only trivially 
(8) implies that for the classification of G-orbits in 
kern W it suffices to know the O(V, ( , ) )-orbits in 
JA(V, <, ». 

The Jordan algebra JA(V, < , » is simple, hence all 
derivations are inner, i. e., of the form [L(A),L(B)]. 
where L is the Jordan left multiplication 2L(A)B =AB 
+BA. We have [L(A), L(B)LC=[[A, B).,C). and 
[A,BL~ so(V, <, >l for all A, B, C in JA(V, (, ». 
Using a basis, one proves that so(V, (,» is spanned 
by these commutators [A,BL, whence the identity 
components of the pseudo-orthogonal group O(V, (, » 
and the automorphism group of the Jordan algebra 
coincide. Clearly O(V, ( , » lies entirely in this 
automorphism group. The proof of the converse is 
rather lengthy. 

JA(V, ( , » can be decompsed into the set J of 
invertible and the set IP of noninvertible elements, 
and invertibility in J A (V, (, » coincides with that in the 
matrix sense. This decomposition is invariant under 
the action of the automorphism group. In Jf there are 
orbits of involutive matrices, i. e., A 2 = A id

n 
with a 

nonzero constant ,\ in each orbit, in IP there are special 
orbits of nilpotent matrices [if JA(V, (,» is not formal
real] and orbits of idempotent matrices. Helwig16

•
17 has 

given a description of idempotent orbits with respect to 
the identity component of the automorphism group for 
arbitrary simple real Jordan algebras. Let us specialize 
this to the Lorentz case with J = diag(l, - id3 ) being the 
matrix of ( , ) in a standard basis of V. The maximal 
formal real subalgebra of JA(V, ( , » is the eigenspace 
of eigenvalue 1 of the involution automorphism 
A t- JAr!, i. e. , the direct sum of the Jordan algebras 
of symmetric matrices in one and in three dimensions. 
Since this direct sum is not simple the set of primitive 
idempotents decomposes into two SOo(V, ( , ) )-orbits 
(Ref. 16, satz 10.5) (primitive means that an idempotent 
cannot be written as the sum of two other mutually 
orthogonal idempotents). Let us denote the four 
standard primitive idempotents in the Lorentz-Jordan 
algebra with only one entry 1 on the diagonal by 
Eo, .. . ,E3 • Then one proves that there is no Lorentz 
matrix C such that CEoC-! = E i for i = 1, 2, 3, but 
that the Eu E 2 , E3 can be transformed in this way into 
each other. Hence these two orbits are even O(V, ( , ) )
orbits. The degree of primitivity (Ref. 18, p. 78) of 
the Peirce I-space (Ref. 18, p. 154) (which is a Jordan 
subalgebra) of an idempotent is called its length (Ref. 
17, p. 320). A primitive idempotent has length one, 
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the maximal occuring length is that of the identity 
element, called the degree of the Jordan algebra. 
In the Lorentz case it is four. The length is invariant 
under the action of the automorphism group. In Ref. 17 
(p. 320) it is shown that SOo(V, ( , » acts transitively 
on each topological component in the sets JT of 
idempotents of length r. Here one has r = 1, 2, 3, 40 
For r=2 there are two orbits, one containing the 
standard idempotents diag(l, 1,0,0), diag(l, 0,1,0), 
diag(l, 0, 0, 1), which easily can be transformed into 
each other by a Lorentz matrix, the other containing the 
Lorentz similar idempotents diag(O, 1, 1,0), diag(O, 1, 
0,1), diag(O, 0, 1,1). There is no Lorentz transforma
tion transforming one element of the first set into one 
of the second set. Similarly the idempotents of length 
three decompose into two orbits, the first containing 
diag(l, 1, 1,0), diag(l, 1,0,1), diag(l, 0,1,1), and 
the second containing diag(O, 1, 1, 1). To get the dimen
sions of these orbits note that Helwig has shown 
(Ref. 16, p. 23) that the Peirce ~-component of an 
idempotent is the tangent space to the orbits through 
this idempotent in this point. A verification shows that 
the two r= 1 orbits have dimensions three, the two 
r = 2 orbits have dimensions four, and the two r = 3 
orbits have dimensions three. These six orbits 
exhaust the set of all idempotents different from the 
trivial ones 0 and id4 • One easily calculates the stability 
groups in 0(1, 3; IR) for the above standard idempotents 
which gives an idea of the topological structure of the 
corresponding orbits. 

Among the various orbits in J we mention only one 
which contains the matrix diag(-l, id3)=-J. Writing 
X=~o+XR with ~o in JR, xR in IR\ and (,) for the 
Euclidean product we get 

R~I.ld(X,y)Z =~((Iy, z)x + (y, z)Jx - (Ix, z)y - (x, z)Jy) 

= (YR,zRhR - (XR,ZR)YR' 

i. e. , R~I oId(X ,y) has only a 1R3 -component which is 
exactly the trivial curvature structure on 1R3 with 
respect to (,). Since the corresponding Lie triple is 
the double cross product in Euclidean IRs this curvature 
structure lies in a symmetric orbit which is given by a 
Lie algebra, namely the direct sum of the Lie algebras 
lR and su(2). The Lorentz manifolds IRX 53 and 51 XS3 

have their pseudo-Riemannian curvature structure in 
this orbit. To show that the dimension of this orbit again 
is three, note that the stability group of - J in 
0(1, 3 ;lR) is given by the matrices diag(± 1, A) with 
AtA=id3 • 

The gravitational equation for R E curv(V, ( , » is 
(without cosmological term) 

Sc(R) Sc(R) 
PlR(X,y) --- (x,y) =PR(X,y) - 2 --(x,y) 

n n 

=K(TRx,y), 

where the gravitational constant is denoted by K and the 
energy -momentum transformation is 

Sc(R) . 
=LR - 2--1dn EJA(V, (, ». 

n 
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If WR = 0, then from kern L = {o} there is the equivalent 
form 

Using KtrTR = - Sc(R), the gravitational equations 
become 

PR (x ,y) = K( (T R - 2 t:T iel,. ) x, y ). 

It is easy to see that T nCA) = 0 is equivalent to A = O. 
The transformation property of TR under G, resp. 
LG, is given by (10), 1. e" by 

G.TR=A~TG'R' resp. Q·TR=TQ_T+2/lQTR. 

For a physical identification of the above <Ii-orbits in 
kern W one has to calculate T (l(A)' We leave this simple 
task to the reader. 

7. IRREDUCIBLE, SEMISIMPLE, AND FRIEDMANN 
<S-ORBITS 

Let us add some remarks on the Ricci form of non
Einsteinian curvature structures. From (4) 

n - 2 trA 
Pr/!A)(x'Y)=-2-(Ax,y) +-2- (x,y), 

AEJA(V, <, »). (31 ) 

A verification gives P(l(A)(f2(A)(x,y)z,w) 
+ P(J(A)(z, f2(A)(x,y)w)= [en - 2)/4J{ (A2x,z) (Y,w) 
- (x,z >(A 2y,w)+(A 2x,w)(y,z)- (x,w)(A 2y,z)}. Hence 
for symmetric f2(A), i.e., A 2 =Aidn , the f2(A)(x,y) 
annihilate the Ricci form. In general, however, the 
f2(A)(x,y) do not exhaust this annihilating Lie subalgebra 
of so(V, (, »); as will be shown elsewhere in the case of 
the nilpotent matrix (18) these elements span only a 
two-dimensional subalgebra of the three-dimensional 
annihilating algebra. 

One can increase the structure theory of <Ii-orbits by 
introducing more orbit properties. One concept is 
irreducibility (Ref. 13, p. 56) in homogeneous orbits 
which means that the adjoint action of lLo and V is 
irreducible. Another concept is semisimplicity which 
means that the Ricci form is nondegenerate. 19 In Imf2 
this is equivalent to the invertibility of the matrix 
A + [traceA/(n - 2)]idn • The symmetric (whence also 
the Lie algebra) semisimple curvature structures are 
classified, for instance in Ref. 12. 

Another kind of non-Einsteinian curvature structure, 
considered frequently in general relativity are the 
following: Given u in V with < u,u) '" 0 we get idempotents 
S. in JA(V, (,») by 

(u,z) 
S.Z=(--) u, ZE V. u,u 

The Friedmann (or Hobertson- Walker) curvature 
structures in Imf2 are given by 

A = (3n - 4)p - (n - 4)p id __ 2_ (p + )S 
" n(n-1)(n-2) n n-2 p. 

with P the density, p the pressure, and u the velocity 
of a relativistic perfect fluid, Ricci form and energy
momentum transformation are 
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One proves that for the" equation of state" (2 + n)p 
=(2-n)p, the Ricci form becomes (n+2t 14p{(x,y) 
-(U,U)-l(U,X)(u,y)} which is degenerate with kernel 
1R u (the fixed point set of S). In the other cases the 
Ricci form is nondegenerate, hence f2(A) is semisimple. 
It is easy to see that 

which shows that there are Friedmann ~-orbits in 
JA(V,(,») parametrized by P and p, whereas the 
normalized velocity (u,ur1

/
2u depends on the curvature 

structure in such an orbit. 

The condition that A defines a symmetric f2(A ), 
i. e. , A~ = A idn , gives besides the uninteresting c"ase 
p = - P, the same equation (2 + n)p = (2 - n)p as above 
for the nonsemisimple Friedmann case, Hence 

A - 4p {. 2S} 
U-(n-2)(n+2) Idn - u 

describes a symmetric but not semisimple G-orbit in 
Imf2. We intend to come back to this case elsewhere. 

8. OPEN PROBLEMS 

It remains to solve three problems. The first is to 
complete the classification of ((i-orbits in curv(V, < , ») 
which is related to the Petrov classification of curva
ture structures. The second is to show that pseudo
Riemannian manifolds whose Levi-Civita curvature 
structures lie in the same orbit, i. e., are conformally 
equivalent, are related to each other exactly by a 
(pseudo-Riemannian) covering, or at least to generalize 
this from the symmetric to the homogeneous case: 
If two symmetric curvature structures are conformally 
equivalent their Lie triples and consequently their 
standard embeddings are isomorphic, hence given the 
exponential mapping the associated Lie groups are 
related to each other by covering. From the representa
tion of a symmetric space as a homogeneous space of 
its dandard embedding group (group of displacements 
in Ref. 12) it then follows that the symmetric spaces 
cover each other. 

The third problem is to construct at least one 
example in each orbit, as done in Sec. 5 for the 
trivial orbits. An algebraic question to ask is whether 
there are A-modifications of the Duffin-Kemmer
Petiau representation such that the exponential series 
generates examples of pseudo-Riemannian manifolds 
with Levi-Civita connections in other than the trivial 
((i-orbits in Imf2. If any two examples in one orbit 
are related to each other by covering and if one 
succeeds in constructing a simply connected example, 
then it is straightforward to construct all other possible 
manifolds in the given orbit from this universal cover. 
In physics this would be a constructive approach to 
cosmology. Starting from given curvature structures 
the constructive approach has an easy solution for the 
symmetric orbits. In this case the R(x,y) span a Lie 
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subalgebra of so(V, ( , » and it is easy to embed this 
into its standard embedding algebra. If R is not 
symmetric, the problem is more involved. For the 
construction of the standard embedding of a reductive 
but not symmetric structure for instance, one must 
know C and t, L e. , one has to solve Eq. (23) for 
the canonical curvature C and torsion t in terms of 
the given pseudo-Riemannian torsion-free Levi-Civita 
curvature R = CV

• Note that in general CV is not a 
symmetric curvature structure, Le., (25) does not 
hold, and hence there is no standard embedding Lie 
algebra constructed from CV and tV = O. 

For the Friedmann orbits in the preceding section the 
density p and the pressure p are constants, whereas 
in general relativity one considers them to be functions 
of time. A mathematical formulation of this probably 
is the concept of deformation of curvature structures 
in analogy to the well-known deformation theory of 
algebraic structures, Roughly speaking it consists of 
in applying a timelike one-parameter subgoup of ill to 
the curvature structure, deforming it in its ill-orbit. 
It remains to study the resulting deformation of the 
pseudo-Riemannian manifold. 

The classification of ill-orbits in JA(V, < , ») 
should be compared with that of the Lorentz orbits in 
Minkowski space. Minkowki space is a Jordan algebra 
as weU20 which, however, is formal real (or compact) 
and hence has no nilpotent elements. To get the Lorentz 
group there the group must be enlarged from the auto
morphism group of the Jordan algebra to the so-called 
structure group, see Ref. 18. 
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Nonlinear tunnelling 
Alan C. Newell 
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The propagation of a soliton pulse towards a finite potential barrier is examined, and it is found that in 
certain circumstances. depending on the ratio of soliton amplitude to barrier height. the soliton can tunnel 
through the barrier in a lossless manner. It is suggested that the phenomenon of barrier penetration by 
nonlinear pulses may have widespread application. 

1. INTRODUCTION 

The concept of linear tunnelling, of central impor
tance in modern physics, follows naturally from con
sideration of the linear equation 

U tt - (c2(x)uJx+n2(x)u=0 (1.1) 

(subscripts refer to partial derivatives). The equation 
serves as a model for discussing the propagation of 
disturbances of infinitesimal amplitude along a Joseph
son junction, in plasmas or more simply in the me
chanical model (due to Scotti) for the sine-Gordon 
equation which consists of a line of pendulae under the 
influence of gravity strung closely together on a torsion 
wire. The parameters c2 (x) and n2(x) may be functions 
of position. Seeking solutions of the form u(x, t) 
= ~(x) exp(- iwt), we obtain the Sturm-Liouville 
problem, 

(c2 (x)~x(x»x + (w2 - n2 (x»~ = 0, 

which, when c2 = 1, is the Schrodinger equation de
scribing the probability density function ~(x) for an 
electron of kinetic energy w2 moving in a potential 

(1. 2) 

n2 (x). Consider the potential, n2 = 0, x < 0, n 2 = VI > w2, 
O<x<L, and n2=V2< w2, x>L. An incident wave 
arriving at x = 0 is partially reflected and partially 
transmitted through the shadow zone 0 < x < L in which 
the amplitude of the wave suffers the exponential decay 
exp[- (VI- w2)1/2L]. No free wave exp[i(kx- wt)] can 
propagate in this barrier region since the wavenumber 
k given by the dispersion relation k = k(w, x), 

k
2 

= c2~x) (w2 
- n

2
(x» (1. 3) 

(here we have tacitly assumed that nand c are slowly 
varying) only permits a real solution for n2 (x) < w2

• 

The point x (say x = 0) at which n2(x) = w2 is called a 
caustic and the group velocity of the linear wave is 
zero there. 

On the other hand, a small displacement u(x, t) which 
obeys the nonlinear equation 

Utt - (c 2u x )x + n 2 F(u) = 0 (1. 4) 

may admit a periodic solution with an amplitude depen-

a)This work was supported by NSF Grant MCS75-07508-A02 
and ONR Grant N00014-76-C-0867. Part of it was carried 
out while the author enjoyed a Guggenheim fellowship visit
ing Cambridge University. 

dent frequency which is below the cutoff frequency n. 2 

For instance, if F(u) = sinu "" u - ~ u3 + o(u3), and the 
disturbance is small, we may show that a solution of 
the form 

u(x, t) = EA(X, T) exp[i/Ee(X, T)] 

+ (*), X=EX, T=Et, et=-w, ex=k, (1.5) 

which assumes c2 (X) and n2 (X) are slowly varying, leads 
to a nonlinear dispersion relation 

which suggests that I? may still be real for values of 
w2 below the cutoff frequency n2• Alternatively, if we 
imagine n2 (x) to increase through the value w2 from 
below (n2 (0) = w2

), then the point Xp at which 1?2 is zero 
lies in the shadow region of the linear problem, i. e. , 
Xp is such that n2 (Xp) = w2 (1 - tAA *)-i and is thus 
greater than zero. 

Unfortunately, in these cases, the periodic wave is 
unstable in the Whitham2 and Benjamin-Feir3 sense 
and a wavetrain of frequency w, initiated at a station 
X =Xt. breaks up into separate local pulses soon 
thereafter. If u (x, t) is sufficiently small, then these 
pulses are solitons of the nonlinear Schrodinger (NLS) 
equation 

although in order to incorporate their genuine non
linear, as opposed to their quasilinear, tunnelling 
character, we must use a modified NLS (or MNLS) 
equation which adds a term iOEqxt to the right-hand 
side of (1. 7). 

(1. 7) 

For certain special choices of F(u), we may waive 
the small amplitude restriction. One such case which 
models both the Josephson junction and its mechanical 
analog referrred to earlier is the sine-Gordon model 
for which F(u) = sinu. Consider the case where c 2 and 
n2 are constant. Then it is known that a pulse of finite 
duration initiated at Xi will decompose into (a) a series 
of solitions (both kinks or 2n pulses and breathers or 
On pulses) and (b) radiation which consists of nonlinear 
phonons (the linear limit of a phonon is a sinusoidal 
wave exp(ikx - iwt) with frequency w2 = c2 k2 + n2 greater 
than n2) and near the light cone a component with self 
similar structure. 4 The soliton comes in two varieties. 
The kink or 2n pulse is a steady progressing wave 
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(1. 8) 

which corresponds to a complete twist in the line of 
pendula. Its energy is YMoc2. The second type and the 
one of central interest for this paper is the breather 
or 01T pulse [with energy 2YMoc2(1- n2/n2)1/2)J 

u(x, t) 

= 4 tan-1 2~c sech(27)2) ; (X - VT) 

x cos (~nY(T - Vxc-2») , (1. 9) 

and the first feature we point out is that its frequency 
n 

(1.10) 

lies below the cutoff frequency n. We have exploited this 
fact before and shown how a breather can phase-lock 
onto an applied ac field with a frequency below n. 5 In 
this paper we suggest that the breather or more gen
erally (although only for small amplitudes) the NLS 
soliton is the means by which coherent forms of energy 
can tunnel without loss to the interior of regions where 
linear theory would allow only edge effects (cf. London 
penetration depth in superconductivity, see Ref. 6). 
In a medium (such as a Josephson junction of varying 
width or along which the temperature varies, or a 
plasma with increasing denSity), in which the fre
quency n(X) increases past the excitation frequency 
w, the pulse will penetrate into the medium a distance 
Xp given by 

(1, 1.1) 

at which point it will turn around and return unless the 
potential barrier n2 (x) decreases again. 

We distinguish three different types of tunnelling. 
The first two are lossless and occur because (a) the 
frequency w + 2~E of the oscillatory phase of a particu
lar soliton is greater than the central frequency w of 
the excitation (which we might call quasilinear tunnelling 
or lossless linear tunnelling of a nonlinear pulse) or 
(b) more importantly, the effective frequency (wave
number) of the pulse is decreased (increased) by an 
amplitude dependence and pulses of sufficiently large 
amplitudes may succeed in penetrating the barrier com
pletely (lossless nonlinear tunnelling). The third type 
of tunnelling is a tunnelling with losses in which even 
though the soliton itself cannot penetrate all the way 
through the potential barrier, the influence of its leading 
edge is felt in the region beyond the barrier where it 
can create secondary pulses and radiation. However, 
the exponential decay of the signal from one side of 
the barrier to the other depends on the pulse amplitude. 
We call this nonlinear tunnelling with loss or normal 
nonlinear tunnelling. We remark that it might be more 
accurate to prefix each definition with "soliton" as here 
we neglect altogether the propagation of the phonons 
(radiation). 

We begin in Sec. 2 by showing the way in which low 
amplitude solutions of (1. 4) are described by a modi-
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fied nonlinear Schrodinger equation (MNLS), and in 
particular relate the parameters natural to (1. 7) to 
those in (1. 9). Then, in Secs. 3-6, we describe the 
propagation of a pulse through a region of increasing 
plasma frequency n(x), then through the region of the 
(linear caustic) at X = 0, and finally discuss the cir
cumstances under which one can expect it to tunnel 
without loss through a potential barrier region. The 
results should have many applications, and some of 
these are discussed in the conclusion. In the Appendix 
we write down the principal results (the derivations 
of these results are to be found in Ref. 5) of perturba
tion theory which are used. 

2. THE NONLINEAR SCHRODINGER (NLS) 
CONNECTION 

In the low amplitude limit, 7)2 = E7)1 (1. 9) becomes 

c 
u(X, T) = 4E7)1 n sech27)1 y(X - VT) 

x exp[ - iEy(T - XVc-2
)] + (*), (2. 1) 

and the reader may recognize the amplitude to be the 
envelope soliton of the NLS equation. To see this in 
another way, substitute 

u(X, T) =EA(X, T) exp[i(kX - wT)/E] + (*), (2.2) 

in (1. 4) with F(u) =u - ~u3 and find the envelope equa
tion 

together with the dispersion relation (1. 3). 
transformation 

w 1 n2 

T= T- ?k X , y= 2'cri? Y, 

leads to the exact equation 

(2.3) 

The 

(2.4) 

(2.5) 

Neglect of the right-hand side leaves the NLS equation 
whose general solution consists of solitons and radia
tion. The soliton expression is 

B = 27) sech27)(T + 4~y - T1) 

(2.6) 

with constant T1 and X, and the corresponding solution 
u(X, T) may be written, 

(2)112 27) (w n
2 

\ 
u(X, T) = E 73 ck sech27) T - ?k X + 2~ c41?3 EX - TO) 

x exp [- i(w + 2~E)T/E+ i (l?+ ~ 
kc 
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or, alternatively, 

(
2)1/22 

u(X,T)=E 73 c~SeCh21][T-kl(W+2~E)X-71 

+ O(E~)21 exp [ - i(w + 2~E)T /E+ i (k(W + 2~E) 

+ 21]2 c:,:3 E2) X/E] , (2.8) 

where k(w) is given in (1. 3) and kl = ok/aw, the in
verse of the linear group velocity. We note that the non
linear term affects the wavenumber of the oscillation 
and the shape, but not the phase, of the amplitude (the 
hyperbolic secant). Pulses of all amplitudes with the 
same frequency travel at the same speed! This feature 
often does not faithfully reflect the properties of the 
original model for which (2.5) with E = 0 is an approxi
mation, and one would prefer to see some amplitude 
dependence in the phase of the amplitude function. This 
is introduced by including the first term on the right
hand side of (2.5). However, the resulting equation, 
the modified NLS (MNLS) is no longer exactly integrable 
(as far as we know). Nevertheless, if we neglect terms 
of O(E~2, E~1]) with respect to the term O(E1]2) (i. e., the 
amplitude E1J is much greater than the frequency shift 
E~), then the principal effect of this term is accounted 
for if 

Indeed, if ~ = 0, this is an exact result. The result can 
be found either by use of the perturbation procedure 
outlined in Ref. 5 or directly by assuming that only 71 
varies with respect to y. With this inclusion, the velo
city of the pulse 

( 
2wn2 )_1 

V = kl (w + 2~E) - ?"if (E1])2 (2.9) 

is larger for larger amplitudes, reflecting more accu
rately the characteristics of the breather (1. 9). 

The connection between the parameters in (2. 1) and 
(2.8) is as follows: 

(2. lOa) 

(2. lOb) 

(2.10c) 

(2. 10d) 

Using k2 = (1/ C2)(w2 - n2), we find on squaring (2. 10d), 
retaining terms of order (E1])2, and using (2. 10c), 

(2.11) 

To leading order V=I/k l =ck2/w, y=w/n, and 1]=1]1 
• (ck2/n), whence (2.11) is (1. 10). 
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3. APPROACHING A CAUSTIC 

We examine the following situation depicted in Fig. 
1. We will specify that all the medium properties 
change slowly with respect to the soliton length scale 
Y = EX. Imagine that at Y = Y1 = EXI a pulse u(X, T) is 
initiated with central frequency w {for examples, 
u(X,T)=Eexp(-iwT/E), T1<T<T2, u(Xt.T) 
= E exp(- iwT /E) sgn[T - (T1 + T2)/2], TI < T < T2} and 
progresses through a region Y1 < Y < Yo (AB) of con
stant medium properties. In this interval the pulse will 
decompose into its soliton components (provided 
J:oou(X1, T)dT> E(2/;3)I/2(coko)-I1T/2 and we will seek to 
follow one of the solitons, 

(
2) 1/2 21] u(X, T)=F - . ~ 
{3 Co'eo 

xsech21]0 [T- (kl(W+2~OE) 

- 2 ;~\ (E1]of) (X - X o)] 

x exp [- i(w + 2~OE)T/E + i (k(W + 2~OE) 

+ 24~~3 (E1J)2] (X - XO)/E] ' 
COreD 

(3. 1) 

through its subsequent evolution in the region Xo < X < 0 
as it travels towards the linear caustic at X = O. Without 
loss of generality we may take ~o = O. For, suppose 
n2(X) = (w + 2~od[1 + 2UE(X - 2~0/aw)], then we can, 
neglecting terms of order E2 ~2, write this as n2 (X) 
= w2 (1 + 2aEX) by redefining wand applying a simple 
translation. That is, to say, we expect a pulse of fre
quency w + 2~DE to penetrate a distance Xp = 2~0/aw past 
the point at which n2 = w2

• This is what has already been 
referred to as the linear tunnelling of a nonlinear pulse 
or quasilinear tunnelling. 

We next seek to find the solution in region II, Yo 
< Y< 0 [Yo=O(a-1), and each of the parameters c2 and 
n2 changes by an order one amount], which matches to 

u(Xo, T) = E(2/ ;3)1/2. (21]0/ coko) sech21]0 T exp(- iwT /E) 

at Y = yo. In (1.4), with F(u) = u - (3/3u3 + o(u3
), set 

(following Whitham2) 

(3.2) 

u(X, T) =EA(X, T) exp[i!E8(X, T)] + (*), (3.3) 

FIG. 1. Graph of n2(y) vs Y • 
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where ex==Eex==k and et==Ee T ==- ware the local wave
number and frequency. Substitution of (3.3) in (1. 4) 
gives us the local dispersion relation, 

k2 == (11 C2)(W2 _ n2), (3.4) 

the equation expressing conservation of waves, 

kT+wX==O, 

and finally the amplitude equation 

- 2iwA T - 2ikc2Ax - i(kc2 )xA + €A TT - €A xx 

== f3n2€A 2A *. 

(3.5) 

(3.6) 

Since k=k(w,X), that is, the slowly varying param
eters depend only on X, we have from (3.5) WT + w1wx 
=0, w1=CJwlak=k j 1. From initial conditions we have 
w = const. Thus k is a function of X only, and its value 
at any position is given by (3.4). We assume now that 
c 2 and n2 depend on a Y, 0 < E «a «1. It is natural to 
expect that, to first order, the amplitude moves with 
the local group velocity and thus it is appropriate to 
introduce the new independent variables 

1fY T=T-; k 1(Y)dY, 

Yo 

(3.6a) 

Y=EX, (3.6b) 

whence the amplitude equation becomes 

k 3 4 
2' c A A Q 2k2A2A* - z 7 Y- TT-""C 

(3.7) 

Notice that if we neglect the dispersion and nonlinear 
terms [in particular the former since we could account 
for the nonlinear term with a nonlinear dispersion 
relation; cf. (1. 6)], then the balance of the first terms 
on both sides of Eq. (3.7) gives us conservation of 
wave action, i. e., c2 kAA * = const. As the caustic is 
approached k 0:: ,; - X and thus fA f 0:: (- X)-1/4, the usual 
WKB result. However, the neglected dispersion is 
0(k-3

) and clearly cannot be ignored; in fact in our 
model it dominates the term proportional to (c 2k)y. In
troducing the Y dependent change of amplitude 

A=(~)1/2.-.lB (3.8) 
f3 ck' 

and rescaling the Y coordinate 

(3.9) 

(3.10) 

The first term on the right-hand side is of order alY 
and so the following result is only valid for oiY« 1, 
i. e., 0 < a« 1 and Y = 0(1) for example. It is not valid 
all the way down to Y = O. Previous work5 has shown that 
if 

(3.11) 
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then 1)y= (k/k)1), which integrates to 

1)11)0 = klko• (3. 12) 

Also TO == - 4EW fn1)2 I c 2 k2) dy. This term arises from the 
BYT term in (3.10) and introduces an amplitude depen
dence into the phase of the amplitude of B. The corre
sponding u(X, T) is 

u(X, T) =E(~r/2 ~SeCh21)0 :0 (T+4EW ~fY ?dY) 
o 

xexp (- i~T +~ fY k(Y)dY+4i fY1)2 dY). 

Yo 0 (3.13) 

Note closely the somewhat unexpected result (the sur
prise only comes if one believes that the action c2kAA * 
is conserved) that the maximum amplitude of u(X, T) 
changes from one constant d2/(3)1/21)0/coko to another 
E(21 (3)1/21)01 c (O)ko as Y - 0, and does not undergo WKB 
enhancement! 

Since our next task will be to develop a solution in the 
neighborhood of Y = 0 to which we will match (3. 13), we 
will now give the asymptotic expression for the integrals 
contained in the phases of (3.13). In order to calculate 
these expressions, we assume that, close to Y = 0, 

n2=w2(1+2aY), c2=1, 

and k=(wlc)f-2aY "'wf-2uY. (3.14) 

The way in which n2 approaches w2 is important but only 
the value c2 at Y = 0 is required. The fact that we have 
taken dO) == 1 means that its value has been used to 
provide the original velocity scale in the problem. 
We find 

fY kdY- - :a (- 2ay)3/2 + C2> 

Yo 

1)2fY n2 
1)2 1 1 

~ (!kJdY- ~ 2aw (_ 2UY)1/2 +C4• 
Yo 

The constants are given by 

C ___ 1_ 1 +1 
1- 2aw (_ 2UY

O
)1/2 W 
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(3. 15b) 

(3. 15c) 

(3. 15d) 

(3. 15e) 
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(3. 16) 

and 

1;:0 w 
TO=- -::T;":k dY• 

E Yo c 
(3.17) 

Only TO, which measures the approximate time of 
travel of the pulse between Y = Yo and Y = 0, plays any 
substantive role in the subsequent analysis. 

4. NEAR THE CAUSTIC AT X = a 
Here we assume 

u(X, T) = EA(X, T) exp(- iwT IE) + (*) (4.1) 

and let c2 = 1, n2 = w2 (1 + 2aEXL The amplitude equation 
is then 

(4.2) 

It turns out, in a construction to be given in some gen
erality in Sec. 5, that if the term Arr can be neglected 
with respect to the term A xx , (4.2) can be converted to 
the canonical NLS equation. The condition that A TTl Axx 
is small is that aY is small. Thus this solution cannot 
be attached directly to Y = Yo = 0(1/17) but must be 
related to the initial pulse (301) through the inter
mediate solution described in Sec. 3. We find 

u(X T) =E - -sech217 X - -- - 2~ - -X (
2)1/227j _ (- aET2 _ ET ) 

, (3 w 2 w 

[ 
. T. ( 2~) x exp - zW E - zawX T + aw 

_ ia
2

wE (T+ 2~)3 +2i~2 ET +i¢J. (4.3) 
6 aw w 

We now write u(X, T) as given by (4.3) in terms of the 
variables of the intermediate solution. Note from 
(3.6) and (3.15), 

Matching amplitudes gives 

ii = 17owl ko. 

We may write the phase of the hyperbolic secant in 

(4.4) 

(4.5) 

(4.3) as 2~ (Xp -~O"E(T + 2Uaw)2 - X), where Xp is the 
penetration distance, i. e., the distance into the shadow 
zone X> 0 that the soliton travels before turning around. 
Using (4.4), this phase is 

w{ fJE[( 2~)2 ( 2~)( 1 )112\ 217oko Xp-T To+ aw +2 To+ aw T- aE (-2 a Y } 

-2 2T ( 112 2ay] Y + T" - -- - 2aY) - -::'[T --
aE a E E 

1130 J. Math. Phys., Vol. 19, No.5, May 1978 

+ T(- 2ay)1/2 - ~E rJ. 
On the other hand, the phase of the hyperbolic secant 
in (3.13) is 

21]0 ~ (T(- 2ay)1/2 + ~ +4EWC4(- 2aY)1/2). 
ko uho 

Note that the (- 2aYt1/2 singularity in f(1/c 2)dy is 
cancelled by the decreasing wavenumber I? 
= (wlc)(- 2aY)1I2. Thus 

X - - TO + - = --+ aE ( 2~)2 2E17
2 

p 2 aw ako ' 

2~ 
TO+ -=4EWC4 =C, 

aw 

(4.6a) 

(4.6b) 

which expressions determine the position and velocity 
parameters Xp and (- 4~) near the caustic. Note that 
the accumulated speed (- 40 is governed principally 
by the travel time TO' In fact, since TO is 0(1/E), 

- 4~ = 2awTo + 0(1) 

and to leading order 

Xp = 2E17Vall~. 

(4.7) 

(4.8) 

If the original pulse had frequency w + 2~OE, then the 
penetration depth is Xp = 2~o/aw + 2E17Vak~. 

We have defined the penetration depth Xp to be the 
point of furthest penetration of the amplitude into the 
medium. It is interesting that it also admits the follow
ing interpretation. Define the local frequency w(X, T) 
to be the negative of the t(=TIE) derivative of the 
oscillatory phase, 

w(X, T) =- EB T = w(1 +uEX)- 2(E170)2wlk~ + wV2/2, (4.9) 

(4. 10) 

to leading order, where V = - aE(T + 2Uaw) is the pulse 
velocity, Y = (1 - V2 / c2)-1/2 "" 1 + V2/2, and a is the fre
quency of the pulse in its own reference frame. Note 
that (4010) is simply the square root of (2.11) to the 
first approximation. In particular, w (Xp, Tp) = w, 
where Tp = - 2Uaw. Thus Xp, the penetration distance, 
is that point where the natural frequency in the medium 
n(X) - 2wll'~(Et)o)2 has increased to w, the external fre
quency or the frequency seen by an observer in the 
fixed frame. It is to be expected that if the barrier 
height n2 (X) should decrease before Xp , then the soliton 
would propagate through the barrier in a lossless 
fashion. In the following section, we demonstrate this 
to be the case for the example n2 = wZ(1 + 2aY - 171 y2). 

Note also that the local wavenumber K = EBx is given 
by 

K=- Euw(T+ 2Uuw) =wV, (4.11) 

which changes from plus to minus as (T + 2~/uw) in
creases through zero. By taking k = - (wi c)(- 2ay)I/Z 
in (3.14), we may verify that the reflected pulse is 
exactly the same as the incoming one with the velocity 
reversed. 

On the other hand, suppose the barrier n2 (X) were to 
continue to increase along DE (see Fig. 1) after Xp to 
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some point, L say, and then decrease suddenly to a 
value n~ below w2• Although one would not obtain loss
less transmission of the original soliton, there would 
be energy available in the region x> L for the crea
tion of further wavepackets due to the effect of the 
leading edge of the soliton penetrating into the free 
wave zone. Indeed the stimulus at X =L would be given 
by u(L, T), and would give rise to solitons (under cer
tain conditions) and phonons in the region X> L. If L 
were large with respect to X p , then the shape of the 
pulse would be approximately constant in amplitude 
E(2/j3)1/2. (2770/ko) expl- 2770(w/ko)(L - Xp)] with the phase 
exp[-iawL(T + 2Uaw)] for the duration of the turn
around time T+2Uaw=[(2/aE)(L _Xp)]1!2. Note in par
ticular that the rate of exponential decay in the ampli
tude of u(L, T) depends on the amplitude of the incoming 
pulse in contrast to the situation in normal linear 
tunnelling. Thus for X> L [where n = nz, C = C2, k2 
= (1/ d)(w2 - n~)1/2] 

~40(Y -EL)\ 
2 c2k2 '} 

and D satisfies Dy - iDTT - 2iD2 D* = 0. To find the de
composition of the initial pulse u(L, T) in this region, 
we solve the Zakharov-Shabat eigenvalue problem 
(see Ref. 4) 

V1T + it V1 = Qe-iKT V2> V2T - i~ V2 = - QeiKTVb 

which is equivalent to (V1 = tP1 exp(- iKT/2), V2 
= tP2 exp(iKT/2), s = t - K/2) 

tP1T + is tP1 = QtP2, tP2T - is tP2 = - QtPt. 

whereQ=O, ITI>T2=[(2/aE)(L-Xp)]1/2, Q 
= 277oC2k2/CO • exp[- 2770(w/ko)(L - Xp)], IT 1< [(2/aE)(L 
- Xp) ]1/2. The condition for soliton creation is that 
QT2 >1T/2. 

Finally, we also verify that with the choices (4.6) 
and 1> the oscillatory phases of the solutions (3.13) 
and (4.3) match. The oscillatory phase of (3.13) is 
(leaving out the factor i) 

+ const. (4. 12) 

Using (4.4), (4.5), and (4.6), the oscillatory phase of 
(4.3) is 

- wT _ ~a2WE (_ -::h (- 2aY)3/2 + 3(T+C)::b (_ 2aY) 
E a E a E 

_ aWY(T+C)_~(_2aY)3/2 
E 2E a 

+ 277~ ~E (T + TO - ~ (- 2aY)1/2) + 1>. 
ko aw 

(4. 13) 

Add the second and seventh terms and obtain - (w/ 
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3E2cr)(_ 2aY)3/2 which matches with the second term of 
(4.12). The third and sixth terms in (4.13) cancel. The 
terms proportional to the amplitudes match to leading 
order. The constant terms are matched to 1>. The 
remaining terms may be neglected to the order of 
the approximation used. 

5. A PARABOLIC BARRIER 

We now examine the case (the branch DF, Fig. 1) 
when 

=W2[1+ ~: -at (Y- :tYJ, (5.1) 

where both cr, at are small and a2/a 1 is also. 
case the amplitude equation is (c2 = 1) 

In this 

- 2iwA T - EAxX+EATT 

= - 2aw2XA - 2(- at w2 /2)X2A + J3Ew2A 2A *, 
which under the transformation S = ET /2w, A 
= [(2/J3)t/2/w]B becomes 

B s - iB xx - 2iB2 B* = - 2i("iXB - 2iiYX2 B 

(5.2) 

(5.3) 

with o.=aw2/E, a=-atw2/2. The following change of 
variables, 

x =X + a(S), t = s, 
(5.4) 

B =C(x, t) expliXE + i(aE + F)], 

with a, E, and F functions of S (or t) reduces (5.3) to 

Ct - iC xx - 2iC2C* =- 2iax2C 

[here we have dropped the O(E2) terms in (5.3)], 
provided 

(5.5) 

a' + 2E =0, (F + aE)' =- E2 +2aa2, E' =- 20. +4iYa. 

(5.6) 

Note that if iY (or at)=O, E=-2aS=-awT, a 
= 2o.S2 = aET2/2, and F + aE = - ~ 0'2S3 = - ~a2wET3, and 
(5.5) is the canonical NLS equation which admits an 
exact solution. The fact that (5.3) with the gradient 
term proportional to X (the first term on the right
hand side) is integrable was first noted by Chen and 
Liu 1 using the inverse scattering transform method 
directly. The transformation used above is a much 
neater way of achieving the same result. Now we will 
treat a as small (i. e., at small) and use the perturba
tion theory result (A4) given in the Appendix. If 

C(x, t) = 2B sech2~(X - x) 

x exp(- 2ih - 4i n2 dt + 4iWt + i~), (5.7) 

then~t=O, xt =-4L ~t=2ax. Thus 

x = Kl exp[wl!2(T - Toll + K2 exp[ - Ea\!2(T - TO)]' 
(5.8) 

where the time T is measured from TO the approximate 
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time of arrival of the pulse at X = O. But, x =X + a(S) 
and 

a(S) = 2~ [1- cosh2waV 2(S - 8)] 

(5.9) 

(simply note that a" = - 2E' = Baa + 40') which in the 
small time limit S - S - 0 (or for small a l ) reduces to 
2a(S -:5)2 which to leading order is the ~aE(T + 2Uaw)2 
term in (4.3). Thus the phase of the hyperbolic secant 
is 

2~(X(T) - a(T) -X) (5. 10) 

and the condition that the pulse will tunnel through the 
barrier is that the coefficient of the exponential with 
positive argument is positive. This coefficient is 
Kl + 0'/4a = K1 - a/2W1' It remains to determine K1 which 
we do by matching the constant term and term propor
tional to T - TO in the phase (5.10) to the constant term 
and term proportional to (T - TO) in the phase Xp 
-taE(T - TO + TO + 2Uaw)2 - X. We find 

Kl + K2 =Xp , Kl- K2 = (a/a}/2)C, (5.11) 

where C is the order one constant of (4.6). However, 
we have assumed a2 /a1 to be small and so K1 = K2 = 1Xp. 
Thus the lossless tunnelling condition is that 

Xp> a/Ea1 

or that 

Yp =EXp > a/al 

namely, the penetration depth Yp =2(E'rJo)2/ak~ is further 
into the material than the point Y = a/a 1 at which the 
potential barrier is maximum. If Xp < a/wj, then we 
expect the far side of the barrier to be influenced weak
ly by the leading edge of the soliton. 

6. CONCLUSION 

Our simple model has demonstrated that nonlinear 
tunnelling is very different from linear tunnelling. It has 
a broad range of potential application. For example, 
the supplementary heating of a Tokamak plasma from 
an r. f. source requires a fast electromagnetic wave 
(whistler mode) to propagate across an evanescent zone 
at the plasma edge and, at least for high temperatures, 
it may also have to tunnel across a second evanescent 
zone before it reaches the region of the lower hybrid 
resonance. 8 It would be of great value if one could 
design the incident pulse in such a way so as to achieve, 
if not total, then at least partial penetration of the 
barrier region. One may be assured that if the pulse is 
at all nonlinear and confined to a narrow spectrum (and 
in the plasma heating problem there are solid reasons 
for both these assumptions), then the NLS equation and 
its modifications obtain and the analysis of this paper 
applies. Indeed the canonical character of the NLS 
equation [it applies to those situations which are (a) 
weakly nonlinear, (b) almost monochromatic (c) strong
ly dispersive, (d) one-dimensional] ensures the broad 
applicability of the nonlinear tunnelling ideas. It is 
worth stressing that the fact that the NLS equation is 
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almost integrable is important for it allows us to verify 
that the pulse is only slowly modulated as it traverses 
the region of gradual field gradients and that it is not 
totally scattered. The excitation of other modes (for 
example, radiation) can be computed (see Ref. 5). On 
the other hand, we do not yet know how much effect the 
lifting of the "almost integrability" condition might have. 
There are several examples of solitary pulses which 
are solutions of nonintegrable systems (such as the 
cp4 model of field theory) which display a remarkable 
resilience (scatter only slightly) even in the presence 
of strong perturbations. 

However, there are situations for which the ampli
tude limitation can be lifted with confidence; for ex
ample, the class of problems (see Refs. 1, 9) for 
which the sine-Gordon equation obtains. It is reason
able to expect that breathers of all amplitudes can 
tunnel. In the superconductivity context (the Joseph
son junction), the breather carries units of the first 
magnetic moment J~~x B • ydx (here x is the direction 
of propagation, z the direction of current flow across 
the junction, and y the unit vector in the perpendicular 
direction) into the insulator. The breather has zero 
magnetic charge as B· Y 0: au/ax and u(X, T) - 0 as 
X - ± 00. Nevertheless, once inside the insulator, the 
breather can be pumped (see Ref. 5) to the energy re
quired to cause it to split into a fluxon-antifluxon pair. 
The frequency of the breather decreases to zero (and 
therefore its tunnelling capability increases) with 
increasing amplitude (or energy). 

There are several features of the analysis which de
serve further comment. First is the fact that, once 
the soliton is formed, its amplitude undergoes only a 
weak change as the caustic is approached. This would 
suggest that the groups of "giant waves" sometimes 
observed in various parts of the ocean are less likely 
to be the result of adverse currents (which cause a 
caustic to occur) as suggested by SmithlO (see also 
Peregrine and Thomas l1 ) and more likely to be simply 
the result of the focussing of a wavetrain into soliton 
pulses. (These can occur provided there is some wave
guide action to suppress their instability to disturbances 
which depend on the perpendicular coordinate. ) With 
minor modifications, the previous analysis will also 
apply to this situation. 

A second mathematical feature of considerable inter
est is the fact that although the NLS equation is canoni
cal it fails, to the order of the approximation involved, 
to account for amplitude dependence in the velocity of 
the pulse amplitude and after all, it is the pulse ampli
tude velocity which is the nonlinear analog of group 
velocity and therefore the velocity of energy propaga
tion. Because of this, it may be necessary in a variety 
of situations other than the one considered in this 
paper to inClude the iOEqxt term in order to model more 
faithfully certain propagation characteristics of the 
system being approximated. 

Many open problems remain. In particular it would 
be useful to analyze the potential tunnelling of nonlinear 
pulses through sharp or discontinuous gradients in the 
field parameters. In the absence of analytical machin
ery, a numerical investigation may prove to be the 
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most fruitful approach. One possibility is to study the 
propagation of lattice waves (say for the Toda lattice) 
through regions of heavy masses. It is conjectured 
that the fundamental rule expressed by (1. 11) holds; 
namely, if the excitation frequency is greater than the 
nonlinearly adjusted natural frequency, then the pulse 
will tunnel in a lossless manner. It is also natural to 
ask what becomes of the radiation (the phonon modes). 
We might conjecture that for sufficiently steep field 
gradients, the WKB enhancement of a wavetrain could 
trigger the appearance of a secondary soliton pulse 
(in the language of the inverse scattering transform, 
a discrete eigenvalue can cross from the lower half 
complex wavenumber plane where it represents radia
tion to the upper half where it represents a soliton as 
the area criterion4 is satisfied). On the other hand for 
gradual field gradients, it is suggested that in order to 
describe the structure of the radiation the complex 
equation of Painleve type 

Axx - (2aw2/E)XA + i3n2A2A* =0, (6.1) 

obtained by ignoring the T dependence in (4.2), may be 
appropriate. Indeed for sufficiently large amplitudes one 
can expect to come arbitrarily close to the singular 
solution of this equation. Also, in parallel with the 
ideas of Ablowitz and Segur, 12 one can analyze the 
solutions of (4.2) by converting to the canonical 
NLS equation, and then analyzing the solutions with the 
exact theory (the Marcenko equations). The analog to 
the Airy function (which, using the exact modified 
Korteweg-de Vries equation theory, generates the 
solutions of the Painleve equation of the second kind) is 
the similarity solution of the NLS equation (see Benney 
and NeweUt3

). Some amplitude enhancement may be 
expected to occur for the phonon modes. 

APPENDIX 

These results are derived in Ref. 5. Let the leading 
order solution of 

(A1) 

be 
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q(x, t) = 21)sech21)(x - x) expl- 2i~x - 4i J (~2 _1)2) dt]. 
(A2) 

If F = - r(t)q, then 

1)t = - 2r(t)1), ~t = 0, xt = - 4~ + O(E). 

If 

F = - 2iax2q, 

then 

1)t=O, ~t=2o;, xt=-4~. 
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Cluster expansion for lattice gauge theories with fermions 
J. L. Challifour and D. Weingartena) 

Physics Department, Indiana University, Bloomington, Indiana 47401 

A cluster expansion is constructed for Euclidean lattice gauge theories including fermions. For sufficiently 
small values of the bare qauge coupling constant g -2 and the fermion propagation constant k, we prove 
the existence of gauge invariant infinite volume vacuum expectation values, convergence of Wilson's strong 
coupling expansion, and an inequality related to quark confinement. 

1. INTRODUCTION 

Osterwalder and Seiler1 have obtained a number of 
rigorous results for pure gauge theories on a Euclidean 
lattice2 by using the cluster expansion3 , now a familiar 
tool of constructive field theory. In the present article 
we will extend their results to gauge theories including 
fermions, 

Beginning with an arbitrary compact gauge group G 
on a finite subset A of the sites of ad-dimensional 
lattice we will prove: 

(a) If g-2 and k are sufficiently small, the limit A _ co 

exists (g is the bare gauge coupling constant and k is 
Wilson's2 fermion propagation constant). 

(b) The limiting theory possesses a unique vacuum 
and a mass gap. The vacuum is both gauge invariant 
and invariant under lattice translations. 

(c) The vacuum expectation values of the infinite vol
ume theory are analytic in complex g-2 and k at the 
origin. Thus Wilson's strong coupling expansion 
converges. 

(d) A class of states in the infinite volume theory 
with G=SU(N) and d=2, obey an inequality related to 
quark confinement. 2 

For simplicity we will consider only one flavor of 
quark; our results continue to hold, however, for any 
finite number of flavors, 

2. CLUSTER EXPANSION 

Let Zd be an infinite d-dimensional lattice with sites 
S and a finite subset A. L(A) denotes the oriented 
nearest neighbor links (bonds) and P(A) the oriented 
plaquettes in A, R stands for a nontrivial unitary 
irreduceable representation of the gauge group G, 
To each link l = (su 52) Fe L(A) we assign U(Z) E:: R with 
U(Su 52) = U(S2' 5,)* and to each site S assign a collection 
~;(,(s), ~jB(S) of Grassman variables where i, j are 
Euclidean spinor indices and Cl', {3 indices for R and its 
complex conjugate, respectively. {y,,} will be a set of 
Hermitian y matrices with {y", yv}=25"v' If j1 is a 
unit lattice vector in the positive Jl direction, for the 
links (5.,S±{1) define r(5,s±j1)=(11'y,,)/2, We will 
use J dJl F (.) for "fermion integration" over all Grassman 

a)Work supported in part by the U. S. Department of Energy. 

variables on the sites of Zd incorporating the term 
exp[- LsE:Zd if(s)~(s)] in addition to the usual expres
sion. Z,4 The gauge field measure Jl G consists of a pro
duct of copies of Haar measure on G for each 
independent U(Z), l E: L(Zd), 

The action A(A) is given by 
6 - -

A(A)=k(s s WL(A)~(Sl)r(Sll S2)U(Sll sz)>l1 (S2) 
1, 2 

+ g-2 (S1> 00" s~c p(A7r[U(5u 5z)U(Sz, 53 )U(S3' S4) 

XU(S4,5 , )], (2,1) 

For any J which is a continuous function of a finite 
number of gauge variables multiplied by a finite product 
of Grassman variables or a sum of such terms 

(2,2) 

where Z(A) is the partition function defined by the 
normalization (1) A = 1. The cluster expansion of (]) A 

is obtained by making replacements in (2,2) in favor 
of the variables 

Pp = exp{g-2 TrlU(sll S2) U(S2' 53) U(5 3, 8.,) U(81 , 51)]} - 1, 

P F PiA), (2" 3) 

Pm=exp[k\li;a r i /51l S2)U",6(5" 5z)W i6(s2)]-1, til (C Jl(A), 

(2.4) 

where iV1(A) denotes all m = (Z, y) for which le- L (i\) and 
y is a sequence of indices y = (i, Cl', j, j3). Combining 
(2,1)- (2.4) and resuming over sets of links and pla
quettes Q r: AI(A) U P(A) which are not connected to the 
support of J, S J leads t03,l 

<J)A=6jdf.i.c/dJlFJ n Pr{Z[A-(SQ,I'SJ)]/Z(A)}" (2,5) 
Q' " r,- Q' 

The sum is restricted to sets Q' ,- iv/(A) v P(A) which 
are connected to S] and we use So- to denote sites 
appearing in links or plaquettes of Q' 0 

Define (qF; qG] to be the set of Q' for which the number 
of elements I Qi n 1\1(A) I = qFl I Q' (1 PtA) I = qc' Then 
the proof of (a)- (d) relies on the following bound for 
the convergence of (2,5) for small ig-2 1 and I k I: 

Q'C~F; wcllJdJlddJlFJ rl10-Pr{Z(A - SQ' L SJ]/Z(A)}I 

(2.6) 

The norm IIJ II is the sum of the suprema of the gauge 
parts of J. The constants C 1 and c2 depend on d, and 
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C3 depends on d, G and R but none depend on J or A. 
To obtain this bound notice first that for any finite set M 

fdiJ.F n W;a«Sl)W j8(S2)=±1,0. 
(S1'8 2, it Ct, i,B)EM 

In addition, ! r ij(Sl, S2) " I U ",8(S11 S2) I ~ 10 When Ig21 
is small enough, Ippl~ bllg~21; so that for fixed Q' 

If diJ.Gf diJ.FJ r~Q.PT I ~ IIJ Illk IqF I b1g,2l qG• (2.7) 

Next, an estimate of the number of Q' for fixed qF 
and qG can be obtained as in Ref, 3. We find 

I [qF; qo1/ ~ 21 TJ 1 bgF+
qG, 

where T J is the set of pOints corresponding to links 
or plaquettes bordering Sand b2 is a' function of lattice 
geometry. For another constant b3 determined by lat
tice geometry we have 1 T] I ~ b3 1 SJ I. Finally, SQ' obeys 
I S", I ~ 2qF + 4qG' and following Ref. 1 we obtain the 
estimate 2- ls1 ~ IZ(A- S)/Z(A) /~ 21SI • These bounds 
combined with (2.7) and (2.8) lead directly to (2.6). 

The methods developed in Refs. 1, 3 and 5 applied to 
(2.5) and (2.6) yield exponential clustering 

I(JJ;>A-(JV>"«;)AI~B(J,C;)exp(-mlvl), (2.9) 

where] v is the displacement of] by a lattice vector 
v, and (2.9) then gives results (a)- (cL 

If A is chosen to be {x I Ix; k M;}, cyclic boundary 
conditions in Ref. 6 yield an expectation ( •.• )~ slightly 
different from the one discussed so far. By a simple 
adaptation of the procedure used in Refs. 1 and 3 to 
prove the existence of the infinite volume limit of 
(O>')M however, one can also show that, as A - Zd, 
(J >~ - (J) A uniformly in complex k and g-2 in a neigh
borhood of the origin. Thus lim (J)~ also exists and 
is identical to lim(J)A' 

3. QUARK CONFINEMENT 

For the expectation with cyclic boundary conditions 
(.oo)~ with d = 4 and G== SU(N), properties of the physical 
Hilbert space and transfer matrix have been obtained 
by Liischer6

• An obvious extension of Liischer's work 
can be carried through for arbitrary d. Using the results 
in Ref. 6, combined with our propositions (a) and (b), we 
can define, in the standard way, a physical Hilbert 
space H and transfer matrix T for the infinite-volume 
theory. A larger space /l::l H will also be needed. In 
the gauge with U(s, S ± J1) = 1, where iJ. is the time 
direction, a basis for H can be represented by gauge 
invariant polynomials in the variables w(s), \lies), 
U(s, t) with time components s") tiJ.~ ° while a basis 
for II can be represented by polynomials in nonnegative 
time variables without the restriction of gauge invari
ance. T is interpreted as exp(- H) for the lattice 
Hamiltonian H. 

Quarks are confined if none of the states in H can be 
interpreted as including one or more quarks moving 
freely separated by a large distance from all other physi
cal particles in the state. We will now prove an in
equality which, for d == 2, suggests that quarks are con
fined but is weaker than a full proof of confinement. 
For d> 2, the inequality continues to hold but is not 
directly related to confinement. The proof will be 
given for arbitrary d. 
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Let J be a polynomial in zero-time variables repre
senting a nonnull vector in H. Choose a fermion in 
J and move it progressively farther away from the 
remaining sites in] introducing in the process addi
tional U(s, t) needed to maintain gauge invariance. 
In particular, suppose J has the form L:,,\lijo,(s)J a' 
and let J (n) be 

J(n)= 6 \lila< (s) 
0::1,0"., an n n 

(3.1) 

with all the sites s1> " • ,sn distinct from each other 
and from the sites in J a and all at time zero. An ex
pression similar to J (n) with a Wi a instead of \Ii I a< 

moved away from J" can, of course, also be treated 
by the methods used here, as can more general con
nections between So and s. We require L:,,(J ", J a) 

> 0, where (, .• , •• , ) is the inner product of H, Let 
PtE) be the projection onto the subspace with energy 
less than E. We will prove 

(J (n), peE)] (n)) 40 c{J (n), J (n)) exp(- An) (3.2) 

for a constant C independent of n and a constant A 
independent of J and E for values of k and g2 in the 
strong coupling regime. In other words we will show 
that the total probability that a normalized state pro
portional to] (n) happens to have energy less than E 
falls at least exponentially with n. 

For d=2, there is only one possible ](n) in (3.1) with 
S1'" sn all distinct from each other, and using the 
condition U(s, s') ==- U(s', s)* it is not hard to show that 
this] (n) incorporates the only possible gauge field 
configuration comhining ~Ia(s.l and]" into a gauge 
invariant state. For d > 2, on the other hand, an infinite 
number of different states can be found in (3.1) and 
quark confinement requires at least a proof of (3.2) 
for a state in (3.1) and quark confinement requires 
at least a proof of (3.2) for a state given by an arbi
trary superposition of such] (n). It is preCisely by 
forming such superpositions in an unconfined theory 
with d> 2 that one would expect to be able to separate 
out a quark without expending large amounts of energy. 

To obtain (3.2) it is sufficient to show 

(J (n), T] (n» ~ C'(J (n), ] (n)) exp(- An), (3.3) 

By definition of T and the phYSical inner product 

(3.4) 

where ]l(n) is J(n) displaced from siJ. =0 to s" = 1 
and (oo.)c denotes a conjugations. An upper bound on 
(3.4) results by applying the cluster expansion and the 
Peter-Weyl theorem? in the form f diJ.G U "'8(S, t) =0 
for all a, {3, (s, t) and noting that only those Q' arise 
in (2.5) for which qF + qG ~ n - c. Using (2.6) with 
11]"(n)Jl (n)/1 ~ IIJ 112 leads to (3.3) without a factor 
of (J (n), J (n» on the right side. 

To complete (3.3) a lower bound on (J (n), ] (n» is 
needed. Let] o(n) be the polynomial obtained from 
len) by replacing fermion variables </its), ~(s) by Fock 
space operators ~(s), ~+(s)yo with the anticommutation 
relations 
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{'l1 i ,,(s), <l)J8(t)}={<l)i", <l)jjl(t)}=O, 

{'l1 ;,,(s), 'lfjll(t)}= o;j(B-1 )s"w 

where 

Bsata=os/J ajl - ikU(s, t)"e~(os+.r.t +os-.r,t). (3.6) 

Then Luscher6 gives 

(J (n), J (n)) A 

=Tr{T~M.1N[J0(n)]*N[J0(n)J}/TrT~M.t, (3.7) 

where C •. , .• ')A is the inner product and T A the 
transfer matrix for the theory with cyclic boundary 
conditions in the volume A having 2M + 1 sites in the 
time direction. N( •• • ) is a normal ordering. Proposi
tion (2) of ReL 6 implies 

where fermions in J (n)C are contracted with fermions 
in J (n) according to Wick's theorem. 

The desired lower bound for (3.8) can be found by 
considering first those terms in which fermions of 
J"c. or J" are not contracted with any at sn' For each 
of these terms, carry out a cluster expansion and 
select Q' for which there exists a site Sj in (3.1) such 
that Q' does not connect any S k' k ~ j, to any S p l < j, 
or to a site in the support of J ". For a Q' of this sort, 
sum all the terms in (2.5) differing from the original 
only by the choice of gauge indices in fermion members 
Pm of Q' 0 The result has the form 

X = Y L:A88• Ba8" (3.9) 
e~ 

where Aa8' arises from components of Q' connected to 
Sk' k~ j, BtlB' from components connected to sp 1 <j, 
or to J "" Y is a ratio of partition functions and f3, f3' 
are gauge indices across site S j" Since R is irreducible 
with dimension D and both Aee, and B8B' are gauge in
variant, we have Aat3' =Ao8Jl, and Bllw = Bo llll," If these 
expressions are placed in (3.9), then since each 
U(sm' Sm+l) ·is unitary X becomes a set of terms contri
buting to a modified cluster expansion of 

L: Jrl( L: Yo;/lJ j"(~n)'li;~(Sn)me>A' (3010) 
contractiona 0:,13. j 

where the Q' in the cluster sum are connected either 
to the support of J e or to the sites Sk in (3.1). Let us 
compare (3.8) and (3010). The modified cluster expan
sion of (3.10) duplicates the cluster expansion of (3.8) 
for all Q' which contain a dividing site except those 
with contraction between site sn and J e or J a. For 
small k an expansion of B-1 in (3.5) and (3.6) shows 
the missing contractions are of O(k") while the common 
Q' include all terms with qF + qc '" n - 1. Moreover 
1IJ«nl] (n)lI '" IIJ 112 and 

II L; YO;j</!j,,(sn)i)!;a(sn)Jg]all"'DIIL;JDell. 
~~j 8 

Applying (2.6) we obtain a bound of O(k+g-2
),], uniform 

in A, on the difference between (3.10) and (3.8). Then, 
using exponential clustering, (2.9), we can approximate 
(3.10) 

(3.11) 
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Luscher's proposition(2)converts (3.11) to Ir1L",('li ;,,(s,), 
'P;,,(S,)LeO jl' J e) as A - Zd. Using translational invari
ance of the infinite-volume theory we obtain the following 
result. If k and g-2 are sufficiently small, for all zero
time polynomials J e in (3.1) and every € > 0 there 
exists an n(€) such that when n> n(E) 

\ 0 (n)9 J (n» - D-1 6 ('li;e,(s), 'l1;",(s)) 6 0 81 J e» I < Eo 
a jl 

If L"('li;,,,(s), 'lij,,(s)) l;jl(Je, J jl) > 0 we can conclude (3.3) 
holds 0 The first of these factors can always be made 
greater than zero by choosing k and g-Z sufficiently 
small but greater than zero so that La (lfja(sn)' 'V;",(s) 
is nearly given by the leading nonzero term in its 
cluster expansion. The second factor is greater than 
zero by assumptiono This completes the proof of (3.3). 

4. CONCLUSION 

A number of remarks might be useful concerning the 
limitations on the class of J (n) to which (3.2) applieso 
First of all, it seems likely that the set of vectors 
represented by polynomials in zero-time variables 
spans all of H 0 A similar result has been claimed for 
(<1>4)28, while for the finite volume lattice gauge theory 
it follows from Ref. 6 that the zero-time polynomials 
span H. Moreover, if we do interpret the zero-time 
'l1(s) and ii'(s) as quark field variables, it is not consis
tent to apply this same interpretation to 'l1(s) and iIf(s) 
with sI> > O. If Sf is a polynomial in s" = n > 0 fields we 
have Sf :::: mSf 0 for a corresponding s" = 0 polynomial 
Sf o· Then using the existence of a mass gap and the 
uniqueness of the infinite volume vacuum, it is easily 
shown that as n - co, mCj 0 becomes a multiple of the 
vacuum. 

The restriction LaO e' J e) > 0 we would expect is 
fulfilled by all J e arising from nonnull J. If the fermion 
field \I!/,,(s) pulled out of J is a field variable normal 
ordered to the left according to Ref. 6, then (J, J) > 0 
implies LaGe, Je) > 0 by a simple application of 
the Cauchy-Schwarz inequality. If iIflll(s) is normal 
ordered to the right, this argument fails, however for 
any particular Ja, 2:e(Jjl) > 0 can still be arranged if 
(J, J) > 0 by choosing k and g-2 sufficiently close to 
zero that the leading nonzero term in the cluster ex
pansion of Le(J 8, J 8) dominates. 
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Integral and intergroditTerential equations containing a small parameter are studied. An approximate 
solution is obtained and proved to be uniformly valid in t as the parameter tends to zero. 

1. INTRODUCTION 

Equations of integral and integrodifferential types, 
which contain a small or large parameter, occur in 
many physical contexts; see, for example, Refs. 1-4. 
In most cases, the exact solutions cannot be obtained 
or are in a complicated form; therefore we must resort 
to a form of approximation which is uniformly valid in 
the interval of interest. 

In this work, uniformly valid approximations are ob
tained for certain integral and integrodifferential equa
tions containing a small parameter. The equations con
tain monotonic increasing or decreasing kernels. Ref
erences 2, 3 in the past have obtained approximations to 
equations with particular kernels, and the integral equa
tions studied in Ret 5 contain a different class of 
kernels. 

In the course of this investigation, theorems from 
Refs. 5-8 are applied; Refs. 7, 8 are on qualitative 
behavior of Volterra integral equations. 

2. INTEGRAL EQUATIONS 

In this section, equations of the form 

f(t; E) = 1 - fo t K(E(t - T)}f( T; E) dT, (2.1) 

where E is a small positive parameter, are studied. 
(For simplic ity, the argument E will be dropped from 
the various functions from now on. Also K * f will be 
used to denote the convolution of K and f,) Let g(t) be 
the solution to the equation with the kernel pulled out, 

g(t) = 1 - K(Et) fo t g( T) dT. (2.2) 

It can be shown, under certain conditions on the kernel, 
that the error f(t) - g(t) tends to zero as E - 0, uniform
lyon [0, T], and f(t) - g(t) - 0 as t - 00. It would be as
sumed that all involved derivatives of K(t) are 
continuous. 

First note that g(l) can be solved. If, in (2.2), we let 

G(t) = 1/ g(T) dT, 

then 

G'(t) +K(El)G(t)=1 

and so 

G(t) = fo t E(T) dT/E(t), 

where 

E(t) = expU/ K(ET) dT]; 

therefore 

g(t) = 1 - K(Et)G(t). 

Properties of g(t) can be found under certain condi
tions on the kernel. The analysis used for studying the 
properties of g(t) is similar to that in Refs. 3, 5. 

In the following theorem, uniformity of the approxi
mation g(t) is proved for equations with positive de
creasing kernels, 

Theorem 2.1: If (1) K(t) > 0, (2) K' (t) < 0, (3) K(oo) 
=ktO, and (4) K'(t)/K(t) is nondecreasing [i. e., InK(t) 
is convex], then (l)f-g=o(l) as E-O, uniformly on 
[0, T] and (2) f(t) - g(t) - 0 as t - 00 fixed, for E fixed. 

Proof: Note first the following properties of g(t). 

(1) The fact that K' (t) < 0 implies that g(t) is always 
positive. 

This can be seen by differentiating (2.2) to obtain 

g'(t) = - K(d)g(t) - EK'(Et)G(t); 

therefore at any zero of g,g' is positive, but g(O) = 1, 
so g(t) > 0 for all t. 

(2) g(l) is absolutely integrable. From (2.3), 

G(oo) = lim[I/K(od)] = 1/ A. 
t-~ 

Therefore, 

fo ~ Ig(t) I dt = fo ~ g(t) dt 

= fo ~ G'(t)dt= I/A. 

The error f - g satisfies an integral equation with the 
same kernel as that for f(t) , but with source term 

¢ (t) = K(Ef) f/ g(T) dT- fot K(ET)g(t - T) dT; (2.4) 

therefore by convolution theoremS 

f(t) - g(t) = ¢ (t) + ¢ *1'. 

From (2,4), 

so 

¢(t)= fot [K(El) - K(ET)]g(t- T)dT, 

I ¢ (t) I = fo t [K(ET) - K(El) ]g(t - T) d T 

'" [K(O) - K(El)] fo t g(T) dT 

~ [K(O) - K(ET)]jO ~g(T)dT 

= [K(O) - K(ET)] , (1/ A) 

=0(1) as E-O, uniformly on [0, T]. 

(2.5) 
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By Theorem 2 in Ref. 7, f'(t) "" 0 and 0 <f(t) "" 1. So, 
from (2.5), 

If-gl ""0(1)(1 + fot If'(T)dT) 

=0(1)(1 + f(O) - f(t)) 

"" 0 (1) . 2 

=0(1) as E - 0, uniformly on [0, Tl. 

It can be shown that both f(t) and g(t) tend to zero as 
t - 00. Since f(t) is monotonic and bounded, f(oo) exists. 
By Equivalence Theorem 1.1.1 in Ref. 8, f(t) also 
satisfies 

f(t) = exp(- yt) - L * f, 
where 

L(t) = (a - y) exp(- yt) + E fo t exp[ - y(t - T) ]K' (ET) d T, 

a=K(O), y any constant. 

Since 

foro L(t)dt=-l +K(oo)/Y=-l +A/y, 

f(oo) = - f(oo)(- 1 + A/y), 

so that f(oo) = O. For g(t), the equation is 

g(t) = 1- K(d)G(t), 

since 

limK(d)G(t) = 1, g(oo)=O. 

Therefore, f(t) - g(t) - 0 as t - 00, for E fixed. 

The next theorem is on equations with positive in
creasing kernels. 

Theorem 2.2: If (1) K(t) > 0, (2) K'(t) > 0, (3) K(O) 
* 0, (4) K" (t) < 0 and (5) K" (t)/K' (t) is nondecreasing 
[lnK'(t) is convex], then (l)f-g=o(l) as E-O, uniform
lyon [0, T] and (2) f(t) - g(t) - 0 as t - 00, for E fixed. 

Proof: As before, note first some properties of g(t). 

(1) g(t) has exactly one zero. The fact that K(t) is 
positive and increasing implies that G(oo) = 0, and since 
G(O) = 0, there exists to such that 0 < to < 00 and G' (to) 
= 0, that is, g(to) = O. The uniqueness comes from the 
fact that K' is positive and the equation 

g'(t) = - K(Et)g(t) - EK'(d)G(t). 

(2) For g positive, g(t) is bounded by one, since g(O) 
=1. 

(3) For g negative, a bound on g can be obtained as 
follows. If t> to, then 

K( t) Jto 
ft g(t) = 1- E~t) E(T) dT+ E(T) dT, 

o ~ 

since 

and 

f
to 

E(to) 
E(T)dT= --( t) , 

o K E 0 

so 
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(t)=- K(d) 1tE( )EK'(ET) d 
g E(t) to T ~ T, 

(2.6) 

A second integration by parts yields 

f t E( )EK'(ET) d 
~ T~( ) T 

to E T 

_ E(l)EK'(Et) E(tO)EK'(EtO) 

- K3(Et) - K3(do) 

_ fl(~2K"(ET) _ 3~(ET)E2K'2(ET)) E(T)dT' 
K3(ET) K6(ET) , 

to 
therefore, from (2.6), 

(
/) __ EK'(d) + E(tO)EK'(do)K(d) 

g - K2(d) E(t)K3(EtO) 

_ K(El) f I 2(3K'2(ET) - K(ET)K" (ET) \ E( ) d 
E(t) 10 E K4(ET) ) T T. 

Since - K"/K' is nonincreasing, 

f l E(3K,2(ET) - K(ET)K"(ET)). E(T)EK'(ET) (iT 
K2 (E T)K' (E T) K3 (E T) 

10 

"" (3K,2(do)-K(do)K"(Efo)) It E( )~('(ET) d-
E /(2 (€fo)K' (do) T [{2 (ET) I, 

to 
so from (2.6), (2.7), 

I (1)1 '" EK'(d) + (3K'2(do)-K(do)K"(Efo)) Ig(L) I 
g . K2(El) E ~(EfO)K'(EtO) 

EK'(O) (3K'(0) K"(O) 1 \ I I 
oS K2(O) +E K2(0) - K'(O) K(O)) g(t) , 

(1 - 6) Ig(l) I 

d('(O) 
-c [(2 (0)' where 0 .~ 6 "1 for E small, 

I I
E: K'(O) 

g(t) ~1-6~(0) 

=0(1) aSE-O, uniformlyforfo'/, 

As in Theorem 2.1, the error f - g satisfies 

f(t) - g(t) = 1:> (t) + 1:> *f', 
or 

f(t) - g(t) = 1>' *f, 
where, from (2.4), 

1:>'(1) =d('(El) J~tg(T)dT+ [{(d)g(t) - K(O)g(l) 

-EJolK'(ET)g(t- T)dT. 

For 0 c, [ • to, 

I 1:>'(t) I ~ EK'(O)T+ [K(ET) - K(O)l + E1{' (O)T 

=0(1) aSE-O. 

For to ,<, ~ T, 

1:>' (I) = do to [K' (Et) - K' (ET) k(t - T) rl T 

+ E f/ [K' (E t) - K' (ET) I g (t - T) rl T 
o 

+ [K(Ef) - K(O)lg(t), 

11:>'(1)1 ~E1{,(O)T+EK'(O)T 1~6~~~i~i 

Rina Ling 

(2.7) 

(208) 

1138 



                                                                                                                                    

E K'(O) 
+ [K(ET) - K(O)]l_ {j K 2(0) 

==0(1) aSE-O. 

By remark after Theorem 1.2.3. in Ref. 8, If(t) I '" 1 
for E sufficiently small and so, from (2.8), 

I! - g I "" 0 (1) • T 

==0(1) as E - 0, uniformly on [0, TJ. 

It can be shown that f(t) - g(t) - ° as t - 00. By The
orem 1.1. 1 in Ref. 8, f(t) also satisfies 

f(t) == exp(- yt) - L *f, 

where 

L (t) == (a - 1') exp(- 1(1) + E fo t exp[ - y(t - T) ]K' (E T) d T, 

a==K(O), y any constant 

Let u(t) == 1- L * It; then 

f(t) == u(t) - y exp(- yt) * u. (2.9) 

By an appropriate choice of y (see the proof of Theorem 
1.2,4 in Ref. 8), we have L(t) > 0, L'(t) < 0, InL(t) is 
convex, so U' "" ° and ° <u(t) "" 1. Since u(t) is monotone 
and bounded, u(oo) exists. Therefore, from (2.9), f(oo) 

== 0. As is shown in Theorem 2.1, g(oO) == ° and so f(t) 

- g(t) - ° as t - 00, for E fixed. 

3. INTEGRODIFFERENTIAL EQUATIONS 

Integrodifferential equations of the form 

f' (t) = - mf(l) - E fot k (E(t - T»f(T) dT, f(O) = 1, (3.1) 

where E is a small positive parameter can be trans
formed into the integral equations studied in Sec. 2. 
The function g(t) will represent the solution to the equiv
alent integral equation with the kernel pulled out. In the 
following theorem, uniformity of the approximation is 
proved for equations of the form (3.1) containing nega
tive kernels k (I). 

Theorem 3.1: If (1) l?(t) <0, (2) m:> - IO' k(t)dt and 
(3) k(t)/(m + I~k(T)dT) is nondecreasing, then (l)f-g 

= 0 (1) as E - 0, uniformly on [0, T] and (2) f(t) - g(t) - ° 
as 1- 00 , for E fixed. 

Proof: (3.1) can be written in the form 

f(t)=l- fot K(E(t- T»f(T)dT, 

where 

K (t) = m + fo t !? (T) d T. 

The above kernel K(t) satisfies all the hypotheses of 
Theorem 2.1, K(l):-> 0, K' (t) < 0, K(oo) *- 0, and K' /K is 
nondecreasing. The conclusion now follows. 

Some examples of kernels k(t) that satisfy the 
hypotheses of Theorem 3.1 are k(t) = - e-t and k(t) 
= - 1/ (1 + 1)2, for any m :-> 1. 

In the next theorem, Eqs. (3.1) with positive de
creasing kernels k (t) are studied. 

Theorem 3.2: If (1) k(t» 0, (2) k'(t) <0, (3) m>O and 
(4) k'/k is nondecreasing, then (l)f-g=o(l) as E -0, 
uniformly on [0, T] and (2) f(t) - g(t) - ° as t - 00, for 
E fixed. 
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Proof: As in Theorem 3. 1, (3. 1) is written in the 
form 

f(t) = 1 - fo t K(E(t - T»f( T) dT, 

where 

K(t)=m + fot k(T)dT. 

The fact that the above kernel K(t) satisfies all the 
hypotheses of Theorem 2.2 leads to the conclusion of 
this theorem. 

Some examples of kernels k (t) that satisfy all 
hypotheses of Theorem 3.2 are k(t) = e- t and k(t) 

= 1/(1 + f). 

In the remaining part of this section, we consider 
another class of integrodifferential equations, of the 
form 

F'(t)=-oo-dotk(t- T)F(T)dT, F(O)=I, (3.2) 

where 0 0 is a constant source term and E is a small 
positive parameter. Let f(t) be the solution to the cor
responding homogeneous equation, 

f'(t)=-Efotk(t- T)f(T)dT, f(O)=1. (3.3) 

When k (t) = 1/ (1 + t), (3. 2) arises in cosmic ray trans
port. 2 And (3. 3), with k (t) = 1/ (1 + t), has been studied 
in Ref. 3. 

The next theorem in this work is on (3.3) for a cer
tain class of kernels k(t). Use will be made of the the
orem in Ref. 5, in which the integral equation studied 
is of the form 

f(t) = 1- dot K(t - T)f(T) dT 

and g(t) is the solution to the equation 

g(t) = 1 - EK(f) fotg(T) dT. 

It is now stated here. 

Theorem: (1) If K(t) '-0, t'>O, (2) a/(t+b)~K'(I) 
""c/(t+d), where a, b, c, and rl are positive constants, 
(3) -a/(t+b)2~K"(t) <0 and (4) K"(t)/K'(t) is non
decreasing, thenf-g=o(l) as E-O, uniformly on 
[0,00). 

So for (3.3), we have the following theorem. The 
function g(t) will represent the solution to the equivalent 
integral equation with the kernel pulled out. 

Theorern 3.3: (1) If a/(t+b)"'l?(t)'Sc(t+d), where 
a, b, c, and d are positive constants, (2) - a/(t+b)2 

""k'(t) '-0 and (3) !?'(t)/!?(I) is nondecreasing, thenf-g 
=0(1) as E - 0, uniformly on [0,00). 

Proof: (3.3) can be written in the form 

f(t) = 1- do t K(t - T)f(T) dT, 

where 

The conclusion follows from an application of the 
theorem in Ref. 5, 

Returning to the inhomogeneous problem (3,2), let 
h (t) = g(t) - 0 0 * g, where the function g(t) is the one cor
responding to Theorem 3,3. 
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Theorem 3.4: If the kernel k(t) in (3.2) satisfies all 
hypotheses of Theorem 3. 3. then F - h = 0 (1) as E - 0, 
uniformly on [0, TJ. 

Proof: By quadrature3 the inhomogeneous solution 
F(t) can be expressed in terms of the homogeneous 
solution f(t), namely, 

F(t) = f(t) - a o * f, 

From (3,4), the error F - h satisfies 

F(t) - h(t) = f(t) - g(t) - ao * (f - g), 

By theorem 3,3, f-g=o(l) as E - 0, uniformly on 
[0,00); therefore, 

1140 

IF - hi'" 0(1) + lao I To (1), for 0 '" h T 

=0(1) as E - 0, uniformly on [0, T]. 
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On the calculation of the probability density at the origin 
for an s -state 
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Phase-integral formulas for the probability density at the origin of an s -state are derived, on various 
assumptions as to the behavior of the potential in the neighborhood of the origin. In particular, the analog 
of the Permi-Segre formula is given for the case that the potential is regular at the origin. 

1. INTRODUCTION 

In a previous paper l a simple phase-integral formula 
for calculating quantal expectation values without the 
use of wavefunctions, for the situation referred to in 
Fig. 1(a) of the present paper, was derived. In a later 
paper2 the formula was given in a more general form, 
covering all the three cases illustrated in Figs. 1 (a), 
(b), and (c). Though the wavefunction does not appear 
in the final expectation value formula 9 the derivation is 
based on the use of the phase-integral approximations 
described in Refs. 3 and 4, possibly modified (cL Ref. 
5 and pp, 126-31 in Ref. 6). Expressions for the 

Vmod (r)-E V(r)-E 

I~ 
o ',~Oj ro(r) 
I ~ EiPE@ 0 

B 

(a) (b) 

normalization factors of the phase-integral approxima
tions representing bound state wavefunctions in the 
cases of Figs. 1(a) and l(b) were given in Refs. 7, 8, 
and 9, respectively, and a general formula covering 
all the three cases, i. e., also case (c), was given in 
Ref. 2. 

In the present paper we shall use the above-mentioned 
results for deriving expressions for the probability 
density at the origin for a state with zero angular 
momentum, on the various assumptions concerning the 
qualitative behavior of the potential illustrated in Figs 0 

1 (a), (b), and (c) and explained in the caption to Fig. 1. 

V(r)- E 

---;;Y-----r 

I rc(r)@ 0 

0 rc @ 

(c) 

FIG. 1. Figure l(a) shows the qualitative behavior of the modified potential, V IlJ)d(r) , as assumed in the case treated in Sec. 2 A. 
The curve is drawn as in a typical radial problem, but V mod{r) may, alternatively, tend to infinity when r- + ao. The points to and 
tt are classical turning points in the generalized sense, i. e. , real zeros of Q~Od(r) _ Figures lIb) and l(c) show the qualitative 
behavior of the physical potential VIr) for the cases treated in Secs. 2 Band 2 C, respectively. There is in these cases only one 
classical turning point, fl' In case (c) the derivative dV(r)!dr may in particular be equal to zero at the origin, or may be nega
tive. The potential V(r} may alternatively tend to infinity when r-+ ao • The cuts in the complex r-plane are indicated by bold 
lines. The contours of integration occurring in the formulas pertaining to each case [(a), (b), or (c) I are also depicted. In case 
(n), the contour ro(r) is a nonclosed contour encircling the generalized classical turning point to, the broken part of this contour 
lying on the second Riemann sheet. The contour r A is a closed loop encircling both of the generalized classical turning points to 
nnd ft. In case (b) the contour r B is a closed loop encircling the origin and the classical turning point fl' In case (c) the contour 
r dr) is a nonclosed loop emerging from the real value r + iO on the upper lip of the cut, encircling the class ical turning point t I, 

and ending at r - iO on the lower lip of the cut. The particular contour r C<O) is also denoted by r c- The phase of Qmod(r) in case 
(a) and of Q(r) in cases (b) and (c) is chosen such that QlOOd = I Qmod I and Q = I Q I, respectively, on the upper lip of the cut in the 
classically allowed region, which means that the contour integrals of q(r) over r A • r B , and rc are positive. 
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For the case that the potential is regular at the origin, 
as depicted in Fig. l(c), the analog of the Fermi-Segre 
formula [the latter referring to the case in Fig. l(b)] 
is derived, 

We shall now quote some general formulas in order 
to make the present paper, at least to some extent, 
self contained. For further details we refer to Refs. 
1 and 2. 

Let the radial Schrodinger equation be 

d2u 
dr2 + Q2(r)u =0, (1) 

where, since l is assumed to be equal to zero, we have, 
with conventional notation, 

the physical potential V(r) being assumed to be at the 
most as singular as l/r at the origin. If we write a 
solution of (1) as 

1I =q-l/2(r) exp[±i r q(r) dr], (3) 

the phase-integral approximations3
-

5 (cf. also pp. 
126-31 in Ref. 6) on which the present treatment is 
based, are obtained by replacing the exact function 
q(r) in (3) by a truncated series, which for the 
(2N + 1 )th-order phase-integral approximation is 
written 

(4) 

Expressions for Yo (= 1), Yz, and Y 4 can be found in 
Ref. 3, for Ys and Ya in Refs. 7 and 10, and for all the 
functions Y Zn up to Y 20 in Ref. 11. By analogy with (2) 
we write (cf. Ref. 5 and pp. 126-31 in Ref. 6) 

Q~Od(r) = 2; [E - V mOd(r)]. (5) 

In the present paper we shall, in case (a), use modified 
approximations assuming Q~Od(r) to be chosen such that 

limr2[Q~od(r)-Q2(r)1=-t. (6a) 
r- 0 

In cases (b) and (c) we shall use unmodified phase
integral approximations which means that 

(6b,c) 

The phase-integral quantization condition covering all 
the three cases in Figs. 1(a), (b), (c) is given by 
Eq. (19) with (20a, b, c,)inRef. 2. 

2. FORMULAS FOR THE PROBABILITY DENSITY 
AT THE ORIGIN IN THE THREE CASES (a). (b), (c) 

If we normalize un(r) such that 

(7) 

the normalized three-dimensional probability density, 
<)!~(O), at the origin for an s-state is 
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(8) 

where the prime denotes the derivative with respect to 
r, This probability density can be exactly expressed 
in terms of the expectation value of dV(r)/dr by the 
formula [see, e.g., Eq. (16a) in Ref. 12 or Eq. (40a) 
in Ref, 2], 

2() m (- dV(r) 2( ) 
ljin 0 =2rrn2 J

o 
~un r dr 

=~(dV(r)) . 
2rrnz dr 

(9) 

[Note that in Ref. 2 the symbol <Pn was used to denote a 
one-dimenSional or a radial wavefunction, i. e., ljin in 
Ref. 2 corresponds to un in the present paper.J 

In the following subsections we shall discuss the cal
culation of 1ji~(O) by means of the phase-integral approxi
mations mentioned in the previous section. 

A. The potential VIr) is either regular or Coulomb-like 
when r-+O. A modification fulfilling (Ga) is used 

According to the assumptions made in connection with 
the differential equation (1), the physical potential V(r) 
is at the most as Singular as 1/r at the origin. In the 
present subsection we adopt no further restriction on 
the behavior of the potential in the neighborhood of the 
origin, and thus we assume that V(r) is either regular 
or Coulomb-like at the origin. We shall use modified 
phase-integral approximations with Q~Od(r) chosen 
according to (6a), which means that V moir) will 
qualitatively have the behavior shown in Fig. l(a) both 
when V(r) is regular and when V(r) is Coulomb-like 
at the origin. Due to the form of V moir) , there is a 
classically forbidden region (in the generalized sense) 
in the neighborhood of the origin. The function Q~Od(r) 
has thus two real zeros (generalized classical turning 
points) between which there is a classically allowed 
region (in the generalized sense) as illustrated in 
Fig. 1(a). 

Since the contour rAin Fig. 1(a) does not enclose the 
origin, the function dV(r)/dr is regular within r A' even 
when the potential V(r) is Coulomb-like. We can there
fore use formula (26a) in Ref. 2 for the expectation 
value of dV(r)/dy in the right-hand member of (9), 
obtaining 

where r A is the closed contour of integration depicted 
in Fig. 1(a). We recall that the contour r A shall 
enclose those zeros of q(r) which exist in the neighbor
hood of the generalized classical turning points, if the 
order of the phase-integral approximation used, i.e., 
2N + 1, is larger than unity (see the comments at the 
end of Sec. 2 in Ref. 2). 

For the sake of completeness we also give the 
expression for 1ji!(O) obtained by evaluating (8) directly 
by means of phase-integral wavefunctions modified 
according to (6a), instead of using (9). Except for a 
constant normalization factor, the wavefunction un(r) 
is, to the left of to and even in the neighborhood of the 
origin, given approximately by the expression (3) with 
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the sign in the exponent chosen appropriately such that 
the wavefunction decreases when y decreases and tends 
to zero. The normalized wavefunction is given by 
(29a) in Ref. 8, but can also be obtained by uSing the 
expression for the normalization factor given by Eqs. 
(23) and (25a) in Ref. 2. Inserting the normalized 
expression for un(r) into (8), we obtain 

</?(O) -...!.. lim exp(- 21 tIro(r) q(y) drl ) , 
n - 41T r~o r 2 Iq(r)1 fr dr!q(r) 

A 

where ro(r) is the nonclosed contour of integration 
depicted in Fig. 1(a), 

(11) 

Formula (11), involving a limiting procedure, looks 
more complicated than (10). Furthermore, formula (10) 
is based on the formula (26a) in Ref. 2 for calculating 
expectation values, and this formula in turn, as derived 
in Ref. 1, is based on the use of the quantization 
condition and not on the wavefunction itself. For 
reasons mentioned in Sec. V in Ref. 2, we may there
fore expect formula (10) to be more accurate than (11). 
In addition, when the modification (6a) is used, the 
case l = 0 is unfavorable, as concerns the accuracy of 
the phase-integral wavefunctions. [Cf. the comment 
below Eq. (11.28) on p. 120 in Ref. 13; see also 
the illustration of the accuracy of phase-integral 
wavefunctions in Ref. 14.] 

To illustrate what we have just said about the 
accuracy of (10) and (11) we shall evaluate <P~(O) for the 
Coulomb potential V(r)= - Ze 2 /r, choosing [cf. (6a)] 
Q2 d(r) - Q2(r) = - 1/(4r2). Formula (10) then 
yi~ids already in the first-order approximation the 
exact result [cf. Eq. (32) in Ref. 2], the higher-order 
contributions being zero, Applying formula (11) to the 
same potential and writing the result as follows, 

<P~(O} =kv[4,~(0)1.xactl (12) 

where v=l, 3,5 refers to the first-, third-, and fifth
order phase-integral approximation, respectively, 
we obtain 

k '" ~ (1_..!)1/2-n(1+...!..)1/2+n 
1 21T 2n 2n 

(13a) 

where e'" 2. 7183 ... is Neper's number, 

k3=kl exp (- 3~~:;! 1)) , (13b) 

(
8n6 

_ 611 4 
_ 9n2 

- 1) 
k5=k3 exP 45(4n2 -1? . (13c) 

The numerical results displayed in Table I show that, 
for the potential V(r) = - Ze 2/r under consideration, 
formula (11) is not particularly good, although an 
essential improvement is obtained, when one proceeds 
from the first to the third ordeL We also notice that, 
for a fixed order of approximation, the error is of the 
same order of magnitude for small as for large quantum 
numbers. According to what has been said above, we 
can expect formula (10) to be much more satisfactory 
than (11), in general, i.e., not only accidentally for 
the special case of the pure Coulomb-potential. 

In the present context, we also mention a formula 
for the probability density at the origin derived by 
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TABLE I. Relative error, kv -1, of formula (11) for IP~(O) in 
the case of s-states in the potential V(r) = - Ze 2/r, calculated 
in the first-, third-, and fifth-order phase-integral approxi
mation by means of (13a) , (13b), and (13c). 

n 

1 
2 

3 
4 
5 

Relative error of formula (11) for 1/J~(0) 
First 
order Third order Fifth order 

0.12 6 x 10-3 -0.8 xl0-3 

0.16 -4.0 x 10-3 -1.6 X 10-3 

0.171 -4.4 x 10-3 -1.72 x 10~3 

0.173 -4.50 xl0-3 -1.75 x 10-3 

0.174 -4.52xl0-3 -1.759 x 10-3 

0.176 -4.53xl0-3 -1,764xI0-3 

Young and Uhlenbeck [see Eq. (8) in Ref. 15] 
with the aid of the first-order JWKB-approximation. 
Their formula differs from our formula (11), taken in 
the first-order approximation, because they determine 
the normalization factor directly by integrating the 
square of the JWKB wavefunction over the appropriate 
interval. This procedure leadS to a formula in which 
certain unnecessary terms appear, which cause the 
formula to be less accurate than the first-order version 
of (11) for small quantum numbers, while when n- oo 

the additional terms disappear and the formula becomes 
of the same accuracy as (11), specialized to the first 
order. According to the figures given in Ref. 15 for the 
case of hydrogenic atoms, the relative errors for 
n=l and n=2 are 0.30 and 0.20, respectively, to be 
compared with our results 0.12 and 0.16, respectively, 
given in Table I. (For further comments on the 
convenience of using more sophisticated formulas, 
not involving wavefunctions, we refer the reader to 
Ref. 2.) 

B. The potential V(r) is Coulomb-like and attractive 
close to the origin. The unmodified expression for 
q(r) is used 

In the neighborhood of the origin the physical potential 
V(r) is assumed to be attractive and to correspond to 
the potential of a point charge with charge number Z 
situated at the origin, Thus, as r tends to zero, the 
potential V(r) behaves as -Ze 2/r, where e is the 
electron charge, and hence Q2(r} behaves as 2mZe2/ 
(n2r)=2Z/(aor), where ao=n2 /(me 2

} is the Bohr radius. 
The qualitative behavior of V(r} is depicted in Fig. 
l(b). 

In the treatment of the analogous sit'lation in Ref. 2, 
we used the modification Q~Od(Z) = Q2(Z) + l(l + 1)/ zz, 
which, in the particular case of l = 0 under considera
tion here, corresponds to the use of unmodified 
phase-integral approximations. 

It should first be noted that, on the assumptions just 
mentioned, we cannot obtain a phase-integral expres
sion for </!~(O} by using the relation (9) for the following 
reason. Since dV(r)/dr behaves as Ze 2/r at the origin, 
the auxiliary potential [see Eq. (13) in Ref. 1], which 
would be used in the derivation of a phase-integral 
formula for (dV(r}/dr), would be such that the 
q'lantization condition (19) with (20b) in Ref. 2 would 
no longer be valid if the actual physical potential were 
replaced by the auxiliary potential in question. Thus, 
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the procedure devised in Ref. 1 does not apply to the 
derivation of a phase-integral formula for < dV(r)/ dr) 
in the present situation. Neither can we, since we use 
unmodified phase-integral approximations, obtain 
1jJ~(0) directly on the basis of (8) in a similar way as is 
possible in case (a) (cf. the previous subsection) and 
in case (c) (cf. the following subsection), because, as 
is well known, the unmodified phase-integral approxi
mations are not valid at the origin, when the potential 
has a Coulomb singularity there. 

In the case to be treated in the present subsection we 
start from a formula for the probability density at the 
origin, which was given in Ref. 9 as an intermediate 
step in the derivation in that paper of the Fermi
Segre formula. Thus, according to Eq. (16) with (14) 
in Ref. 9, we have 

(14) 

We remark, in passing, that by utilizing formula 
(21) in Ref. 2 for the level density, we obtain from 
(14) the Fermi-Segre formula [ci. Eq. (18) in Ref. 91 

1jJ2(0) =-L. dEn, 
n lra~e2 dn 

where dE/dn can be obtained from spectroscopic 
data. 

(15) 

U sing the relation (25a) in Ref. 2 for the derivative 
with respect to the energy E in the right-hand member 
of (14), we obtain 

1jJ2(0)=2Z ( r ~)-1. 
n ao JrBq(r,En) 

(16) 

If dE/dn is known from experiment, one can obtain 
the probability density at the origin from (15), without 
knowing the analytiC form of VCr), except that VCr) 
shall behave as - Ze2 /r close to the origin. On the 
other hand, if we know the analytic form of VCr) 
completely, i. e., not only its behavior at the origin, 
we can evaluate the right-hand member of (16), 
obtaining the probability density at the origin without 
recourse to experimental data on dE/dn. For such 
an evaluation the simplification achieved by the use 
of Eq. (25a) in Ref. 2 in the step from (14) to (16) is 
essential. 

For the pure Coulomb potential VCr) = - Ze2 /r as 
well as for the potential V(r) = - y Z e2

/ (err - 1), where 
y is a positive constant, both formulas (15) and (16) 
yield exact results already in the first-order approxi
mation, the higher-order contributions being zero o 9 

For the important case that VCr) is attractive and 
Coulomb-like in the immediate neighborhood of the 
origin, both formula (10), which is based on the use of 
the modification (6a), and formula (16), which is based 
on the use of unmodified phase-integral approximations, 
are applicable, and, as already mentioned, both yield 
exact results for the particular case of the pure 
Coulomb potential V(r) = - Ze2/r, if in (10) one uses 
the modification Q~oir) = Q2(r) - 1/(4r). Formula (16) 
is simpler than (10) and has the advantage of being 
directly related to the Fermi-Segre formula. 
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C. The potential V(r) is regular at the origin and 
Q2(0) >0. The unmodified expression for q(r) is used 

If the potential VCr) is regular and Q2(r) is positive 
at r=O, there is, when l=O, a classically allowed 
region from the origin to the classical turning point 
i1 as depicted in Fig o l(c). This figure is drawn with 
dV(r)/dr> ° at r=O, but dV(r)/dr may also be zero or 
negative at the origin. When dV(r)/dr is negative at the 
origin, we must add the requirement that the energy 
shall be well above V(O), in order that our single-well 
quantization condition be adequate. 

Let us now derive an expression for ~!(O) on the basis 
of (8). Solving the radial Schrodinger equation (1) with 
the aid of phase-integral approximations, and using the 
connection formula (21) in Ref. 4 to trace the bound
state solution from the classically forbidden region to 
the classically allowed region, and utilizing expression 
(23) in Ref. 2 for the normalization factor, we obtain 
the following normalized, approximate solution in the 
classically allowed region on the upper edge of the cut 

lln(Y)=2Cnq-l/2(r)cos(~{ q(Y)dr-~), (17) 
Jrc (rl 

the normalization factor, with the phase chosen con
veniently, being given by 

(
21i2 2 1 1 ) -I / 2 en = - - - q (y) dr , 
m aE 2 r E=E 

C n 

(17a) 

where the contours rc(r) and rc [=rc(O)] are those 
depicted in Fig. l(c). When we impose the condition 
lIn(O) = ° on the solution (17), we obtain the quantization 
condition [see Eqs. (19) and (20c) in Ref. 21 

Differentiating (17) with respect to r and using the 
quantization condition (18), we obtain, from (8) and 
(1 7a), the formula 

(18) 

(19) 

where, here as well as in the following formulas, q(O) 
means q(O + iO). 

Using formula (21) in Ref. 2, we obtain from our 
Eq. (19) the formula 

<1:2(0) = mq(O) dEn (20) 
n 21T 2n2 dn' 

which is analogous to the Fermi-Segre formula (15), 
the latter formula applying to the case that the potential 
VCr) is Coulomb-like at the origin. Thus, according to 
(20), if dE/dn is known from experiment, it suffices, 
in the present case of a potential that is regular at the 
origin, to know the analytic form of V(r) at the origin, 
such that q(O) can be obtained from (4), in order to 
calculate 1jJ!(O). The requirement that q(O) must be 
known in the present case corresponds to the require
ment in case (b) that the factor Ze2

, determining the 
strength of the Coulomb singularity at the origin, 
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must be known in order that one shall be able to obtain 
fn(O) from the Fermi-Segre formula (15). 

On the other hand, if we use Eq. (25b) in Ref. 2 
for the derivative with respect to the energy in the 
right-hand member of (19), we obtain the counter
part of (16) in the preceding subsection, namely 

,/,2(0) = q(O) {1 dr + (1 - 15 ) 
'I' n 1T qr:;:-:EJ N. 0 

rc 'n 

X 6 (-1)1 - - . 
[

N-l (1 d)2f
+l 1 J }-1 

1=0 2q dr q2(r,En) r=o+io 

As regards the first, third, and fifth order, more 
explicit formulas can be obtained from (19) in the 
present paper and Eqs. (25b')-(25b'") in Ref. 2. 

In the special case that Q2, and hence also q2, are 
even functions of r, the differential operators in the 
right-hand member of (21), operating on 1/q2, yield 

(21) 

an expression which is zero at the origin. Instead of 
verifying this directly, we can realize it by noting that 
when Q2( _ r) = Q2(r) we may regard un (r) in (17) as an 
odd state wavefunction belonging to the potential well 
obtained by extending VCr) to negative r. Determining 
en in (17) by considering this extended potential for 
which the normalization factor, given by (23) and (25a) 
in Ref. 2, involves a closed contour integral (enCircling 
the turning points ± t 1 ), being twice the corresponding 
integral along r c, we find that (Ii~(O) will agree with the 
expression which (21) reduces to when the sum inside 
the square brackets is zero. Thus, 

2(0) q(O) (( dr )-1 . 2( ) 2() 
(lin =-1T- Jr q(r,E

n
) , If Q -r =Q r. 

c 
(21 ') 

Formulas (19)-(21') were derived on the basis of (8). 
Let us now consider the possibility of obtaining a 
formula for if!~(0) on the basis of (9). Since dV(r)/dr is 
regular within r c, we can use Eq. (28) in Ref. 2, 
which was derived from Eq. (26b) in Ref. 2, to obtain 
a phase-integral expression for (dV(r)/dr), and hence 
we can, alternatively, obtain if!~(0) on the basis of (9). 
Inserting that expression for (dV(r)/dr) into (9), we 
actually obtain a final formula which is identical to 
(21). Hence, in case (c), the accuracy of if!~(0), even 
when derived from (9), is determined by the accuracy 
of the function q(r), as given by (4), at the origin. This 
is to be expected, since the quantization condition in 
case (c), on which the expectation value formula 
pertinent to that case is based, was derived by 
imposing the condition that the wavefunction be zero at 
the origin. We had a different situation in Sec. 2 A, 
where the formula (10) for fn(O), derived on the basis 
of (9), was simpler and more accurate than the formula 
(11), derived on the basis of (8). 

Referring to the comments on accuracy made in 
Sec. V of Ref. 2, we draw attention to the fact that 
in formulas (10) and (16), which are capable of ' 
yielding exact results for the test cases considered, 
we have closed contour integrals, and the accuracy of 
1f,,(0) is not directly dependent on the accuracy or valid
ity of the phase-integral wavefunction in the neighbor
hood of the origin, as is the case with formula (21). 
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As a convenient test case for the formulas (20) and 
(21') for if!~(0) obtained in the present subsection we 
consider the s-states of the three-dimensional har
monic oscillator. As is well known, the energy eigen
values are obtained exactly from the first-order JWKB
quantiz at ion condition, i. e. , the condition (18) 
specialized to the first-order approximation. They are 
identical with the odd-state energies of the linear 
oscillator and are thus given by En = (2n + % )/i"w, 
n = 0, 1, 2, ... , where w is the angular frequency of the 
oscillator. The exact expression for </!~(O) can be 
obtained by utilizing well-known properties of the 
Hermite polynomials and evaluating the exact wavefunc
tion at r = O. The exact expression obtained in this way 
reads 

n=0,1,2,···. (22) 

Since the phase -integral quantization condition is exact 
for the harmonic oscillator, the approximate nature of 
(20) and (21') derives from the factor q(O), and both 
formulas yield the same expression, namely 

2 (mW)3 /2(4n + 3)1 /2 if! (0)= - --
n 1T/i" 1T 

[ 
1 19 ] 

x 1+ 4(4n+3)2 -32(4n+3)4 + ... , (23) 

n=O, 1, 2, ... 

where the three terms within the square brackets 
correspond to the first-, third-, and fifth-order 
phase-integral contributions, respectively. Formula 
(23) is identical to the result which is obtained by using 
Stirling's asymptotic expansion for the factorials 
occurring in the exact formula (22), and expanding the 
resulting formula in powers of (4n + 3)"2. By comparison 
with the exact formula (22) the relative errors of if!~(O) 
obtained according to formula (23) have been calculated 
for the eleven lowest eigenstates and are given in Table 
II. 

For a situation when (dV(r)! dr)T=O * 0, formula (21) 
has been checked by application to a linear potential, 

TABLE II. Relative error of I/J~(O), i. e. , [1jo~(0) -1/J~(O).xactl/ 
1/J~(O)e"""t' for s-states of a three-dimensional harmonic oscil
lator, calculated by means of (22) and (23) in the first-, 
third-, and fifth-order phase-integral approximation. 

Relative error of formula (21') for I/J~(O) 
n First order Third order Fifth order 

0 -2.3x10-2 4.4x10-3 - 2.8 X 10-3 

1 -4.9xl0-3 2.1 x10- 4 -3.2x10-5 

2 -2.0x10-3 3.8x10-5 -2.5xl0-6 

3 -1.1 x 10-3 l,lxlO-5 -4.0xlO-7 

4 -6.9xlO-4 4.5xlO-6 -1. 0 X 10-7 

5 -4.7x10-4 2.0x10-6 -::l. 2 X 10-8 

6 -3.4 x IO-4 1.1x10-6 -1.2xlO-8 

7 - 2. 6x 10-4 6.4 X 10-7 - 5.5 X 10-9 

8 - 2. 0 X 10-4 3.9x10-7 - 2. 6x10-9 

9 -1.6 x 10-4 2.6 X 10-7 -1. 4 x 10-9 

10 -1.4 x 10-4 1.7x10-1 -7.7x10-1O 
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for which the radial Schrodinger equation can be solved 
exactly in terms of an Airy function. 16 The agreement 
between exact results and results obtained from (21) 
is excellent, the relative error in the fifth-order 
approximation being of the order 10-4 for the ground 
state, i.e., for n=O, of the order 10-6 for n=1, and 
further diminishing with increasing values of the 
quantum number n. 
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A variational method is developed to study the linear and nonlinear Mathieu equations. For the linear 
Mathieu equation. various modes of the Mathieu functions. the characteristic curves, and the stability 
regions are found, which agree with the established results. The variational method is then applied to the 
nonlinear Mathieu equation. Approximate periodic solutions of various modes are found in a similar 
manner, and their stability also investigated. 

I. INTRODUCTION 

In a previous paper, 1 it was shown that the recursion 
relations to find the Mathieu functions can be obtained 
from the Mathieu equation by a direct variational 
method. Take the Mathieu equation 

(1) 

The solutions of the last equation are those which would 
make the functional 

J = it ~) 2 - (JIX2 - (3x 2 cOS2tJ dt, 

an extremum o If we take the asymptotic trial solution 
as 

x = =? + ~ AI< coskt + J;1B" sinkt, 

(2) 

(3) 

then the recursion relations for the Mathieu functions 2 

are obtained when we assume that the Ak'S and B,.'s are 
constants. 

In this paper, we shall explore the potentials of the 
variational method further by treating the AI< 's and 
B,.'s as slowly varying functions of time o It may then 
be shown that the well-established stability criterions 
can also be obtained by the variational analysis. The 
same procedure is then applied to the nonlinear 
Mathieu equation 

d 2x dt + «(JI + (3 cos2t)x + rx3 = 0. (4) 

Various modes of the periodic solutions and their 
stability are studied by the direct variational method. 
The results may shed light on the role played by the 
nonlinear effects in problems with parameteric 
resonanceo 

II. LINEAR MATHIEU EQUATION 
In Eq. (3), let us take the A,.'s and B,.'s as slowly 

varying functions of time. Then. using the procedure 
developed previously, 1 we obtain the approximate 
expression of the functional J for large t, 

J'"J:t dt{-~[(~) 2 + (JIA~J - t(3Ai 

+ ~~[(nAm - d:tm) 2 - (JIA~ ] - ~(3P'o AmAm+2 + t(3B~ 

+ ~~[~nBm + d:; r -(JIB~J - teEl BmBm+2}' (5) 

The variation with respect to Am and Bm thus leads to: 

(6) 

_!!...(dAm +mB ) +m(mA _ dB m\ 
dt dt m m dt"} 

+ (-aAm-~(Am_2+Am+2»)=0, m",2, (8) 

-:t (d!l -A) + (d~l + BI) + (- (JIB I +~(BI - B3 ») = 0,(9) 

and 

d (dBm ) ( dAm) -- -- -mA +m mB +--dt dt m m dt 

+(-(JIBm-~(Bm_2+B"'+2~ =0, m"'2. (10) 

When the Am's and Bm's are constants, we recover the 
usual recursion relations. In the following, we shall 
study the case that {3 is small and concentrate on some 
specific modes for a more detailed study. In particular, 
we shall study the {eel> sel } and {ce2 • se2} modes for 
illustration. 

A. The mode with m = 1 

In Eq. (3), if we simply takes x=AIcost+Blsinl, 
then we obtain only Eqs. (7) and (9), with A3 and B3 
missing. Since Al and BI are assumed to be slowly 
varying functions of time, let us neglect terms with 
second derivatives with respect to time. Then we obtain 

(11) 

and 

(12) 

From Eqs. (11) and (12), it is clear that the system 
has the following equilibrium points: 

(0): AI=BI=O, i.e., the null solution; 

(S1):A1=0, B1arbitrary, and (JI=1+{3/2. (13) 

This corresponds to the mode seI> and (13) is the 
equation of the characteristic curve (JI([3) for this 
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mode up to 0(f3). 

(C1): B[ = 0, Al arbitrary, and 

QI = 1 - f3/2. (14) 

This corresponds to the mode eel' and (14) is the 
equation of the characteristic curve QI({3) for this mode 
up to O(f3). If we want to compute the relation QI({3) to 
the next higher order of (3, then we should include A3 
and B3 in our trial solution and hence also the equations 
with m = 3. The higher the orders of (3 we want to 
include, the more the equations we need to consider. 

The stability of the equilibrium points can be 
investigated readily from Eqs. (11) and (12). Let a 1 

and b1 be the perturbed quantities from the equilibrium 
values of Al and Bl respectively. Then for each 
separate case we have: 

db 
(0): - 2 d/ + [(1- QI) - f3/2]a l = 0, 

2
d
;/ +[(1-Ql)+f3/2]b1 =0, 

or 

d2a 
4 dt21 +[(1-Ql)2-(!3/2)2]a l =0. 

Thus the null solution is {stabtle
bl 

if 
uns a e 

(1 - QI)2 ~(~ r 
(15) 

(16) 

The stability criterion again agrees with the established 
resulL 3 

2
dal 

=0 dt . 

Thus a 1 = const, and b10:: t. The equilibrium point 
(Sl) is unstable. This is again consistent with the 
established result. 

Similarly, the equilibrium point (Cl) is also found to 
be unstable. 

The characteristic curves for the modes se1 and eel 
as well as the stability region for the null solution are 
shown in Fig. 1. 

!3 

0= 1+4 

----------------~~~~--------------o-I 

~ % Stobie region 

0= 1- Ii 
2 

FIG. 1. Characteristic curves and stability region for the 
null solution of the m = 1 mode. 
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!3 

0-4 

~ ~ Stable region 

FIG. 2. Characteristic curves and stability region for the 
null solution of the m = 2 mode. 

B. The mode with m = 2 

For this mode, let us try to obtain results which are 
valid up to 0(f32). Thus, we shall take the trial solution 
as 

A 
x = ~ + A2 cos2t + A4 cos4t + B2 sin2t + B4 sin4t. 

Then we obtain Eqs. (6) and the equations corresponding 
to m = 2 and m = 4 from (8) and (10), with As and Bs 
miSSing. If terms with second derivatives with respect 
to time are neglected, we have: 

Mo + (3A2 = 0, 

_4
d
!2 + (4-Ql)A2-~(Ao+A4)}=0, 

_8
d
!4 +(32-Ql)A4-~A2}=0, 

4
d
:; +(4-Ql)B2-~B4}=0, 

8 d:: + (32 - QI)B4 - ~ Bz) = 0. 

We consider the following equilibrium points: 

(0): Ao=A2=A4=B2=B4=0, i.e., the null solution; 

(17) 

(18) 

(19) 

(20) 

(21) 

(S2): Ao =A2 = 0, B4 = 32 ~ 2Q1 B 2 , and QI = 4 - ~~ + 0(f34). 

(22) 

This solution corresponds to the mode se 2 , and (22) 
is the equation of the characteristic curve up to 0«(32). 

(23) 

This solution corresponds to the mode ee2, and (23) 
is the equation of the characteristic curve up to O(f32). 

The stability of these equilibrium points can be in 
investigated in the similar manner as the previous 
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case. It is easy to see that the equilibrium points 
(S2) and (C2) are not stable. For the equilibrium point 
(0), let us take the perturbed quantities to be propor
tional to evt , then we can obtain the characteristic 
equation as follows, 

where 

C4 = (128)2, 

c2 =64[(32 - 20')2 + 4(8 - 2'1') (8 - 20' + :) + 4f32 J, 
c()= [(8 - 20' + :) (32 - 20') - f32] [(32 - 20')(8 -20') - p2J. 

Thus the solution is stable if and only if c4 , C 2 , and Co 

have the same sign. For small (3 and in the neighbor
hood of 0'=4, we have c 2 ",64 x (24)2, and 

co'" (24)2[0'_ 4 -k(32 + 0«(34)J[0'- 4 + {N48 + O(~)]. 

Thus the solution is stable if 

or 

fJ2 
0' > 4 + :&fF and 0' > 4 --

48 

(3" 0' < 4 + ih(32 and 0' < 4 - - . 
48 

The characteristic curves for the modes se2 and ce2 as 
well as the stability region of the null solution are 
shown in Fig, 20 They are consistent with the 
established result. 3 

III. NONLINEAR MATHIEU EQUATION 

The solutions of the nonlinear Mathieu equation (4) 
are those which would make the functional 

1 = fj (~;y -O'x2 
- (3x 2 cos21 - trx~ dt (24) 

an extremum, 

For the linear Mathieu equation, it has been 
established that the null solution is stable only for 
certain regions in the (0', (3) parameter plane. Athough 
periodic solutions can be found on certain characterisitc 
curves in the (0', f3) plane, yet these solutions are 
not stable. Whether the growth of such unstable solu
tions could be arrested by the nonlinear interactions 
is still an unanswered question, We hope the following 
investigation can shed some light on this difficult 
problem. The programs follow similar procedures as 
presented in the last section, Thus, we shall look for 
some approximate asymptotic periodic solution and then 
investigate the stability of these solutions 0 Again we 
shall study the case that (3 is small, and illustrate our 
procedure on particular modes corresponding to m = 1 
and m = 2 as in the previous section. 

A. The mode with m = 1 

Let us take the asymptotic trial solution 

x=A, cost+B , sint, (25) 

and substitute directly in (24L Since A, and B, are 
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assumed to be slowly varying functions of time, we 
obtain an approximate expression of 1: 

1~t;:tdt[(d:/ +BY +(~~, -AY -O'(A~+Bi) 

- ~ (Ai - Bi) - tr(Ai + 2A~Bi + Bi)] . 

The variation of 1 with respect to A, and Bu together 
with the neglect of the second derivatives leads to 

-2d!'+((1-0')-~-~r(Ai+Bi»)A,=0 (26) 

and 

2d~, + (c1-0')+~ -~r(Ai+Bi0 B,=O. (27) 

We shall investigate the following equilibrium points: 

(0):A,=B1=0, Leo, the null solution o The stability 
criterion turns out to be the same as the corresponding 
case for the linear Mathieu equation, which is given 
by (15) and (16), and depicted in Fig. 1. This is as 
expected, since the nonlinear terms do not affect the 
null solution. 

(S1): A,=O, Bi=:r (1-0')+~). (28) 

Let the perturbed quantities be a, and b1 , then the 
stability equations are 

_2
db , -f3a,=0 
dt 

and 

2~~' -2(1-0')+~)b,=0, 
or 

~t~' - ~ (0' -1) - ~)al = 0. 

Thus the solution is stable if and only if 

(3(0' -1 - ,8/2) < 0. 

Since Bi is positive, the solution is permissible only if 
the parameter rand (1 + p/2 - 0') is of the same sign, 
The permissible and stable region in the (0', (3) plane 
for this solution is shown in Fig. 3. 

{3 

r>o 

(0) 
~ Permissible and 
~~,. stable region 

{3 

r<O 

(b) 

(29) 

O"I+.§ 
2 

FIG. 3. Pennissible and stable region of the (81) mode of the 
nonlinear Mathieu equation: (a) for r> 0, (b) for r < O. 
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Then the solution is stable if and only if 

p(a - 1 + p/2) > o. 
The solution (29) is premissible only if rand 
(1 - [3/2 - a) are of the same sign, The permissible and 
stable region for this solution is shown is Fig, 4. 

(CS1): If A) * 0 and B) * 0, then the equilibrium solution 
exists only if (3 = O. Thus the Mathieu equation reduces 
to the Duffing equation, For this particular case, we 
have 

Thus these equilibrium solutions are permissible only 
if r and (1 - a) are of the same sign, It is readily shown 
that these solutions are stable. 

B. The mode with m =2 

Let us now take the asymptotic trial solution 

A 
x = ~ + A2 cos2t + A1 cos4t 

+ B2 sin21 + B4 sin4/, (30) 

and substitute in (24), Then an approximate expression 
of I can be obtained as follows: 

I'=- -'-ft dt[~(dAllV _ ~A2 + (riA2 + 2B \ 2 + (dA4 + 4B V 
2 II 2 dt) 2 0 dl 2) dt 4) 

+ (~ _ 2A2)2 + (dB4 _ 4A,j\ 2 _ a(A; + A~ + B; + B~) 
rtf dt ,) 

. ( ) (A6 3 N( 2 A2 2 2) - (3 AnA2 +AzIl.4 +B2B4 - r 16 +4" 0 A2 + 4 +B2 +B4 

+ %AcIl-4(A; - B~) + %(A~ + A! + B~ + B!) + i(A~B; +A~B~) 

+ % (A;A~ + A;B~ + B;B~ + B;A!~] • (31) 

The variation of I with respect to Ao, A 2 , A 4, B 2 , and 
B 4 , together with the neglect of the second derivatives 
leads to 

(A~ 3A (A2 A2 B2 2) - aAo - (3A2 - r ·4 + 2" 0 2 + 4 + 2 + B4 

+%A4(A; - B;)) = o. 

_ 8 d~2 + (8 - 2a)A z - p(Ao + A4) - r[%A2(A~ + A~ + B~ 

+ 2A! + 2B; + 2AoA4)] = 0, 

8 fJ 

(32) 

(33) 

-rc~--7+=----- Q-I /~a-I 

r > 0 

(0) 

Permissible ond 
stobie region 

r < 0 

(b) 

FIG. 4. Permissible and stable region of the (el) mode of the 
nonlinear Mathieu equation: (a) for r> 0, (b) for r < O. 
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+A! + B!) +%Ao(A; - B~)] = 0, (34) 

riA? (8) [3 (A2 2 2 2 2 8-;ti'+ -2aBz -(3B4 -r'zB2 o+A2+B2+2A4+2B4 

-2AcIl-4)]=0, (35) 

16d~4 + (32 - 2a)B4 - (3B2 - r[%B4(A~ + 2A~ + 2B; +A! 

+B!)]=O. (36) 

We shall investigate the following equilibrium points: 

(O)~ Ao=A2=A4=B2=B4=0, i.e., the null solution. 
The stability criterion for this solution is the same as 
the corresponding case for the linear Mathieu equation, 
which is depicted in Fig, 2. 

(S2)~ Ao=A2=A4=0. Let us consider the solution such 
that B 2=0(1), and B4=0((3) for small (3. Then, up to 
0((32), we have 

2 1(( ) 16-a 2) 
Be = 3r 4 4 - a - (8 + a)2 P , (37) 

(
4_a)l f 2 p 

B4 = s:;- . 8 + a . (38) 

To investigate the stability of this mode of solution, 
we can again write down the stability equation for the 
perturbed quantities from (32)-(36). Take the perturbed 
quantities to be proportional to evt • Then we can obtain 
the following characteristic equation after straight-
forward calculations, 

D1V4 + D2V2 + Do= 0, 

where 

D4 = (128)2, 

D2 = 64(16 + 2a)2 + OW), 

(39) 

[ ( )( 1 16-a) _(1~=!a)+0({32)~ D o= - 2 8 + a 8 _ a + 2(8 + a)2 J 

x [8(8+ QI)(4 - a) -e(~~-aa) -1) p2 

+ 0[(4 - ali?; ~lJ (32. 

Thus if 4_a=0(p2), we have 

Do ~ - 576(32 (4 - a - :~) + OW). (40) 

The solution is stable if and only if D4 , D2 , and Do are of tl 
the same sign. Since D4 and D2 are positive, the solution 
is stable if and only if Do is positive. For 4 - a=O({:P), 
the solution is thus stable if 

a>4-(32/48. (41) 

Now for 4 - a = 0(p2), the solution is permissible if 

.i.(4 _ a _ (32» 0 
3r 48' 

as may be seen from Eq, (37), Thus the permissible 
(S2) mode is always stable if r < 0, and always unstable 
if r> O. The permissible and stable region is shown 
in Fig. 5. 
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f3 

~~~ 
----------------~~7/~~~~77·7L------a-4 

~~;~ r<o 

@ 
@ Permissible end 

stable region 

FIG. 5. Permissible and stable region of the (S2) mode of the 
nonlinear Mathieu equation. 

(C2): B2 = B4 = O. Again consider the mode that A2 = 0(1) 
and Ao = 0(f3), A4 = 0({3) for small f3. Then up to 0(f32), 
we have 

1 
A;=3r {4(4-a)-2[(n+p)+2(4-a)(n2+2np 

+ 2p 2)]f32}, 

(
4(4 - a)) 1/2 

Ao=n 3r f3, 

(
4(4 _ a)) 1/2 

A4 =p 3r f3, 

where 
1 

n 
(a - 8) + (a/12)(4 - a) , 

a 
p= - 24 n. 

(42) 

(43) 

(44) 

The stability of the (C2) mode can be investigated in 
a similar manner as before. Let us take the perturbed 
quantities to be proportional to evt , then we can obtain 
the following characteristic equation from the stability 
equation, 

E4lJ4 + E 2lJ2 +Eo= 0, 

where 
E4 = (128)2, 

E2 = 64 x (16 + 2a)2 + 0(f32), 

and 

Eo = [1 - (16 + 2a)(n + P)]{8(8 + a)(4 - a) 

+[ 1 + (16 + 2a)(a ~ 8 - 3[n + p DJ f3
2
}f3

2 

+ 0[f36; ~(a - 4); f32(a - 4)2]0 

Thus if a - 4 = 0(f32), we have n + p'; -;., thus 

Eo= 576f32(4 - a + ~f32) +0(136
). 
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(45) 

(46) 

Permissible and 
stobie regian 

f3 

r>o 

0=4+.:Lp2 
48 

0-4 

FIG. 6. Permissible and stable region of the (C2) mode of the 
nonlinear Mathieu equation. 

Therefore, for a - 4 = 0(f32), the solution is stable if 
and only if 

Eo>O, 

or 

Now from (42), the solution is permissible for a - 4 
=0(f32), if 

3! (4-a+~f32»O, 
Thus the permissible (C2) mode is always stable if 

(47) 

(48) 

r> 0 and always unstable if r < O. The permissible and 
stable region is shown in Fig. 6. 

From the above analysis, we found that for r> 0, 
only the (C2) mode can be present asymptotically and 
the (S2) mode is unstable, while for r < 0, only the 
(S2) mode can stably exisL 

The existence of approximate asymptotic solutions of 
the nonlinear Mathieu equation does not answer the 
question whether and how an initial disturbance will 
evolve into these asymptotic solutions. However it does 
show that in the linearly unstable region of the (a, f3} 
parameter space, stable solutions can be found. The 
approach we presented above should also be applicable 
to other types of nonlinear problems in finding 
asymptotic periodic solutions. 
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On the positivity of energy in general relativitya) 
Pong Soo Jang 

Department of Physics. Syracuse University. Syracuse. New York 13210 
(Received 8 December 1977) 

We show that the positive energy argument of Geroch for time·symmetric initial data sets can be 
generalized to general initial data sets. 

I. INTRODUCTION 

With any asymptotically flat initial data set of 
Einstein's equation, there is associated a certain num
ber E whose physical interpretation is 'the total energy 
of the system, including contributions from both matter 
and the gravitational fieldo" This number E is called the 
Arnowitt-Deser-Misner (ADM) energy. 1 The positive 
energy conjecture states that if the local energy condi
tion for matter is satisfied this total energy E is also 
nonnegative and vanishes when and only when the data 
set is that for Minkowski spaceo 2 

The ADM energy E is obtained by performing a flux 
integral over a topological 2-sphere in the asymptotic 
region of the initial surfaceo 1 Although there are 
various forms of this integral, they all give the same 
value for an asymptotically flat initial data set. Several 
years ago, Geroch proposed3 a particularly convenient 
flux form for the positive energy conjecture. Using his 
energy expression, he has given an argument to estab
lish the validity of the positive energy conjecture for 
time-symmetric initial data sets. 3 In this paper, we 
shall generalize his argumant to general initial data 
sets. 

In Sec. II, we shall briefly review the positive energy 
conjecture. In Sec. III, we shall present a character
ization of initial data sets for Minkowski space, which 
turns out to be very convenient for the positive energy 
conjecture. Using results of Sec. III we generalize 
Geroch's argument to the full conjecture in Sec. IV. 
In Sec. V, we shall discuss the remaining problems and 
other related topics. 

II. THE POSITIVE ENERGY CONJECTURE 

To fix the notations, we shall briefly review the posi
tive energy conjecture. An initial data set for a space
time consists of an R3 manifold S on which there are 
given a positive-definite metric qab' a symmetric tensor 
field pab (the extrinsic curvature), a local mass density 
J1" and a local current density J". These fields on S 
must obey the constraint equations 

(1) 

(2) 

where R is the Ricci scalar of the metric qab' P is the 
trace of pab, and Dais the covariant derivative operator 
defined by qab' Furthermore, J1, and J" must obey the 
local energy condition, 

a) Supported by NSF Grant MPS74-15246. 

(3) 

An initial data set is said to be asymptotically flat if 
in the asymptotic region the metric qab approaches the 
Euclidean metric not slower than 1/r and pab pab ap
proaches zero not slower than 1/y4, where r is any 
typical radial distance. 4 From now on an initial data set 
is always assumed to be asymptotically flat. With any 
(asymptotically flat) initial data set one can define the 
total energy, called ADM energy, 1 of the system as a 
flux integral over a topological 2-sphere in the asymp
totically distant region. Although there are various 
forms of this flux integral, they all give the same value 
for an asymptotically flat initial data seC The following 
form, proposed by Geroch, 3,5 turns out to be most con
venient for the positive energy conjecture, 

E=c' l A 1
/

2 J(2n-7T 2 )dA, (4) 

where c is a constant which turns out to be c = 647T3
/

2
, 

A is the area of the integration surface which asymp
totically approaches a metric sphere in the asymptotic 
region, n is the intrinsic scalar curvature of the inte
gration surface, and 7T is the trace of the extrinsic 
curvature of the integration surface as a sub manifold of 
S. 

The positive energy conjecture states the following. 
For a nonsingular asymptotically flat initial data set, 
the ADM energy E is nonnegative and vanishes if and 
only if 

(5) 

(6) 

(L eo, the initial data set is that for Minkowski space). 
Note that J1,= 0 and J a = 0 follows from (5) and (6). 

III. DATA FOR MINKSOWSKI SPACE AND 
W- TRANSFORMATION 

An initial data set with flat metric and vanishing pab 
is obviously a data set for Minkowski space. There are, 
however, many other initial data sets for Minkowski 
space which are not so easy to identify. These data sets 
can be characterized by the fact that they satisfy Eqs. 
(5) and (6). Even though this is a legitimate character
ization, Eqs. (5) and (6) are cumbersome conditions to 
be identified as consequences of vanishing Eo In view of 
this difficulty, we shall introduce another characteriza
tion of the initial data sets for Minkowski space in the 
following theorem. 6 

Theorem I: An initial data set, i. e., an R3 -manifold 
with positive definite metric q ab and tensor field pab, is 
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that for Minkowski space if and only if there exist a 
scalar field I and a flat metric kab as follows: 

pab"",D"Dbl/(l + DnlDnf) 1/2, (7) 

qab"'" kab -DafDb/. (8) 

In the Appendix we shall give a proof of this theorem. 

This theorem suggests to us the following approach 
to the positive energy conjecture. Given an initial data 
set, choose a scalar field w on S such that w will reduce 
to I of the Theorem I when the given set is that for 
Minkowski space. Next, introduce new quantities pab and 
(jab such that 

(9) 

(10) 

Rewrite the constraint equations in terms of the barred 
quantities. Then, what we need to show is that E is non
negative and vanishes if and only if pab = 0 and {jab is flat. 

Following this program, we shall first specify how to 
choose w for a given data set. Let pab and qab be an 
asymptotically flat initial data set for Minkowski space. 
Then there exists a scalar field / on S which satisfies 
(7) and (8). Therefore, I also satisfies the following 
quasilinear elliptic differential equation 

[pab_ (1+D;~Z"j)1I2 J(qab-1~a£fri/) =0 

with the asymptotic condition lDa/l = O(l/r). With this 
observation, we proceed as followso For a given asymp
totically flat initial data set, let w be a solution of the 
following quasilinear elliptic partial differential equation 

[ 
ab DaDaw J( DawDb w ) _ 0 (11) 

p - (1 + DnwDnw)I/2 qab - 1 +D"wDnw -

with the asymptotic condition lDaw I = O(l/r). Here we 
assume such a solution exists. We postpone to the 
conclusion further discussion of this issueo 

Next, we introduce pab and (jab as in Eqs. (9) and (10) 
with this w. Note that the difference between qab and (jab 
is the order of l/yZ in the asymptotic region. Hence the 
total energy defined in terms of qab is the same as that 
in terms of (jab' That is to say, 

E= c- 1A 1
/2 J (20 _1T

2 )dA 

= c- 1A 1/2 J (2n- rr2) etA, (12) 

where the barred quantities A, n, and rr represent the 
£.orresponding quantities with respect to (jab on S. Hence 
A is the area of the integration surface with respect to 
the metric (jab on So Conside:..ing the integration 2-sur
face as a submanifold of S, 0, and rr are the scalar 
curvature of the induced metric of the 2 -surface from 
(j ab and the trace of the extrinsic curvature of the 2-
surface determined from qab' respectively. 

We now rewrite the constraint equations replacing the 
unbarred quantities (e. g., qab and pab) by the barred 
quantities (e. g., (jab and pab). Let Da be the derivative 
operator defined by (jab' that is to say, the derivative 
operator which satisfied Da(jbc = O. The relationship be
tween Da and Da is the following: 

1153 J. Math. Phys., Vol. 19, No.5, May 1978 

DaTb .. ·C~ ... e=DaTb ... Cd ... e + ebamTm ... cd."e + 

+ .. , + eCamTb ... md ... e _em adTb .. ·Cm ... e-

- ••. - em aeTb ... C d ••• m 

for arbitrary tensor field TO·· . Cd . .. e on S, where 

eDam = (1 +Dn wDnwt 1 DbwD.Dm w. 

(13) 

(14) 

Since curvature tensor is obtained from the derivative 
operator, and since we know the relationship between 
Da and Da, we can find the relationship between R.!1.b and 
Rab , where Rab is the Ricci tensor obtained from Da' 
We have 

R - R + D e m
ab - Daem bm + em abenmn - em anenbm' (15) 

ab - ab m 

Using these facts, we can rewrite the constraint 
equations as follows: 

Ja = Dbpab _ qac Dc(pdbqdb ) + Kl/2RabDb w 

+ K3/2lJaw(RmnDm wDn w) -K(fjawpmnD".Dn w 

+ pam jjnwDmDn w), (16) 

2Jl=R _pabpCdqacqbd -2Kl/2pabDaDbW 

+ 2KRabD a WDb W + (pabq ab)2 

+ 2K-1 / 2(pabqab)qCdDc Dd W, (17) 

where K= 1 + DawDbwqab, Daw=Daw, and Daw==(jabDbw. 
Eliminating RabDawDbw from (17) using (16), we obtain 

2 [Jl - ]Cl/2Dawr] = R - jjabpcd q ac q bd + rpabqab )2 

- 2Da[.]Cl/2{pab _ (pmn qmn) qab} Db W J. 
(18) 

This equation is the only information from constraint 
equations which we shall need. Note that the left side of 
Eq. (18) is nonnegative because of the local energy 
condition (3). 

IV. A POSITIVE ENERGY ARGUMENT 

Introduce a function t on S such that the two-dimen
sional surfaces t= const in S are nested topological 
2 -spheres with the innermost surface reducing to a 
point. Define a scalar field ¢ on S by 

¢?D/= 1, (19) 

where ya denotes the unit outward vector field normal 
to the 2 -surfaces with respect to (jab' Relative to this 
:ya we decompose the vector which appears in the last 
term of Eq. (18) as follows: 

(20) 

where T"Yaqab = O. Note v = O(I/r3) asymptotically since 
pab=O(I/yZ) and lDawDbwqabl =O(l/yZ) asymptotically. 

For each value of t, set 

(21) 

where the integral extends over the surface t= const. 
Since v=O(l/r) and "iT=O(I/r) asymptotically, this/(t), 
for t - "", reduces to the integral in the energy expres
sion (12). Therefore, once we show that l(t)?- 0 as t - 00 

we can conclude that E?- O. 

Let ~ab be the induced metric on the t = const surfaces 
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from q abO Let 1iob be the extrinsic curvature of the 
1= const surface with respect to (jab' Then, the rate of 
change of ~ab and 1i=7f ab(jab with respect to I (i. e., their 
Lie derivative by ~ra) are given by 

(22) 

L iPrTi= -i(fj7fab Ti ab +~;PO - FER -i;PTi2 - aaaa(fj, (23) 

where, as the notation suggests, Ti ab is defined by 
ITab = "Trmn(jmaqnb' and where a. denotes the derivative 
operator on t = const surfaces defined by the induced 
metric fab from (jab' 

Substituting (20) into (18), we obtain 

2[Jl -K-I/2DawJol= Ii _fjab"pCdqacqbd + (pObqab)2 

- 2Da(llya) - 2a aT a - 2;P-ITaaa ;p. (24) 

This equation tells us the rate of change of II with re
spect to t. 

Using the Gauss-Bonnet theorem and Eqs. (22), (23), 
and (24) the rate of change of f(t) with respect to t is 
obtained: 

df(t) f- -&- = - <;bD a [( 17 + " )2 r' , dA 

= - ~ !1i(fr + 1') [20 - (7f + 1')2] ciA 

+ 2 f([;(fr + 11) [(Jl-K-1/ 2J"1t'a) + t(frab Tiab _~fr2) 
+ oaT" + (fj-laaaa1i + 1i-IT naa (Ji 

Analysis up to now works for anyone-parameter 
family of 2 -surfaces. We now choose the 2- surfaces 
such that 

(25) 

(26) 

Here we assume such a choice can be made. We post
pone to the conclusion further discussion of this issue. 

Then, Eq. (25) becomes 

d~~t) = _ ~f(t) + 2 f[(Jl _WI/2 JaDa 111) 

+ ~(1i"bli aD - ~1?) + ;'i Ja +;1 a(;P-laa(jj) 1 ciA 
+ f[TiabTiCdq ac q bd - (linb q ab)2 _ ~112 
+ 2(jj-lraaa <;b + 21i-2aa<;boaoldA 

'" -if(t) + f(1fabfrCdqacqbd _Cirab qab )2 _~1'2 
+ 2(,b-1Taa a<;b + 2rp-2 aa<;b aat/! 1 dA. (27) 

The above inequality is obtained by using the local ener
gy condition, the fact (:rr" b 7i ab - ~ Ti2

) ~ 0 and that an inte
gration of a divergence of a vector field on a 2-sphere 
vanishes. 

The last integral of Eq. (27) is also nonnegative be
cause of the defining equation of w, (11). This can be 
shown as follows. Let na = (Dm 1uDawqmn)-I/2 Daw and 
decompose 15ab with respect to 11", 

pab = Cina nb + n (a f3b) + yab , 

where (3an bqab =O, yab=y(ab), and yabnCqac=O. Then, Eq. 
(20) can be written as 
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l'yn + Ta=K-l/2(DmwDawqma)I/2(~f3a _yna). 

Taking the norm of (vra + Ta) with respect to q ob' we 
obtain 

(28) 

The defining equation (11) of w can now be rewritten in 
terms of Ci and y as follows: 

(29) 

Using the above two equations, (28) and (29), the last 
integral of Eq. (26) can be written as 

![1iabTiCdQacqbd - (fr"bqaY _ ~1J2 
+ 2 (fj-1T aaa1) + 21)-2;) a (fjCia¢) dA 

= ![(3af3"(~ - iWI DawDm 1t'qmn) + (yabYob - h 2
) 

+ HTa + 2 (i)-laa<;b)( TO + 2(j)-I;ib¢) (/ab + ~K-I Q'2' ciA ~ O. (30) 

Therefore, we obtain finally the following inequality: 

df(t) ? _ ~ f(t) 
dt . (31) 

As we move outward from one t = const surface to the 
next, l will increase or decrease depending on the sign 
of the evolution function ¢. The sign of 4>, in turn, is 
determined by the sign of (fr + 11) through the equation 
(fr + v)<;b = 1. First, suppose t always increases as we 
move outward. Then, since f(t) - 0 as the surfaces re
duce to a point, Eq. (31) implies f(t) '" 0 for every I. 
Second, suppose in some region of 5, I decreases as 
we move outward. However, that region should be 
bounded since Ti is positive and is order of l/r and 11 is 
order of l/r in the asymptotic region. Now, let 1=1 
be the boundary of the region which includes the asymp
totic region and in which t increases as we move out
ward. Hence, across 1=1 surface ('iT + 1J) changes sign, 
in other words, (Ti + v) vanishes on the 1=1. surface. 
Then, we observe that f(O = 1617 because of the Gauss
Bonnet theorem. This positivity of f(t) combined with the 
validity of Eq. (31) from there on implies thatf(t)?O for 
surfaces outside t =1. surface. Hence, we conclude 

limfU)? 0 
I-~ 

for both of the above two cases. It now follows from the 
remarks about Eq. (21) that E is nonnegative. Further
more, E can vanish only whenf - 0 at t - 00, and this is 
possible only whenf(t) vanishes for every t because of 
Eq. (31). The j(t) can be zero for every t only when 
fjab = 0 and (jab is flat everywhere because of Eqs. (27), 
(30), and (31). In other words, E vanishes only when 
pab and qab are initial data for Minkowski space. 

V. CONCLUSION 

The argument presented in the previous two chapters 
is complete except that we assumed the existence of 
scalar field w which satisfies the quasilinear elliptic 
partial differential equation (11) with the asymptotic 
condition !Dowl =O(l/r) and that we assumed the exis
tence of one parameter t family of smooth 2 -surfaces 
which can be obtained from one point by the evolution 
equation ¢ = (rr + v)-l. Some intuitive arguments suggest 
that these two field t and w exist for smooth metric and 
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the extrinsic curvature on a smooth R3-manifold 5. How
ever, as far as the author knows, the existence of such 
I and /{J have not yet been proved rigorously. Hence, a 
precise mathematical result of our argument would be 
that the positive energy conjecture is true for initial 
data sets which admits two scalar fields t and w satisfy
ing the above conditions. 

An interesting feature of Geroch's argument for the 
time -symmetric initial data set is that a slight modifi
cation of it rules out a possible class of counterexam
ples to the cosmic censor hypothesis proposed by 
Penrose in that case. 5 Since we now have generalized 
Geroch's argument to the full energy conjecture, it 
would be interesting to see if one can modify this full 
argument to rule out the counterexamples to the cosmic 
censor hypothesis in general. 

Finally, it might be appropriate to mention that any 
further argument for the existence of t and UJ should 
distinguish the initial data sets with an apparent horizon 
from the others. When there exists an apparent horizon 
H, on 5, difficulties with the UJ equation and with the 
surface evolution of t could occur across H. In this case 
case, one can hope only that UJ exists outside H with the 
boundary condition that V' a W is orthogonal to H and only 
that I exists outside H with the property that the 2 -sur
face t = 0 is H. Once this can be shown rigorously, the 
validity of dj /dl "" - f /2 outside H, andf - 1671 as t - O' 
would lead to the conclusion that E"" O. 
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APPENDIX: PROOF OF THEOREM I 

Let a three-dimensional surface 5 with a positive 
definite metric q ab and an extrinsic curvature pab be an 
initial data set for Minkowski space with metric gab' We 
shall show that there exists f and kab on 5 which satisfy 
Eqs. (7) and (8). Let 5 be a ~three-dimensional Euclidean 
plane in Minkowski space. Then these two manifolds 5 
and 5 are diffeomorphic to each other by the following 
mapping Ij!. Let p be a point of S. We draw a timelike 
geodesic through p, which is perpendicular to the sur
face S. This geodesic meets 5 at one and only one point 
p. The Ij! maps p to p. On S we have a flat metric kab' 
By the diffeomorphism Ij!, kab induces a flat metric kab 
on 5. Let the length of the geodesic between p and p be 
j. This f can be considered as a scalar field on 5. We 
shall show that the fields, f and k ab , on 5 satisfies Eqs. 
(7) and (8). 

Let e be a constant vector field which is tangential 
to 5. Let iia be a unit timelike constant field which is 
orthogonal to S. Let ~a denote the induced vector field on 
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5 from ~a on 5 by the diffeomorphism Ij!. Then ~a and ~a 
on 5 are related by the following equation: 

~a= ~a +na(~bDbj), 

where Da is the derivative oper::tor on 5 defined by qab' 
Using the definitions of q ab and k ab, we obtain 

~a~ qab= ee gab = ~a~b kao - ~ae Daf Dbj 

= ~a~b kab - ~a~b Daf Dbj. 

This equation holds for arbitrary vector ~a at p. There
fore, we have 

qab = kab -Daf Dbf· 

The unit normal vector field na to 5 can be expressed 
as follows: 

n" = (ria + D"r)/(1 + DnjDaf)1/2. 

NOW, the extrinsic curvature pab of 5 can be calculated 

POb am baV' am bn V'mDnf 
=q q mnn=q q (1 +D"fDaf)1/2 

DaDbj 
= (1 + DnjDnf)1/2 , 

where V'm is the covariant derivative operator on 
Minkowski space. This completes the necessary part of 
the proof. 

To show the sufficient part, we reverse the above 
construction. Suppose qab' pab, kab andf on a R 3-mani
fold 5 satisfy Eqs. (7) and (8). First, choose a Euclidean 
plane 5 with the induced metric kab in Minkowski space. 
The 5 with kab is isometric to S with !zab' because both 
are R3 manifold with flat metric. From the isometry we 
have an induced scalar field f on 5. USing this j as the 
length of the timelike geodesics from 5 to 5', we draw 
the surface 5' in Minkowski space. Then it is immediate 
that the surface 5' with the induced metric q~b from the 
Minkowski metric is the immersion of the starting 
manifold 5 with qob such that the extrinsic curvature p'ab 
of 5' coincides with the given tensor pOb of 5 (more pre
cisely, p'av of S' coincides with the induced tensor on 
S' from the given tensor pab on Slo 
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A method of analysis of the infinite-dimensional Hamiltonian equations which avoids the introduction of 
the Backlund transformation or the use of the Lax equation is suggested, This analysis is based On the 
possibility of connecting in several ways the conservation laws of special Hamiltonian equations with their 
symmetries by using symplectic operators, It leads to a simple and sufficiently general model of integrable 
Hamiltonian equation, of which the Korteweg-de Vries equation, the modified Korteweg-de Vries 
equation, the nonlinear Schriidinger equation and the so-called Harry Dym equation tum out to be 
particular examples, 

INTRODUCTION 

The aim of this paper is to suggest a constructive 
approach to the infinite-dimensional integrable Hamil
tonian equations, i. e., to the evolution equations pos
sessing an infinite sequence of independent integrals 
which are in involution. The present analysis is based 
on the study of the connection between the symmetries 
and the conservation laws of the evolution equations. 
The main result is in showing a simple model of inte
grable Hamiltonian equation, of which the Korteweg
de Vries equation, the modified Korteweg-de Vries 
equation, the nonlinear Schrodinger equation, and the 
so-called Harry Dym equation turn out to be particular 
examples. 

The analysiS proceeds as follows. In Sec. 1 it is 
shown that any conservation law of an infinite-dimen
sional Hamiltonian equation is connected with a sym
metry transformation. The study of the connection be
tween the symmetries and the conservation laws of a 
given evolution equation is thus reduced to the study of 
its Hamiltonian structures. In Sec. 2 it is shown by an 
example that a given evolution equation may be endowed 
with different Hamiltonian structures. Each of them 
provides a way of connecting the conservation laws 
with the symmetries. Let us then consider an equation 
endowed with two of such connections, and let us use 
the former to associate the conservation laws with the 
symmetries and the latter to conversely associate the 
symmetries with the conservation laws. One is thus 
able to obtain a new conservation law from a given one. 
In Sec. 3 it is shown that highly ordered chains of inte
grals which are in involution can be constructed in this 
way for special twofold Hamiltonian equations. Such 
equations provide a simple model of integrable Hamil
tonian equation. The examples of Sec. 5 seem to sug
gest that this model is not only conceptually simple but 
also effective in the applications. 

1. SYMMETRIES AND CONSERVATION LAWS OF 
HAMILTONIAN EVOLUTION EQUATIONS 

In this section an operator approach to the symme
tries and to the conservation laws of any system of 

a)This work has been sponsored by the ConSiglio Nazionale 
delle Ricerche, Gruppo per la Fisica-Matematica. 

evolution equations 

DtUA~,t)=kA(UB,U?,U?" ... ), (1.1) 

is suggested. The field fUnctions uA(x, t) are supposed 
to be defined, at any instant of time,-in a fixed region 
n of lR3 and to vanish on the boundary of this region; 
the subscripts denote the partial derivatives of these 
functions with respect to the space coordinates Xi. 

We set up the study of Eq. (1. 1) into the linear space 
U of the field functions regarded as functions of the 
space coordinates only. Consequently, any n- tuple 
UA~, to) will be simply denoted by u(to) and will be re
ferred to as a point of this space. The given evolution 
equations will be synthetized into the single operator 
equation 

(1. 2) 

where K is the formal differential operator defined by 
the functions kA(UB, u?, 000). The space U will be called 
the configuration space associated with the abstract 
evolution equation (1. 2)0 The purpose of this operator 
approach is to suggest a simple way of extending to in
finite-dimensional systems the geometric analysis de
veloped for the classical Hamiltonian mechaniCS in the 
phase space o 1 

A. Symmetries 

The object of the theory of the symmetries is the 
study of the manifold of the solutions of Eq. (1.2) in the 
configuration space U. We shall limit ourselves to a 
local study of such a manifold and so we only consider 
the infiniteSimal symmetry transformations. They are 
the infiniteSimal point transformations 

U =u +ES(U), (1. 3) 

of the configuration space into itself which map every 
solution again into a solution. 2 The operator S is called 
the generator of the symmetry mapping and is regarded 
as defining a "contravariant" vector field on the space 
U. The lines of this vector field are the orbits of the 
symmetry mapping. 

The symmetry condition is readily obtained if one ob
serves that for any solution u(t) it is 

DtU - K(u) 

(~) D~ +Eats(U) - KyD - EK~S(u) 
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(~) E[S~ OtU - K~S (u)] 

(~2)E[S~K(u)- K~S(u)], 

(1.4) 

where S~ is the Gateaux derivative of the operator S, 
which is supposed to not explicitly depend on the time 
(see Appendix A). Hence, the symmetry condition is 

S~K(u) - K~S(u),g, 0, (1. 5) 

where the symbol ~ means that the equality is required 
to hold only for the solutions. For simplicity, however, 
in this paper we shall only consider the symmetry gen
erators for which condition (1. 5-) is identically verified 
(the condition being a fortiori verified on the manifold of 
the solutions). 

Equation (1. 5) expresses the structural relation which 
connects the given equation to its symmetries, inde
pendently of the specific form either of the equation or 
of the symmetry mappings. It is a commutation rela
tion, the left side being the commutator of the two non
linear operators Sand K. 3 Therefore, the set of the 
generators of the symmetry mappings constitutes a Lie 
algebra. This means that if two of such generators S J 

and Sk are composed according to the formula 

[Sj, Sk](U) '= SjuSk(U) - S~uSj(u), (1. 6) 

a third generator is obtained again. 

B. Conservation laws 

The study of the manifold of the solutions is the ob
ject also of the theory of the conservation laws, but the 
standpoint is different and, so to speak, dual to that of 
the theory of the symmetrieso 

Besides the configuration space U, one considers a 
second space V, put in duality with U by a convenient 
bilinear form (v, u), 4 and then one considers the opera
tors Q: U - V (see Fig. 1). Such operators may be re
garded as defining the "covariant" vector fields on U. 
For such fields it is possible to introduce the concept 
of elementary circulation 

6C'= (Q(u) , 611,), (1. 7) 

and so it is possible to consider the conservative co
variant vector fields, for which the circulation does not 
depend on the line but only on the endpoints. As is 
known,4 in order that the field be conservative it is 

u v = Q(u) 

I """ ..# \ / 
\ / 
\ I 
1/ 

t 
(V,U) 

----------------.. --------------~.~ 
FIG. 1. 
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necessary and sufficient that 

(Q~du, 611,) = (Q~ 6u, du), (1, 8) 

for any pair of variations du and 6u of the field func
tions. The operators Q verifying this condition are 
called potential operators. 4 For such operators the 
circulation from a fixed point U o to any point u defines 
a functional F[u], so that the elementary circulation is 
given by 

6F[u] =: (Q(u) , 00\ 

For this reason, the operator Q is also called the 
gradient of the functional F. 

(L 9) 

The theory of the conservation laws associates a 
special set of conservative covariant vector fields with 
the given equation by the requirement that the corre
sponding functionals keep their value F[u(t)] independent 
of t for any solution u(t). These functionals are called 
integrals 5 of the given equation and the corresponding 
potential operators may be called "integrating" opera
tors. 6 Therefore, the theory of the symmetries stUdies 
the manifold of the solutions by using contravariant 
vector fields while the theory of the conservation laws 
studies the same manifold by using covariant vector 
fields. In this sense the two formalisms are dual. 

The following condition 

(Q(u), K(u) ~ 0, (L 10) 

on the integrating operators Q is readily obtained if one 
observes that it is 

0tF[u(t)] (~9) (Q(u) , 0tu) 

(~2) (Q(u) , K(u), (1.11) 

for any solution u(t). As in the case of the symmetry 
generators, however, we shall only consider the inte
grating operators for which the condition (1. 10) is 
identically verified. 

C. Connecting the conservation laws with the symmetries 

The problem of connecting the conservation laws with 
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the symmetries requires the introduction of a metric 
operator, which associates the covariant with the con
travariant vector fields as is usual in Riemannian 
geometry. By a metric operator it is meant a linear 
operator Lu: V - U (which may nonlinearly depend on 
the point u) mapping the covariant vector fields Qj into 
the contravariant vector fields Sj according to the 
relation 

(1. 12) 

(examples will be given in Secs. 2 and 5, see Fig. 2). 

It is the purpose of this subsection to study the spe
cial class of the metric operators verifying the follow
ing two conditions: 

(dv, L u6v)= - (6v, Ludv), 

(dv, L~(61J; Lu~v) + (6v, L~(~v; Ludv) 

+ (~v, L~(dv; L.6v) = 0, 

(1. 13) 

(1. 14) 

where L~ is the Gateaux derivative of L. with respect 
to u (see Appendix B), and to show that they allow to 
connect the integrating operators with the symmetry 
generators of the evolution equations. Such metric 
operators will be called symplectic operators with re
spect to the prefixed bilinear form (v, u). 

To this end, consider any operator Sj associated with 
a potential operator Qj by means of a symplectic opera
tor Lu. It is called a Hamiltonian operator and it veri
fies the following condition, 

(dv, SiuLu6v) - (6v, SiuLudv) 

(1.15) 

(see Appendix B). This condition implies that the com
mutator [Sj' skl of any pair of Hamiltonian operators 
verifies the relation 

(dv, [Sj' Skl(u) 

=' (dv, SiuSk(U) - S~uSj(u) 

F F 

POISSON BRACKET 

Q i Q 

j~ol.~k 
I k 

S I Sk 
J _________ [Sj,sJ ~ 

COMMUTATOR 

FIG. :1 
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(1;;5) (dv, LuQi.Sk(U) + (dv, L~(Qj(u); Sk(U») 

- (Qj(u) , S~uLu dv) - (dv, L~(Qj(u); Sk(U))) 

(1;;3) (dv, Lu(QiuSk(U) + S~uQj(U))), (1. 16) 

which shows that 

where S~u is the adjoint of S~u with respect to the pre
fixed bilinear form (v, u) (see Appendix A). Since the 
operator 

is the gradient of the functional 

F jk[ul =' (Qj(U) , Sk(U), 

as is proved by 

6F jk[ul 

= (Qiu6u, Sk(U) + (Qj(u), S~u6u) 

(1~) (QiuSk(l{), 6u) + (S~uQi(U), 6u) 

= (QiuSk(U) +S~uQj(u), 6u), 

(1. 18) 

(1. 19) 

(1. 20) 

relation (1.17) shows that lSi' skl is again a Hamiltonian 
operator relative to Lu' Therefore, the operators Sj 
make a Lie algebra, and this Lie algebra structure in
duces a corresponding structure on the operators Qj 
and on the functionals F j according to the scheme of 
Fig. 3. The functional Fjk is the Poisson bracket of the 
functionals F j and Fk associated with the Hamiltonian 
operators Sj and Sk (see Ref. 3, Sec. 5). 

A simple property of this algebraic structure is that 
the condition 

implies 

[Sj'Skl=o. 

(1. 21) 

(1.22) 

From the point of view of the theory of the symmetries 
and of the conservation laws, conditions (1, 21) and 
(1. 22) mean that Qj and Sj are respectively an integrat
ing operator and a symmetry generator of the evolution 
equation 

(1, 23) 

Therefore, the symplectic operator Lu , associating Q j 

with Sj according to (1. 12), connects the integrating 
operators of Eq. (1. 23) with its symmetry generators. 
This property explains the importance of the symplectic 
operators in the study of the evolution equations. 

The problem of connecting the conservation laws with 
the symmetries of the given equation (1. 2) is thus re
duced to that of recasting this equation into the Hamil
tonian form (1. 23), by decomposing the operator K as 
follows, 

K(u) = L.Q(u) , (1.24) 

where Lu is a suitable symplectic operator and Q is a 
potential operator. To find such operators, if any, it is 
useful to observe that, according to (1.15), Lu must be 
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coupled to K by the condition 

(du, K~Lu6v) - (6u, K~Lud1!) = (dv, L~(6v; K(u»)), (1. 25) 

and that Q must be an integrating operator of the given 
equation, as is proved by 

(Q(u) , K(u» = (Q(u), LuQ(u» (j~3) 0 (1. 26) 

(examples will be given in Sec. 5). When condition 
(1. 25) is fulfilled, one says that the symplectic opera
tor Lu makes the given equation Hamiltonian. It can 
thus be stated that every symplectic operator Lu making 
the given equation Hamiltonian maps its integrating 
operators Qj into its symmetry generators 8j according 
to relation (1. 12). This is the main result on which the 
following analysis of the integrable Hamiltonian equa
tions rests upon. 

2. AN EXAMPLE: THE KORTEWEG-de VRIES 
EQUATION 

It is the purpose of this section to show by an example 
how the integrable Hamiltonian equations may be analy
zed by using only the connection between the symmetries 
and the integrating operators previously pointed out. 

Consider the KdV equation 

Ut + GUllx + Itxxx = 0 (2.1) 

and observe that it admits the following two Hamilton
ian decompositions: 

Itt + ax(~1l2 +un ) = 0, 

where the operators 

Lucp '" CPx, 

M en - en + 2 +a u.,- = "-xxx sGUCPx "3uxCP, 

and 

(2.2) 

(2.3) 

(2.4a) 

(2.4b) 

(2.5) 

are respectively two symplectic operators and two po
tential operators with respect to the bilinear form 

(v, u)'" r v(x, t)u(x, t)dx. 
'Q 

(2.6) 

The former decomposition is well known 1; the latter 
seems not to have been previously reported. 

It follows that two symplectic operators are at our 
disposal to pass from the integrating operators of the 
KdV equation to its symmetry generators. They can be 
used to recover the infinite sequence of conservation 
laws associated with this equation, as follows. Consider 
the integrating operator Q1 and associate with it the 
symmetry generator 

(2.7) 

by means of the higher-order symplectic operator Mu. 
The inverse operator of the second symplectic operator 
Ox then allows to obtain from 82 the new integrating 
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operator Qz. By iterating this process, first obtain from 
Q2 

(2.8) 

and then 

Q3(U) =fn-a2u 3 +tauuxx +tGU; + Itxxx", (2.9) 

and so on. In this wayan infinite sequence of indepen
dent integrating operators of the KdV equation can be 
constructed according to the recursion formula 

oxQi+j (u) = (a xxx + }allox +% llx 1) Qj(ll). (2.10) 

The functionals F j associated with the potential opera
tors Qj constitute the infinite sequence of integrals of 
the KdV equation. 

The previous result, of course, is well known8
; but 

the present analYSiS, which is based only on the study 
of the given equation and which avoids the introduction 
of the Backlund transformation or the use of the Lax 
equation,9 provides a different point of view. Above all, 
this analysis emphasizes the role of the pairs of suit
ably coupled symplectic operators in the study of the 
integrable Hamiltonian equations. This point of view 
will be systematically developed in the next section. 

3. INTEGRABLE HAMILTONIAN EQUATIONS 

The example of the KdV equation suggests the study 
of the tl{'%ld Hamiltonian equations. This requires 
that we have to first discuss under which conditions 
two symplectic operators Lu and Mu have Hamiltonian 
operators in common. In this section we prove that if 
Lu and Mu have at least one Hamiltonian operator in 
common and they verify the coupling condition 1 0 

(dv, L~(6v; Mu~v» + (6v, L~(~v; Mudv» + (~1), L~(dv; Mu6v» 

=- [(dv, M~(6v; Lu~v» + (611, M~(~l'; Ludv» 

+ (~v; M~(dv; Lu6v»], (3.1) 

and if for one of them, say L u , condition (L 15) on the 
Hamiltonian operators is sufficient as well, 11 then they 
have a possibly infinite sequence of commuting Hamil
tonian operators in common. 

Assume that 

(3.2) 

is any Hamiltonian operatllr common both to Lu and Mu 
and construct 

(3.3) 

(see Fig. 4). Our aim is to show that 8 j +1 is a common 
Hamiltonian operator again. For this purpose, it suf
fices to prove that M.Q j satisfies condition (1. 15) on the 
operators which are Hamiltonian with respect to Lu. On 
account of (B4), this condition is explicitly given by 

(dv, MuQiuLu6v + ~(Qj(u); Lu6v) 

- (6v, MuQiuLudv + M~(Qj(u); Ludv» 

= (dv, L~(6v; MuQj(u»). 
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Now, this condition readily follows from the coupling 
condition and from the fact that Sj is a common Hamil
tonian operator. In fact, the assumption on Sj means 
that LuQj obeys the following condition, 

(dv, LuQjuMuov + L~(Qj(u); Muov) 

- (OV, LuQjuMudv +L~(Qj(u);Mudv) 

= (dv, M~(ov;LuQj(u))), (3.5) 

and the coupling condition (3. 1) implies that (3. 4) and 
(3,5) coincide for any Qj' 12 This proves the statement. 

It follows that, once we know one common Hamilton
ian operator, we are able to construct successively a 
possibly infinite sequence of such operators according 
to the recursion formula 

(3.6) 

All the properties of this sequence stem from rela
tion (3.6). So, for example, consider the Poisson brack
et of any pair of functionals associated with the se
quence (see Fig. 4). The following recursion formula 
is induced by (3.6), 

Fik[Uj (1;J9) (Qj(u), LuQk(U) 

<3.6) = - (Qj(u) , MuQk_l (u) 

(1~3) - (Qk_l(U), MuQj(u) 

(j~3) (Qj.l (u), L uQk_l (u) 

=F i.l. k_l[Uj. 

By iteration, one finds (by assuming j < k) 

F Jk[Uj =Fj+1•k_ l[uj =FJ+2•k-2[Uj 

=" , =F kj[U], 
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(3.7) 

(3.8) 

and then 

(3.9) 

on account of the skew symmetry of the Poisson 
bracket. All the functionals F j are thus in involution. 
From this property the corresponding relation 

[SJ,Skj=O, (3.10) 

readily follows (recall Fig. 3), showing that the opera
tors Sj constitute a set of commuting operators. 

Hence we have constructed a sequence of twofold 
Hamiltonian equations 

(3.11) 

which have remarkable properties. The conditions 
(3.9) and (3.10) mean that each of such equations has 
a possibly infinite sequence of symmetry generators 
SJ' of integrating operators QJ> and of integrals 1'i 
which are in involution. Often this sequence is indeed 
infinite (see the examples of Sec. 5). In this case, any 
Eq. (3.11) is an infinite-dimensional integrable Ham
ilton ian equation. 

4. SUMMARY 

The present paper has mainly dealt with the following 
two results: The symmetry generators and the inte
grating operators of any Hamiltonian equation are con
nected in pairs, and such pairs may be connected into 
a highly ordered chain for special twofold Hamiltonian 
equations. A characteristic property of this chain is 
that the symmetries are automatically in involution, so 
that the chain may actually define a whole hierarchy of 
integrable Hamiltonian equations. 

These results suggest either a sufficiently general 
procedure of constructing the integrable Hamiltonian 
equations or a systematic way of analyzing the Hamil
tonian structure of a given evolution equation. Dealing 
with the first problem, we consider a suitable pair of 
symplectic operators coupled according to (3.1), and 
we look for their Hamiltonian operators by solving 
condition (1. 25), where K is regarded as the unknown 
operator. If we find one Hamiltonian operator common 
both to Lu and Mu , we can construct an infinite hierarchy 
of integrable Hamiltonian equations. Dealing with the 
second problem, we look for the symplectic operators 
which make the given equation Hamiltonian by solving 
condition (1. 25) with respect to the unknown operator 
Lu. If we find two solutions of this condition which are 
coupled according to (3.1) and for which the sequence 
defined by the recursion formula (3.6) is infinite, the 
given equation turns out to be an infinite-dimensional 
integrable Hamiltonian equation. At the same time, the 
recursion formula (3.6) directly defines the sequence 
of conservation laws associated with this equation, 
Examples of this procedure will be given in the next 
section. 

5. APPLICATIONS 

As a first example, consider the so-called Harry Dym 
equation13 

(5.1) 
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It is manifestly a Hamiltonian equation, since the 
operators 

and 

(5.2) 

(5.3) 

are respectively a symplectic and a potential operator 
with respect to the bilinear form (2. 6). 

According to the method of analysis previously 
worked out, we look for a second symplectic operator 
making Eq. (5.1) Hamiltonian. To this end, let us con
sider the operators 

(5.4) 

which are symplectic with respect to (2.6) for any 
choice of the function a(u} (a =da/du). By trying to ful
fill condition (1. 25) by means of (5.4), the function 

a(u) =u, (5.5) 

is obtained. Since the two symplectic operators (5.2) 
and (5.4) [with a(u} given by (5.5)] verify the coupling 
condition (3.1), it turns out that the Harry Dym equa
tion is an integrable Hamiltonian equation, and that the 
infinite sequence of its conservation laws is defined by 
the recursion formula 

(5.6) 

Q\ being given by (5.3). The search for the symplectic 
operators making the Harry Dym equation Hamiltonian 
has thus led to a simple analysis of this equation. 

The previous procedure seems to require some pre
liminary guess of the form of the second symplectic 
operator in order to be effective. This difficulty can be 
bypassed as follows. Consider, as a second example, 
the nonlinear Schrodinger equation 

il/Jt + I/Jxx + 21/J2Zjj = 0, (5.7) 

and write it in the form 

Since the operators 

Lcp=icp, 

and 

(5.8) 

(5.9) 

(5.10) 

are respectively a symplectic and a potential operator 
with respect to the bilinear form 

(I/J, cp) = fo (1/J7p + "ifjcp) dx, (5.11) 

(5.8) is a first (well known) Hamiltonian decompOSition 
of the nonlinear Schrodinger equation. 

To find a second symplectic operator M~ making the 
Eq. (5. 7) Hamiltonian, let us look for the simplest in
tegrating operators of this equation. The following four 
integrating operators: 

Q\(I/J) = I/J, 

Q2(1/J} = - il/Jx, 

8j (I/J)=il/J; 

82(1/J) = I/Jx; 
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(5.12) 

Q3(1/J) =- (l/Jxx + 21/J2~), 83(1/J} =- i(l/Jxx + 21/J2iP}; 

Q4(l/J} =i(l/Jxxx + 61/J1/J1/Jx) , 84 (I/J) = - (I/Jxxx + 6l/J~l/Jx) 

can be readily obtained by using the condition (1. 10). 
The operators 8 j are the symmetry generators asso
ciated with them by the symplectic operator (5.9). 
According to (3.3), our problem is to find a symplectic 
operator M~ fulfilling the relations (j = 1,2, 3) 

(5.13 ) 

The inspection of these relations leads to the following 
integrodifferential operator 

(5.14) 

This operator, however, is not skew symmetric with 
respect to the bilinear form (4.11), because of the inte
gral. Let us then write it in the equivalent form 

(5.15) 

where a and b denote the endpoints of the interval n of 
definition of the field functions. The operator (4.15) 
obeys the conditions on the symplectic operators with 
respect to the bilinear form (4. 11) and the coupling 
condition with (4.9). Therefore, the results obtained 
in Sec. 3 can be applied to the nonlinear Schrodinger 
equation. In particular, the following recursion form
ula for its conservation laws, 

iQj+\ (I/J) = oxQj + I/J r [iPQj(l/J} - I/JQj(I/J}] d~ 
• 

+ I/J fb
x 
[~Qj(l/J) - l/JQj(I/J}] d~, (5.16) 

is obtained. 

The same analysis, finally, can be repeated for the 
modified KdV equation 

One obtains the following two Hamiltonian 
decompositions: 

ut + Ox(fu3 
+Uxx) = 0, 

(5.17) 

(5. 18a} 

(5. 18b) 

whose symplectic operators again verify the coupling 
condition (3.1) with respect to the bilinear form (2.6). 
The modified KdV equation is thus another example of 
the special twofold Hamiltonian equations considered in 
this paper. These examples show that the method of 
analysis based on the search for the symplectic opera
tors making the given equation Hamiltonian is not only 
conceptually simple but also effective in the applica
tions. They point out, moreover, that some of the more 

Franco Magri 1161 



                                                                                                                                    

interesting evolution equations considered in the litera
ture have a common structure, which is well described 
by the model of integrable Hamiltonian equation devel
oped in Sec. 3. 

APPENDIX A 

The Gateaux derivative of an operator S ; U - U may 
be denoted by S~ and is defined by 

S~cp~! S(U+ECP)[,"O, (AI) 

so that to the first order in E it is 

S(u +ECP)=S(U) +ES~cp. (A2) 

Its adjoint operator S~, relative to the prefixed bilinear 
form (v, u), is defined by 

(dv, S~ du) = (S~ dv, du). (A3) 

It is a linear mapping of the dual space V into itself. 

If S is given by 

S(u)=s(u,ux,uxx ,"'), (A4) 

it is 

as as 
S'cP=- cP +-cP +... (A5) 

u au oU
x 

x , 

and so the following identity 

as as 
ats(u) = -a 0tU + -~- OtUx +.0. u uUx 

as as 
=-u +-0 U + ..• au t oUx x t 

(A6) 

can be readily verified. 

APPENDIX B 

The Gateaux derivative of the metric operator Lu is 
defined by 

Consequently, to the first order in E it is 

Lu+,,,cp = Lucp +EL~(cp;<p), 

and the Gateaux derivative of the operator 

S(u) ~ LuQ(u) 

is given by 

1162 

S~<p = ! Lu+€"Q(u + E<p) [,"0 

= :E [LuQ(u) +ELuQ~<p 

+EL~(Q(u);<p) + •• ']'"0 

= L~~<p + L~(Q(u); <p). 
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(B1) 

(B2) 

(B3) 

(B4) 

To prove condition (1. 15), observe that every sym
plectic operator satisfies the relation 

(6v, L~(dv;du»=- (d1J, L~(6v;du», (B5) 

which is obtained by differentiating (1. 13) with respect 
to u. Therefore, 

(dv, S~Lu6v)- (6v,S~Ludv) 

(~) (dv, LuQ~Lu 6v + L~(Q(u); Lu6v» 

- (6v, LuQ~Lu dv + L~(Q(u); Ludv» 

(~) - (Q(u), L~(dv; Lu6v» - (6v, L~(Q(u); Ludv» 

(1~4) (dv, L~(6v; LuQ(u))) 

= (dv, L~(6v; S(u»). (B6) 

This proves that condition (1. 15) is necessary. As re
gards the problem if this condition is sufficient as well, 
we can only remark that there exist symplectic opera
tors for which this is true. This can be verified, for 
example, for the symplectic operators (2.4a), (5.4), 
(5.9) and (5.18a) considered in this paper. This fact 
justifies us to assume, in Sec. 3, that for the symplec
tic operator L u , condition (1. 15) is sufficient as well. 
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The scalar, vector, and tensor harmonics on the 3-sphere are developed by its identification with SU(2), 
enabling familiar angular momentum techniques to be employed. The application to spatially homogeneous 
cosmology is discussed. In this context the classic work of Lifshitz and the recent approach of Hu are 
bridged. Finally spinor harmonics are introduced. 

1. INTRODUCTION 

We consider three representations of the Lie 
group SU(2), whose underlying manifold is the 3-
sphere S3, by dragging along of the tensor algebra 
over the group by left translation, inverse right 
translation and conjugation. This leads to a simple 
way of dealing with the tensor harmonics on S3 which 
we identify with SU(2). Specifically, define ea=-iCT 
and e4 = 12, where {CTJ are the Pauli matrices and 1; 
the two-dimensional identity matrix, and let {eO!} be 
the standard basis of R4 considered as a vector 
space. 1 We ...then identity zO!eO! E S3 = {yO! eO! E R4 I 0O!tYJO!yf3 
= I} with zO!eO! E SU(2). (Alternatively one may identify 
S3 with the unit quaternions of the quaternion algebra 
induced on R4 by the identification of {eO!} and {eO!}.) 
As a reminder of this identification we will use the 
symbol G to denote SU(2) ~ S3 in what follows. 

2. STRUCTURE AND GEOMETRY OF G 

Let 9 be the three-dimensional vector space of 
left invariant vector fields on G (the Lie algebra of 
G) and 9 its right invariant counterpart. Introduce 
also the dual vector spaces 9 * and g* of respectively 
left and right invariant I-forms. "~,, may be inter
preted as a map which associates to each left invari
ant tensor field on G the right invariant field whose 
value at the identity coincides with that of the original 
field at the identity. 

Let {yJ be standard Cartesian coordinates on R4 
and {0O! = %yO!} the coordinate frame. The identity 
e4 of SU(2) corresponds to the north pole of S3 and 
has coordinates {O, 0, 0, I}. The vector fields LO!f3 
= yO!oJ3 - yf3 oQ! generate the rotations of R4 about the 
origin [the identity representation of SO(4, R)] and 
restrict naturally to vector fields on the orbit G. 
Let 2ea=L4a-Lbc and 2ea=L4a+Lbc be defined onG, 
where (at b, c) is a cyclic permutation of (1,2,3). 
{ea} and {eJ are the canonical bases of 9 and 9 which 
agree with the C artesian derivatives Hoa} at the 
identity. [They correspond to the basis {!ea} of the 
matrix Lie algebra of SU(2).] They satisfy 

rea' ebl = CCabec' [e:z, ebl = - CCabec' rea' ebl = 0, 
(2.1) 

with CCab = Erob • Each basis is a global (analytic) 
frame on G, having dual frames {wa} and {wa}, re
spectively, which are the corresponding dual bases 

a)Work supported by NSF Grant MCS-7621525. 

of 9 * and g*. The I-forms !wa and !wa result from 
restriction to G of the I-forms on R4 whose compo
nents in the Cartesian frame are the same as those 
of the vector fields 2ea and 2ea on R4, respectively. 

The Euclidean metric o0!{3dy Q!:;9dy f3 restricts to the 
following bi-invariant metric on G which is a constant 
multiple of the Killing metric and whose six-dimen
sional Killing Lie algebra is 9 EB g: 

9 = gabwa@wb = gabwa@wb, 

gab=g(ea, eb) =g(ea, eb) = i°ab, 

g-1 = lfbea?:9 eb = lfbea:;geb, 

The volume element of the metric is 

1) = gl/2wl:;9w2:;9w3 = gI/2C)I:;9w2 :;9 &:;3 

(2.2) 

(2.3) 

where g= (4)-3 is the determinant of the matrix g 
whose entries are the components gab' It is also con
venient to have a normalized volume element ~ whose 
integral over G is unity, obtained from 1) by dividing 
out the volume of G. (To each of these volume ele
ments corresponds a bi-invariant Lebesque measure 
onG.) 

Suppose we consider ~)-tensor fields on G with 
complex valued components in any (analytic) frame 
which are analytiC in the real sense. 2 This vector 
space CrP,Il(G) has a natural Hermitian inner pro
duct induced by the metric. If Sand T are two such 
tensor fields with components SJ···b ... and ra· .. b ... 

in the frame {ea}, their inner product is 

(S,T)=SG~(S,T), (S,T)=EP-"·b ... Ta ... b ... , (2.4) 

where the indices are raised and lowered with the 
metric as usual: 

T b'" -g ... -M TC''' a.·· - ac i!, -- • • • d-·· . 
Since (ea , eb ) = ioab, factors of 4 will often appear. 
This is so because the natural metric on G is 4g 
rather than the induced metric 9 and with respect to 
which {eJ is an orthonormal frame. 

standard formulas3 may be used to evaluate the 
components of the metric connection and its Riemann 
and Ricci tensors in the frame {eJ: 
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(2.5) 
Rob cd == o~~, Rab == 20a

b• 

If T is a (t)-tensor field, the components of its 
covariant derivative VT in this frame are given by 

- rdcb']'l···d." _... • (2.6) 

Replacing rabc by 2rabc == Ca
bc yields the formula for 

(t Ii T)a .. ·b ••• ' where ffl is the Lie derivative with c c 
respect to ec • These latter components may also be 
interpreted as the components of the covariant deriva
tive of T with respect to a flat connection RV (with 
torsion) whose components are Rrabc :::: cabc in the 
frame {eJ and whose global parallel transport is 
right translation. 9 is covariant constant with re
spect to this connection. The same formula with r a

bc 
replaced by 0 holds for (bcT)a ••• b ••• and one may intro
duce a left connection LV in a similar way. 

We use the notation f::.T for the ordinary Laplacian 
of T: 

(2.7) 

From the identity 

and the fact that rebagba==o, it follows that 

f::.T:::: - gabVea VflbT. (2.8) 

Similarly, if <I> is a function, 

f::.<I> == - gabeaeb<I>. (2.9) 
A 

By "index lowering" any (~)-tensor field T with 
r::::p+q is equivalent to a (~)-tensor field T with 
components Ta ••• a,-. Following Lichnerowicz,5 we 
define the divetgence 0 T ,Eind the DeRham Laplacian 
f::.DRT of T (and hence of T by index raising) by the 
formulas 

(oT)at ... ar_t == - Tbat···ar_t;b 

(f::.DRT)at ... ar== (f::.T)at ••• ar + 6 Tat ... b ••• arRbas 
s 

(2. 10) 

When acting on differential forms this reduces to the 
usual DeRham Laplacian f::.DR == do + od. (For a func
tion <I> , 0<I> == 0, and f::.DR<I> == f::.<I>.) 

3. DRAGGING ACTION 

Let L u, R u' and ADu::::LuoRu.t denote left transla
tion, right translation, and conjugation by u EG. 
(Each of these is an isometry of 9 and left and right 
translations commute.) Use the same symbols to 
denote the operators which drag along tensor fields 
by these diffeomorphisms and hence induce linear 
transformations on the vector spaces CTP,q(G). For 
example, if <I>, X, u are a function, vector field and 
one-form on G and h a diffeomorphism of G into 
itself, the dragged along fields ares 
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(hX) (u) == dh(lrt(u)X(h-t(u)), 

(hu) (u) == dh- t (u)*u(h- 1(u). 

For higher rank tensor fields these apply to each 
factor in a tensor product: 

h(<I>X@·· ·@u···)==h<I>hX'@ •• ·@hu··· • 

A tensor field T satisfying hT== T is called h-invari
ant. On a Lie group left (right) invariant tensor fields 
are invariant under dragging by all left (right) trans
lations and have constant components in a left (right) 
invariant frame, while bi-invariant tensor fields are 
invariant under dragging by both left and right 
translations. 

The requirement for a map P from a group G into 
the group GL (V) of invertible linear transformations 
of a vector space V to be a homomorphism and 
therefore a representation of G is PUtU2 == PUt 0 PU2' 

where Pu is the value of P at u and 0 indicates compo
sition of the linear transformations. This is satisfied 
by each of the dragging maps L, R- t and AD which 
therefore determine representations of G on the space 
cP,q(G) called, respectively, the left, right, and 
adjoint (t)-tensor dragging representations. [By R~t 
we mean <R,}-t == Ru-1. Note that the dragging opera
tor ADu equals LuRu-t::::Ru-tLu.l These are unitary 
representations with respect to the inner product 
(2.4) since ~ is bi-invariant. 

Denote the one-parameter group of diffeomorphisms 
generated by a complete analytic vector field X by 
{X t ItE R} (the flow of X). The dragging operator X t , 
when acting on an analytic tensor field T, has the 
Lie derivative expansion: 

(3.1) 

Tensor fields invariant under the flow of X (XtT 
== T for all tE R) have vanishing Lie derivative with 
re spect to X. 

From Lie group theory it is well known that for 
XEg: 

(3.2) 

where the exponential m~ exp: g - G may be de
fined by exp(X) ==X1(uo) ==Xt(uo). Uo denotes the identity 
of G. The corresponding dragging operators there
fore have the expansions: 

Rel(ll(tx) == exp(- tt x )' Lexp<tx) == exp(- tfi), 

A~p(tx) == exp(- tt ~ 1, (3.3) 
(X-X) 

valid when acting on analytic ten~or fields. As a 
consequence the action of X and X on a function <I> 
is given by 

X<I> == (d/dt) '0<I> 0 Rel(ll(tx), X<I> == (d/ dt) '0<I> oLexp(tX). 

(:3.4) 
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9 is said to generate the right translations and 
Ii the left translations. The adjoint diffeomorphisms 
or conjugations are generated by the Lie algebra 
with basis {LbC= ea - eJ, where (a, b, c) is a cyclic 
permutation of (1,2,3)' These are the rotations of 
G which leave the identity (north pole) fixed. [The 
adjoint group acting on SU(2) corresponds to the 
action on S3 of the SO(3, R) subgroup of SO(4, R) 
which leaves e4 fixed.] The orbits of this action 
are 2-spheres of constant y4 which degenerate to 
points at the poles. standard spherical coordinates 
{x, e, ¢} on G are conveniently adapted to these or
bits; {e, ¢} are standard spherical coordinates on 
the 2~sphere of radius sinx for which y4 = cosx. 

The (linear) adjoint group is the subgroup of GL (g) 
induced by the dragging action of the adjoint group 
on g: 

Ad(u)X=AD,;K, XE 9 • 

Its matrix representation with respect to the basis 
{ea} of 9 is SO(3, R) and provides the standard link 
between SU(2) and SO(3, R): 

Ad(u)ea = eli< b a (u). 

R is an SO(3, R)-valued function on G which also 
provides the transformation between the canonical 
left and right invariant frames: 

e = e /) -lb ;:;a = n a wb 
a bl\ a' 1\ b , 

nco n d -" /) a "cd /) b - "ab 
1\ a cdl, b- vab' 1\ C V 1\ d- v • 

If Ku is the matrix whose components are Kabc 

(3.5) 

= Cb ac and if 0arJlanb = 1, then R (expOnaKu) is the matrix 
of the rotation of R3 about the origin by an angle e 
about the direction specified by the unit vector with 
Cartesian components na. This equality is estab
lished by means of the following identities for 
XE g: 

txea = tx, ea] =xcCb caeb , 

A DeD1Xea = Rexp(-x)L exp(X)ea = Rexp(-x) ea = e t xea• 

Let us introduce the notation L = ie L = - i'e 
r-v a a' a a' 

J a =La +La and use the same symbols for the corre-
sponding Lie derivatives, 7 i. e., L T= t L T 
= i teaT, etc. Then the first two seats muttfally 
commute and all three satisfy the standard angular 
momentum commutation relations, i. e., [L..v L b] 
=iEabcLc. Define alsoL2=oa~aLb' L2=oooLaLb' 
J2 = oabJct1b' each of which commutes with its corre
sponding set and with each other, and finally intro
duce the raising and lowering operators for each 
set, i. e., L± =L 1 ±iL2. Combining the new notation 
with our previous formulas we may write: 

R-lexp(8,pe
a

) = exp(- ienaL a), 

L exp(8naea) = exp(- ilJnaLa), 

(3.6) 

We will refer to La' La' and J a as left, right, and 
total angular momentum. They generate the left, 
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right, and ad,jpint dragging representations. We will 
refer to L 2, L 2, and J2 as their squares. [In fact by 
the remarks f~lowing (2.6), La = iRVea and La 
= - iLV'ea, and L 2 and L 2 are the Laplacians of the 
torSion geometries (G, 4g, LV) and (G, 4g, RV). ] Since 
,6.cP = - gabeaebCP = - ~eaebCP if cP is a function, 

.6.CP = 4L 2cp = 4 L2cp, (3. 7) 

so L 2 and L2 coincide when acting on functions. 

4. REPRESENTATION FUNCTIONS AND SCALAR 
HARMONICS 

Consider the irreducible unitary representations 
{DJ I J= O,!, I,"'} of SU(2). Each DJ is a linear 
transformation-valued function G satisfying 

DJ (ul' u2) = DJ (u1)D J (u2)' (4.1) 

The basis f);{} of the Lie algebra of the representa
tion D J determined by the "basis" {LJ of 9 has the 
same commutation relations and is defined by 

g.: = i(d/dt) 1 cP' (exptea), 
(4.2) 

DJ (exp6naea) = exp(- iena9 ~). 

Using (3.4), (4.1), and (4.2) it is easy to compute 
the following derivatives of the function DJ: 

L DJ = DJ (J J _ L DJ = (J J DJ 
a (fa' a qa , 

(4.3) 
L2DJ =L2DJ = (9 J )2DJ. 

Let { I JM) I M = - J, ••• , J} be the standard ortho
normal basis of the (2J + I)-dimensional space 
carrying the representation DJ: 

(JMI IN) = 0MN' EJM= [J(J + 1) -M(M + 1)]1/2, 

g. f 1 J M) = M 1 J M), f) 1/ J M) = E J M 1 J M + 1) , 

(fF)2I JM) =J(J + 1) 1 JM), g. :IJM) = EJM-d J M -1), 

DJ 1 JM) = / IN)DJN M' (4.4) 

The matrices of D' and f): in this basis are defined 
by 

DJMN= (JM/DJ /IN) , (9:)MN=(JM/9: IJN). 

For example, (9 !)M N= 0 M,N+IEJ N' Taking components 
of (4.3), one finds 

(4.5) 

By defining I JM,JM') =QJMM'= (2J+l)1/2(-I)M 
x DJ-M M', one finds that left angular momentum acts 
on the index M of QJ MM' exactly as right angular 
momentum acts on the index M' of both QJMM' and 
DJMM" namely in the standard fashion. 

In other words the weight J component occurs in 
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the decomposition of the left scalar dragging repre
sentation 2J + 1 times, once for each value of M', 
and I JM,JM') is a standard basis for the subspace 
of a given M'. An analogous statement holds for the 
right scalar dragging representation. The behavior 
of I J M, JM') under left and right dragging is there
fore standard: 

Lui JM, ,JM,) = IJN, JM')DJN M(u), 

R~lIJM,JM') =/JM, IN)nJNM' (u). (4.6) 

Furthermore, from the well-known orthogonality 
and completeness properties of the representation 
functions8 if follows that {I JM, JM')} is an ortho
normal basis of CTo,o(G): 

<,] lAl1 , ,] lAli/J2M2' J 2Mf> = <QJ IMIM'l, QJ 2M2M'z) 

=6 6 6 (4.7) JI J2 MIM2 M'1M2' 
The diagonalization ofJ2,J3,L

2=l) leads to a 
standard basis of the subspaces of the weight 1 com
ponent of the adjoint scalar dragging representation. 
This new orthonormal basis {QJ lJ, where J, l, m 
refer to L2, J2, J 3 and 1 = 0, •.• ,2J, is obtained by 
familiar angular momentum addition using Clebsch
Gordon coeffici8nts9: 

QJ 1m = C J J (lm ;MM')QJ MAr 

(4.8) 

This new basis is orthonormal because of the unitary 
character of the Clebsch-Gordan transformation. 
Either basis might be called the scalar harmonics 
on G. When a distinction is required, we will refer 
to {QJMM'} as the left-right harmonics and {QJ lJ 
as the adjoint harmonics. 

By (:3.7) the functions {QJMAf} or {QJzJ for fixed 
J are Il~ eigenvectors of the Laplacian ,6. with eigen
value ,6.J = 4J(J + 1) = Il~ - 1, where Il J = 2J + 1. The 
usual approach!! is to obtain such eigenvectors by 
separation of variables in standard spherical coor
dinates {x, 0, rb} on G, in terms of which the expres
sion for the Laplacian is well known: 

,6. = - sin-2 X a/ ax(sin2x a/aX) + sin-2 xfl, 
(4.9) 

- fl = sin- l0 a/aO(sinO a/ao)+ a2 /a¢2. 

Here ,p. is the square of the total angular momentum 
and it is easy to see that J 3 = - W/ a¢. [The adjoint 
group acts on the 2- spheres of constant X exactly 
as SO(:3, R) acts on the 2-spheres of R3 centered at 
the origin.] SinceflYzm=l(Z+I)Yzm, wherey/m(e,¢) 
are the standard spherical harmonics on the 2-
sphere, separation of variables with Qnzm(X, 0, ¢) 
= 11 I(X)yzm(e, ¢) yields the following X equation and 

n 12 
solution : 
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11nl (X) = sinlxC~ll+1) (cos X), 

where Cln is the Gegenbauer polynomial. {(7~ equals 
Q'{m up to a constant factor. 

5. VECTOR AND TENSOR HARMONICS 

Suppose we denote by I JJl,l, J' JH', s, (~» (~)-tensor 
fields of integral spin s (to be explained shortly) 
which are simultaneous eigenvectors of [2, [3' L 2, L3 
with eigenvalues specified by J, M, J', M', respec
tively. Simultaneous eigenvectors of J2 ,J3, [2, L 2 are 
obtained from these by simple angular momentum 
addition: 

Ilm,JJ',s(~»AD =CJJ'(lm,MM')/JM,J1M',S, (~)) 

(5. 1) 

We shall define the first basis (left-right harmonics) 
to be a standard orthonormal13 basis for the left 
and right (~)-tensor dragging representations. The 
second basis (adjoint harmonics) will then be a 
standard orthonormal basis for the adjoint (~)-tensor 
dragging representation. It is sufficient, however, 
to consider only (~q)-tensor fields because of the 
natural correspondence determined by the bi-invari
ant metric. (Lie derivatives with respect to g and 
g commute with "index raising and lowering" since 
gis bi-invariant: Lag=[ag=O.) Furthermore, we are 
only interested in the I-form case ("vector harmon
ics") and in the symmetric (g)-tensor field case 
("tensor harmonics"). We will use the alternative 
notation XJ M,J' u' and x'{~' for the vector harmonic s 
(s = 1) and TfM,J' 1>1' and Tf~'s with s = 0, 2 for the 
tensor harmonics. The anti symmetric (g)-tensor 
harmonics (s = 1) may be obtained from the vector 
harmonics by the Hodge star duality operation 
(which commutes with the DeRham Laplacian). Let 
u denote the vector field associated with the one
form (]' (obtained by contracting (]' with the contra
variant metric g-l or "raising its index"); for ex
ample, wa= 4ea• \Ve will have occasion to refer to 
the vector field harmonics XJM,J' M'. 

The notion of spin arises in decomposing the 
adjoint dragging representation in the subspace of 
either left or right invariant ~)-tensor fields. The 
(~)-tensor harmonics are then obtained by coupling 
the scalar harmonics to spin eigenvectors. The (~)
tensor field spin eigenvectors are themselves ob
tained by decomposing the tensor products of the 
one-form eigenvectors. Suppose for example we 
choose the left invariant fields and introduce the 
spherical basis {if} corresponding to the "Carte
sian" basis {wa} of g *: 

w±!==F2-1/2(Wl±iw2), w O=w3, (wA,wB)=40AB • 

(5.2) 

From the formula te w b= - Cbacwc and from the fact 
a 

that left angular momentum annihilates w b so that 
JawA=LawA, it follows that {if} is a standard spin 
one basis: 
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(5.3) 
J3wA=AwA, J_WA=E1A_1WA-l• 

(The same is true of{z:0} for which JaZ;A=LaZ;A. ) 
We therefore define XOO,iA = wA and obtain all the 
vector harmonics by right angular momentum coup
ling of the scalar harmonics to the left invariant spin 
one basis {wA}: 

XJ M,J' M' = C Jl (J'M', NA) I JM, IN) wA, 

J'=J+l,J,J-l. (5.4) 

From the I-form basis {wA} we may construct the 
standard second rank spherical basis in the usual 
fashion yielding spin components with s = 0,1,2: 

wsm = C 11 (sm, AB)wA 61WB, 

(5.5) 
(wS m, ws'TIf ) = 42(\.1 0mTlf • 

[By successive coupling one may obtain standard 
left invariant spin bases for (~)-tensor fields with 
r> 2.1 The explicit expressions are 

(5.6) 

They correspond to the symmetric traceless (s = 2), 
anti symmetric (s = 1) and pure trace (s = 0) parts of a 
second rank covariant tensor field. 

By right angular momentum coupling we therefore 
obtain the tensor harmonics: 

TJM,J'M' = C (J'M' Nm) I JM IN) sm s Js' ,w , 

J' = J + s, ... , J - s. (5.7) 

For s = ° this is trivial: 

T lM,,' M' = Q"MM' w oo = - 4(3t 1l2QIMM' g. (5.8) 

Both {Xl M,I' M'} and {T/ M,I' M'} are orthonormal apart 
from factors of 4: 
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<x/ lMl,I'lMt X / 2M2,/2M'2) =401 I OM M 0I'rOMM' 
, 12121212 

\T I 1Mp /'lMl T 1 2M2,liM2) =420 1 I 0MMOI'I'0ArM' 
sl ' s2 1 2 1 2 t 2 1 2 

X as s • (5.9) 
1 2 

However, we could have chosen right invariant spin 
eigenvectors and left angular momentum coupling. 
The two approaches are connected by the following 
result: 

X iA,oo=C11 (OO,BC)IIA,IB)wC =-z:0. (5.10) 

This is not surprising since D1AB are the components 
of R in a spherical basis; the manipulation of (3.5) 
establishes this result. The minus sign appears 
since an additional minus sign is required in defining 
left angular momentum relative to right angular 
momentum. Using the properties of the Clebsch
Gordan coefficients and the representation functions, 10 

one may show that the harmonics constructed by 
left angular momentum coupling of the scalar har
monics to the,sight invariant spherical spin bases 
built from {- wa} coincide exactly with the harmonics 
already defined: 

XJM,I'M' = C"'l(JM,NA) IJ'N, J'M') (- WA), 
(5.11) 

T /M,J' M' = C"'s(JM, Nm) IJ'N, JI M') &)sm. 

The vector and tensor harmonics are eigenvectors 
of the ordinary and DeRham Laplacians. To evaluate 
the eigenvalues, it is convenient to work in the left 
invariant frame {eJ and decompose right angular 
momentum into orbital and spin parts: 

La=L~rb+Sa 

(Sa T)b··· c ••• = iCb adTd". c ••• + •.. - iTb"· d ••• Cdac - •••• 

(5.12) 

Here Tb••• c ••• are the components of a (~)-tensor field 
T in this frame. The square of the right orbital 
angular momentum is just I): 

(L~ T)a... =L2Ta... =L 2...a ••• 
b··· b··· I b ••• 

= (L Orb)2T)a ••• b... , 
while the spin-orbit operator is 

L2 = (Lorb)2 +S2 + 2S L orb a a 

(5.13) 

2SJ..~rb=L2_L2-S2. (5.14) 

From (2.5), (2.10), and (5.12) one may verify that 
the square of the right spin angular momentum is the 
difference between the ordinary and DeRham 
Laplacians: 

(5.15) 

A similar decomposition La=L~rb+Sa of left 
angular momentum using the right invariant frame 
{eJ leads to a left spin angular momentum which is 
easily seen to be related to the ,sight spin by Sa 
= SrR-tba which in turn implies S2=S2. 14 Since SaT 
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=LaT =JaT if T is left invati,ant and SaT=LaT=JaT 
if T is right invariant, 52 =52 coincides with J2 on 
the invariant tensor fields and is therefore the spin 
introduced above whose eigenvalues were labe led by 
s. Functions have spin s = 0 and vector fields s = 1 
while second rank tensor fields decompose into spins 
s=0,1,2. 

The covariant derivative and Laplacian may be 
expressed in terms of these operators using (2.6) 
and (2.8): 

=2(L2+[2)_S2, 

~DR = 2(L2 +(2). 

(5.16) 

A spin-s tensor field of left and right angular mo
mentum J and JI respectively is therefore an eigen
vector of both Laplacians. Denote the corresponding 
eigenvalues by ~.T.T' s and ~~~' and define n.T.T' 
= J + J' + 1, so that n.T.T = n.T: 

= (- 25"Lgrb - 52 )A)a= ([2 - L 2)A)a 

*dA== ([2 -L2)A. (6.3) 

Applying this to the left-right vector harmonics, we 
obtain 

O*X.TM,.T'M' = *dX.TM,J' M'= [J(J+ 1) _JI(JI + I)]X.TM,.T' M 

= (J-J')n.T.T,X.TM,.T'M'. 

The same formula holds for the adjoint vector 
harmonics. 

The divergence of X.T M,"" M' is easy to compute 
using (6.2) and the formula ~if> == (od + do)if> == 0 dif>: 

oX.T M,.T' J.f = i[J(J + 1)]-1/20 dQ.T MM' 

(6.4) 

= 4i[J(J + 1)]-1/2Q.T MM' • (6.5) 

To evaluate oX.T M,.T±1M' we need the divergence 
formula: 

oA = - ~beaAb = 4iLaAa = 4i(- I)AL AA_A, 

where AA are the spherical components of Aa 
defined as in (5.2): 

~~h = 2{J(J + 1) + J' (JI + I)} 
(5.17) Aawa = (-I)AA-AwA • 

= n~.T' - 1 + (J - J')2 • 

6. DIFFERENTIAL PROPERTIES 

It is worthwhile knowing how the harmonics behave 
under the operations of taking divergences, exterior 
derivatives (when appropriate), and symmetrized 
covariant derivatives. These operations connect 
the scalar, vector, and tensor harmonics of fixed 
left and right angular momentum. 

Consider the exterior derivative of the scalar 
harmonics and let LA stand for the spherical com
ponents of La: 

L±1='f2-1/2L±, Lo=L3' 

(6.1) 

By the definition of the coefficients C.T 1 (JM, M + A 
_A)15: 

LAQ.TMM' = (- l)A[J(J + 1)]1/2 

idQ.TMM' == [J(J + 1)j1/2C.rt(JM' ,NA)Q.TMNwA 

= [J(J + 1) ]1/2X.T M,.T M' • (6.2) 

This is exactly analogous to a similar situation 
occurring with the scalar and vector harmonics on 
R3. 

To compute the exterior derivative of the vector 
harmonics we use the following formulas: 

(dA)bc= 2e[lAc]-AdCdbc 
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o commutes with all three angular momenta 
(since they generate isometries) so that all har
monics obtained from a divergenceless harmonic 
by the left and right raising and lowering operators 
are also divergenceless. The explicit calculation: 

X.T M,J+1 .T+1 = Q.T MJ w+1, 

OX.TM,J+1.T+1 = _ 4i(2t1/ 2 L+QJMJ = 0 

then establishes OX.TM,.T+1M' = O. The corresponding 
relation OX.TM,.T_1,J.f == 0 follows from left-right 
symmetry [since a similar calculation using (5.11) 
would show oX.T+1M,.TJ.f = OJ. Thus the vector har
monics are transverse (i. e., divergenceless) for 
J ;r J' and exact for J = J'. This reflects the Hodge 
decomposition16 of the space of I-forms which in 
our case contains no harmonic elements (~DRA 
= 0). 

The divergence of a symmetric second rank co
variant tensor field h is "given by 

(oh)a = - gbcebhca = 4iL"hba 

(oh)A=4i(-I)BL Bh_BA• 

Since T{M,J+2 .T+2 = Q.TM.T w+1;59w+1, it follows exactly 
as in the vector case that OT{M,.T±2 M' = 0, so 
{T{M,.T±2 M'} are transverse tracless harmonics. 
From (6.2) and the formula o(if>g)=-dif>, it follows 
that 

OT5 M,.T M' = _ 4i(3t1/ 2 [J(J + 1) ]1/2X.T M,J M' • (6.6) 

The remaining spin-2 tensor harmonies may be 
obtained from vector field harmonics by Lie deriva
tion. To simplify notation, let i stand for the four 
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indices JMJ'M', oiJ for the product of the four 
individual Kronecker deltas, ni for n~~" a!!-d 
~hR for ~M;. The vector field harmonic~ Xi are 
obtained from the one-form harmonics Xl by replac
ing evA by 4eA in (5.4). Consider the tensor fields. 
Si =. t xig with components 2Xi (a; 11) and let ~ and Sb 
be the traceless and pure trace parts of 51. A short 
calculation using Lag=O=Lag shows that 

L Si = t ~ .g L~ Si = t . 9 a l Xl' a l Xi ' a a 

SO Si inherits the angular momentum properties of 
Xi which in turn are identical with those of Xi. It 
then follows that s6 and s,t are respectively propor
tional to 1i and T~. The proportionality factors may 
be determined up to phase by comparing norms. 
(Once they are obtained for one i, application of the 
raising and lowering operators shows that the values 
are independent of M and M' • ) 

Since sia 11 = 2Xia;a = - 20Xi , s6 vanishes when J' = J 
± 1 and so Si is itself proportional to T~. When J' = J: 

S6=_~Xi 

= (2i/3)[J(J + 1)J1/2Qig = 2i(3)-1/2 [J(J + 1) P/2T~. 

(6.7) 

In this case since dXi = 0: 

Si ab = 2X i a;b = 2i[J(J + 1) ]-1/2Qi ;a;b' (6.8) 

The divergence of Si may be computed with the 
help of the Ricci identity: 

Xib;a;b =Xib;;b;a + XidRd bab = «2 - do)Xi)a, 

S i ;b=Xi ;b+Xi ;b 
ab a:b b:a' 

OSi = (~- 2 + do)Xi • 

(6.9) 

When J' =J ± 1, OXi = 0 so oS' = (~- 2)Xi = (n1- 4)X i , 

while if J=J' then doXi = ~DRXi and oSi = 2~' 
= 2 (n~ - 3)Xi• Let oSi = ciXi. Then {Sf} are 
orthogonal 

(Si.S~ = 2jG7jSiarx1a;b 

= 2(oSi,Xj) = 2c i OCi , Xi) 

=42 0 .. c i /2. IJ 
(6. 10) 

When J' =J + 1 it then follows that 

zSi = [(n~ - 4)/2]1/2T~. (6. 11) 

The phase in (6.11) and (6.12) has been determined 
by evaluating S~M,~+l~+l and S~M,U explicitly using 
Clebsch-Gordan coefficient formulas which may be 
found in Ref. 17. When J' = J, knowledge of (Si, S-6) 
= 42oii(ni -1)/3]1/2 from (6.7) is sufficient to 
evaluate <s,t, SD by orthogonality: 

(s,t,~) = <Si, S1) - <s6, s-6) = 420ij[2(n~ - 4)/3], 

The Ricci identity may also be used to evaluate 
other derivatives. For example 
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(6.12) 

(6. 13) 

- iii ac;b;c - Sibc:a;C= c i Si ab - 6~ab' 

Let us adopt the convention that by omitting cer
tain right angular momentum indices on the har
monics we mean the linear span of the harmonics 
with the remaining indices fixed and the omitted 
ones assuming all possible values. For example 
X~M is the space spanned by X~M,~'M' with JM fixed. 
Also by T~ M and T~ M,~' we mean the direct sum of the 
spaces with s = 0 and s = 2 only. The Hodge decompo
sition is then reflected in the orthogonal direct sum: 

X~M=X~M.~±l EBX~M.~. 

<X~M.~±l =X~M.~+l EBX~M,~-l, etc.). 

Consider T JM =T2~M,J±2EBTlM,~±lEBT~M,~. The 
first summand contains the transverse traceless 
harmonics and the second those which result from 
Lie derivation of 9 by transverse vector field har
monics. The last summand is in an obvious notation 
txJM,~gEBQ~Mg but the direct sum is not orthogonal. 
If we decompose T.T M,.T into an orthogonal direct sum 
with tx .TM,~g as the first summand, the second 
summand must be transverse: 

O=(Si,.0 =2trlXia:bPab= -2IG~XiaPa,/b 

Since PET~M,.T implies OPEX~M,~, orthogonality 
to tx.T M,.Tg requires that oP= O. Given a function <I>, 

the Ricci identity shows immediately that the follow
ing combination of <I> and its second derivatives is 
divergenceless: 

It is exactly these combinations of the scalar har
monics which span the transverse subspace of 
T~M,~: 

pi == (Qi _ !~Qi)g _ !V'V'Qi, 

piaa== (3 - ~)Qi = (4 - nj)Qi, (6.14) 

(pi, pi) = 420ij [(n1- 3)(n1- 4)/321. 

{Si, pi} is an orthogonal basis of T~ M,~ and the 
following is an orthogonal direct sum reflecting the 
canonical decompOSition of symmetric second rank 
tensor fields on a Riemannian manifold of constant 
positive curvature18 : 

T~M=T2.TM,J±2 ffifx~M9 ffipJM. 

7. REALITY PROPERTIES AND PARITY 

The reality properties of the harmonics are im
portant if one is interested in real tensor fields. Let 
XJM == Q~MNwA and T ~M = Q.TMNwSm These are NA s Nm • 
standard orthonormal bases (modulo factors of 4) 
of the left dragging representations but not the right. 
The left-right harmonics are related to these left 
harmonics by the real unitary Clebsch-Gordan trans
formation which decomposes the right angular 
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momentum tensor product representation into irre
ducible components. The adjoint harmonics are ob
tained from the latter harmonics by another real 
Clebsch-Gordan transformation. 

The representation functions10 and therefore our 
left-right scalar harmonics satisfy 

DJMM, = (_1)M-M' DJ-M_M" QJMM' = (_1)M+M' QJ-M-N, 

while the left invariant spherical spin bases satisfy 

evA = (- l)Aw-A, wsm = (- 1)mwS-m• 

Together these imply 

X JM
NA = (-l)M+N+AXJ-M_N_A, 

T JM = (_ 1)M+N+AT J-M 
S Nm s -N-m' 

The sign is always (-1)J3. The reality properties 
of the left-right and adjoint harmonics are therefore 

XJM,J'M' = (_ l)M+M'XJ -M,J'-M', 

x JJ' = (_l)"",JJ' 1m A/_m 

One may also introduce the notion of inversion and 
parity. Let P denote the inverse diffeomorphism and 
its corresponding dragging operator. P is a discrete 
isometry of 9 satisfying p2 = Id (the identity diffeo
morphism and dragging operator). It inverts G about 
the north pole. In Cartesian coordinates restricted 
to G, p{ya,y4}={_ya,y4} and hence in terms of 
spherical coordinates, X remains unchanged while 
the two-spheres of constant X behave exactly like 
the spheres centered at the origin of R3 under in
version. Qim therefore has the same parity as Y 1m' 

Let X E g and q, be a function: 

(PX) (u)q, =X(u-1)q, 0 P= (d/ dt) I 0 q, oP(u-1 exptX) 

= (d/ dt) I oq, «exp- tX)u) = - X(u)q,. 

Then it follows that Pep = - ea and Pwa = - Z:;a. Since 
PDJMM, = (_1)M-M' DJ-M -M' 10 the scalar harmonics 
satisfy: 

PQJMM' = (_i)-2M' QJM' M= (_1)2J QJM' M. 

With the help of (5.11) the inversion properties of 
the left-right harmonics are easily deduced: 

PXJM,J'M' = (-1)2J CJ1(J' M' ,NA)QJNM' (- (DA) 

A Clebsch-Gordan coefficient symmetry then yields 
the inversion properties of the adjoint harmonics: 

pxf~' = CU ' (Zm,MM')PXJM,J' M' 

= (- 1)2J CJJ, (lm, MM')XJ' M' ,JM 
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= (- 1)/+J'-J CJJ, (Zm, M', M)XJ' M' ,JM 

= (-I)/+J'-JXi~J· 

The same manipulation shows 

PTi~'s= (_I)/+J'-JTi~JS, PQJ ,m= (-1)/Qfm' 

FO,r J < J' define the following parity eigenvectors 
with eigenvalues: 

p(_I)I+J'-J: 

(7.1) 

These bases are also orthonormal modulo factors 
of 4. Also note that (6.4) implies 

(7.2) 

By stereographic projection from the south pole 
onto the hyperplane y4 = 1, one may associate a point 
of R3 (identified with that hyperplane in the natural 
way) with each point of G except the south pole. This 
is a conformal map. Cartesian or spherical coor
dinates on R3 induce coordinates on G - {- e4} which 
might be called conformal Cartesian and spherical 
coordinates. The latter coordinates {r, 0, ¢} are 
related to spherical coordinates by r= 2 tan(x/2). 
P and J a COincide exactly with the usual parity and 
total angular momentum on R3. The metric is 
explicitly 

9 = dX2 + sin2x(d0 2 + sin20 d¢2) 

= (1 + r2 /4)"I[dr2 + r2(d0 2 + sin2e d¢ 2) 1. 

Eigenvectors of the vector DeRham Laplacian on 
G may be found by separation of variables using the 
vector spherical harmonics on R3. This leads to 
radial equations involving Gegenbauer polynomials. 12 

Requiring the eigenvectors to have definite parity 
produces the adjoint vector harmonics of definite 
parity. A Similar statement holds for the tensor 
case. 19 

8. WAVE EQUATIONS ON POSITIVE CURVATURE 
FRIEDMANN SPACE-TIMES 

Consider the manifold M = R x G with the following 
Lorentz metric: 

(S.1) 

where a is a function of the "time" t. Since we are 
not here concerned with a specific function a, it 
suffices to say that a is determined by the Einstein 
field equations for 4g with a perfect fluid source 
having the same symmetry group as 4g. (M,4g) is 
then called a Friedmann space-time. 

The vector and tensor harmonics on S3 were ori
ginally developed by Lifshitz in terms of harmonic 
polynomials on R 4, an approach which does not easily 
lend itself to explicit calculation. His motivation 
was the treatment of the perturbations of the Fried
mann spacetimes, an elegant and rather classic 
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application of the machinery of this paper and to 
which the reader is referred. 11 More recently Hu 
and Regge have introduced the idea of exploiting the 
group properties of S3 to study perturbations of 
spatially homogeneous space-times (M, 4g) more 
general than Friedmann,20 Their technique essen
tially amounts to the use of left harmonic expan
sions; however, the special case of Friedmann was 
never treated expliCitly. 

It is also of interest to consider wave equations 
satisfied by test fields on a Friedmann space-time. 
A harmonic expansion of these fields then allows the 
wave equations to be reduced to uncoupled ordinary 
differential equations for the time dependent expan
sion coefficients. Let eo= a/at and wO=dt. Then 
{eJ is a frame on M with dual frame {wO<} and struc
ture functions CO<{3y= o~cabeogo~. The spacetime 
metric is 4g O</3wO<;;<)w13 with 4goo< = a2ooo< and 4gab 
= a2gab' It is now a straightforward exercise to eval
uate the connection and curvature components and 
the Laplacians using the formulas of the second 
section. 

The scalar Laplacian is 

4~<p =a-4(a2.j,)" +a-2~<p, (S.2) 

where <p = eo<p. An expansion of <P in terms of scalar 
harmonics reduces the Klein-Gordon equation, 
for example, to the following ordinary differential 
equation for the expansion coefficients: 

<P = 6<PiQi, 

0= [(4~+ f.,I2)<pJi (S.3) 

=a-4(a2.j,i)' +[a-2(n~-1)+f.,I2]<pi. 

The sourceless Maxwell equations may be solved 
expliCitly on a Friedmann spacetime with no know
ledge of the function a since they are invariant under 
conformal scaling of the metric. 21 Let 4A =Aowo+A 
with A = Aawa be the vector potential. In Lorentz 
gauge: 

(S.4) 

the vector potential satisfies the wave equation 
4~DR4A= 0. 22 The Latin components of this equation 
are: 

By introducing the harmonic expansions: 

A =6 (AJM,JM'XJM,J M' +AJM,J±1 M'XJM,J±1 M'), 

one obtains the following equations for the 
coefficients: 

o =a-2(a2Ab)' + i(n~ - l)A i 

Ai+~iAi=O, 

(S.5) 

(S.6) 

(S.7) 

where ~i = n~ - 1 if J' = J and ~i = n~ if J' = J ± 1. Let 

1171 J. Math. Phys., Vol. 19, No.5, May 1978 

Wi = (~i)1/2. The latter equation has the solution 
Ai =Aieiwit, where Ai is a constant. 

Ao (which incidentally satisfies the scalar wave 
equation) and the longitudinal (J' = J) part of A are 
affected by gauge transformations: . 

Ao-Ao+A, A-A+dA. 

To preserve Lorentz gauge A must satisfy 4~A= O. 
In fact, the gauge dependent parts of 4A are remov
able py a Lorentz gauge preserving transformation 
with 11.= -Ao, exactly as in flat spacetime. In the new 
gauge Ao and AJM,JM' vanish. lA o== 0 forces oA == 0 
by (S.4).] 

Assuming this gauge, the solution may also be 
expressed in terms of the adjoint harmonics of 
definite parity: 

A =6Af,;;+1Pxf,;;+1P, Af,;;+1P= ;4f,;;+1P einu+l t. 

The covariant components of the electric field and 
the contravariant components of the magnetic field 
density are given by 

E = F 0 == - A Ba = lEabe(dA) == 4(*dA) a a a' 2 be a' 

where * is the star operation of g so that (7. 2) may 
be used. The corresponding expansion coefficients 

E = '" EJJ+1XJJ+1 B = "'B JJ+1X'" JJ+1 L.J 1m 1m' L.J 1m 1m , 

are easily evaluated: 

EJJ+1P=-in AJJ+1P BJJ+1P==-n AJJ+1-P 
1m JJ+1 1m '1m JJ+1 1m • 

The parities of the electric field and magnetic field 
density of the vector potential Af,;;+lPxf,;;+1P are 
p(-1)l+1 and p(-1)/, respectively. The p= 1 and 
p = - 1 solutions therefore correspond to the electric 
and magnetic l-pole radiation of Mashoon. 12 

9. SPINOR HARMONICS 

The orthonormal frame {Eo<}={a-1eo, 2a-1eJ may 
be used to introduce ordinary or Dirac spinor alge
bras over 1\1. Although spinor fields cannot be decom
posed into collections of induced spinor fields on the 
natural sliCing of 1\1==RxG as can be done with ten
sor fields, it does make sense to consider a restrict
ed spin connection on G in order to reduce spinor 
equations on 1\1 to ordinary differential equations. 
We briefly sketch how this may be accomplished. 

Let {Eq} ={E1/ 2, E_1/ 2} be the natural basis of C2 
considered as a left invariant spin frame on G 
associated with the orthonormal frame {2eJ. 23 One 
may extend the action of angular momenta to E 

q 
and hence to any spinor field 1j!= 1j!qEq by 

LE =O=LorbE a q a q' 

(9.1) 
LaEq == SaEq = !CTaEQ' 

By (3. 6) the natural extensions of the dragging ac
tions are then: 

L,fiq=Eq, R~lEq=AD,fiq==uEq, (9.2) 

where UE Su(2) is the actual matrix of UE G. 
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{Eq } is a standard spin one-half basis satisfying 
the s = ~ version of (5.3) with J 3E = qEq • This ex
plains our choice of the indices {t -~} rather than 
the more conventional indices {I, 2}. We may there
fore introduce the spinor harmonics by right angu
lar momentum coupling to the scalar harmonic s: 

J'=J±~ 
(9.3) 

IIJJ'=C (lm MM')"JM,J'M' '1 1m JJ', '1 

!J.,;{.+P/2 = 2- 1/ 2 (!J.,;{.+1/2 + p!J.,;,1/2 J) 

By considerations similar to (6.3), (6.4), and (7.2) 
one finds 

2(I}_L2)!jJJ+1/ 2P=_n I/JJ+1/2-p (9.4) 
1m J J+(1/2)'1 1m • 

The covariant derivative and ordinary Laplacian 
may be extended to spinor fields I/! = ~Eq by (5.16), 
but define a DeRham Laplacian bY; 

~DRI/!= (~+ kR)1jJ= (~+2S)1jJ= [2(.L2+L2) +s211/!, (9.5) 

where we have used R = 6 and S21jJ= il/!. In fact, 
is the square of (J'aPa' where P a = - i'i12~a: 

(J' P ,I, =- 4iS (LOrb+.iS ),1,= 2(1,2 - L2)1/! a a'l' a a 2 a 'I' , 

~ /IJJ+1/2P=«(J'p)2!}JJ+l/2P 
DRJ 1m a a 1m 

- 2 !jJ J+1/2 P - nJ J +<1/2) 1m • 

Taub has essentially shown24 that the Dirac 
equation: 

(i?'i1s o< +m)>¥ = 0 

may be reduced to the form: 

(iB/ at - am/3) <I> = aaP a<I>, 

where 1'0<, f3= Ps, and aa= P1(J'a are the standard 
Dirac matrices in the notation of Messiah10 and 

<I> = [:~J =a3
/

2>¥ 

~DR 

(9.6) 

(9.7) 

is a pair of spinor fields. ¢ 1 and ¢ 2 may each be 
expanded in terms of the spinor harmonics 
L! f;{.+l /2 P with time dependent expansion coefficients 
¢}~J+1/2P and ¢~~J+1/2P, respectively. Suppressing all 
indices except p and inserting the expansions into 
(9.7), one obtains the ordinary differential 
equations: 

(id/dt- am)¢ 1+= _n¢2-, 

(id/dt- am)¢ 1-= _n¢2+, 

(id/dt+ am)¢2- = - n¢ 1+, 

(id/ dt+am)¢2+ = - n¢ 1-. 

(9.8) 

For example, in an Einstein spacetime in which a is 
a constant, one obtains solutions with exponential 
time dependence and frequencies w=± (n2 +a2m 2)1/2. 
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A formalism for obtaining shift operators for all classical groups in the form of tensor operators is 
described in application to the orthogonal groups. This formalism is also applicable to the irreps in the 
discrete series of the noncom pact versions of the classical groups. 

INTRODUCTION 

This is the second in a series of papers dealing with 
the shift operators for the classical groups. In the first 
paperl of this series we stated without proof the results 
for the lowering operators of the unitary groups, U(n). 
In the present paper we develop the formalism for the 
orthogonal groups, O(n), and give explicit results for 
the raising, lowering, and weight operators (collective
ly referred to as shift operators) for O(n). In the paper2 
immediately following we obtain the normalization coef
ficients for the shift operators of O(n). The correspond
ing results for the symplectic groups, Sp(n), will be 
given in future publications. 

The importance of the concept of the lowering opera
tor in the study of representations of groups is clear 
from its definition: The state of any weight in an irre
ducible representation is obtained from the state of 
highest weight by application of the appropriate lower
ing operator. The concept of shift operators for the 
U(n) groups was first explicitly introduced by Nagel 
and Moshinsky3 and by Zhelobenko. 4 For the O(n) groups 
the shift operators were given by Wong. 5 To the best of 
our knowledge shift operators for the Sp(n) groups do 
not appear in the literature. 

One of the problems that arise in work in this field is 
that of devising a suitable notation. Thus, whereas the 
results of Nagel and Moshinsky are fairly transparent, 
those of Wong are Virtually unusable because of their 
complexity. The method for obtaining O(n) shift opera
tors to be described in the present work is applicable, 
with minor modifications, to all classical groups. Even 
in the case of U(n) our results1 are simpler than the 
elegant formulas of Nagel and Moshinsky3; in the case 
of O(n) the simplification is greater yet. 

In an attempt to make this paper reasonably self
contained we discuss in Sec. 1 the generators and 
weights of 0(2v+ 1) and in Sec. 2 we describe the 
canonical chain 0(2v + 1b 0(211b 0 •• 0(3b 0(2) and ob
tain a (modified) Gel'fand-Zetlin pattern6 completely 
characterizing an O(n) basis vector. The slight modifi
cation of the standard Gel'fand-Zetlin pattern is need
ed to obtain a more transparent scheme for classifying 
generators and tensors as raising, weight, and lowering 
generators and tensors. In Sec. 3 we introduce O(n) 
tensor operators following the ideas of Louck and 
Biedenharn,7 Okubo, 8 and Nwachuku and Rashid. 9 We 
obtain the shift operators for 0(2k + 1) in Sec. 4, and 
for O(2k) in Sec. 5. Section 6 contains some conclud
ing remarks. It is perhaps worth remarking that our 

shift operators are tensor operators whereas those of 
Wong5 are not. In fact the corresponding operators are 
not equal except when applied to the appropriate state. 
This is a reflection of the nonuniqueness of the shift 
operators already noted by Nagel and Moshinsky. 3 

1. GENERATORS AND WEIGHTS OF O(2v+ 1) 

We denote the generators of 0(211+ 1) by q with the 
indices ranging from - v to II. In the Racah basis10 their 
commutation relations are 

[q, ql=6gq - o~q + o~q - o~e~, (1. 1) 

where 

a= - n. (1.2) 

These e's obey 

e~ = - e~ (1. 3) 

and therefore the number of independent generators 
(order of the group) is v(2v + 1). Moreover, in unitary 
representations we demand 

(1. 4) 

It is clear that the II generators 

e~, 1'" a '" II, (1. 5) 

may be taken simultaneously diagonal-they form a 
so-called Cartan subalgebra; we see that the rank of 
0(2v+ 1) is II. Let Iw) denote a simultaneous eigen
sta te of the e~: 

(1. 6) 

where 

(1. 7) 

w is called the weight of the state Iw) and the w., II 

'" a '" II, are the components of the weight. It follows 
from Eq. (1. 3) that 

(1. 8) 

and therefore the last II + 1 entries in Eq. (1. 7) are 
redundant and will be usually omitted. Two weights 
will be called equal if all components are equal; for 
unequal weights we introduce an ordering as follows: 

w>w' if w.>w~, (1. 9) 

where 

(1. 10) 
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It follows from Eq. (1. 1) that 

C~{q I w)}= (we + o~ - og + o! - o~)C~ I w), 

so that we may write 

qlw) ex: Iw'), 
w'=w +o·-oe+o;;_"~ C C ' c b C ~)d· 

Consequently 

w' ;, w if a;' b 
< < 

(1. 11) 

(1. 12) 

(1. 13) 

(1. 14) 

and therefore we may classify generators as raising, 
weight, and lowering generators according to the 
following scheme: 

raising 
q is a weight 

lowering 

a>b 
generator if a = b. 

a<b 
(1. 15) 

An irreducible representation (irrep) of 0(2v+ 1) may 
be specified by the weight of the state of highest weight. 
Let I h) be the state of highest weight, i. e. , 

c~1 h) =o~hal h) for !J~ b ~a ~ v, (1.16) 

where 

h = (hv , hV-I' .•. , hI) (1. 17) 

is the weight. It follows from our ordering that 

(1. 18) 

The labeling of states within the irrep specified by h 
makes use of the canonical chain of subgroups 

0(2v+ 1):J0(2v):J0(2v-l):J·, , 0(3):J 0(2), 

and we discuss this next. 

2. THE 0(2v + 1) :J 0(2v) :J .•• :J 0(3):J 0(2) 
canonical chain 

(1. 19) 

This chain may be formed in a number of different 
ways. We find it convenient to proceed as follows: We 
take for the 0(2v) subgroup of 0(2v + 1) the group gen
erated by the q of Sec. 1 with the value 0 excluded 
from the range of the indices, With this one modifica
tion all the concepts discussed in Sec, 1 for 0(2 v + 1) 
carryover to 0(2v). Thus the order of 0(2v) is 
v(2v-1), the rank is v, and an irrep may be speCified 
by the weight of the state of highest weight, 

Let I q) be the state of highest weight, L e, , 

C~ I q) = o~q.1 q) for !J ~ b ~ a ~ v (0 excluded), (2,1) 

where 

q= (qv, qv-l>"" ql)' (2.2) 

and 

(2.3) 

Now consider an irrep of 0(2v+ 1) specified by h as in 
Sec. 1. Such an irrep is necessarily a representation 
(possibly reducible) of any subgroup of 0(2v + 1), in 
particular of 0(2v). Therefore, for appropriate values 
of hand q, we must be able to form from the states in 
the irrep of 0(2 v + 1) specified by h, the state I q) de
fined by Eq. (2, 1), which we shall now denote as 
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(2.4) 

The labels in the top row, h, specify the irrep of 
0(2v+ 1). The labels in the bottom row, q, specify 
the irrep of 0(2v), contained in this particular irrep 
of 0(2 v + 1), and at the same time q gives the weight 
of this state of 0(2v+ 1). Since q is the weight and h is 
the highest weight for this irrep of 0(2 v + 1), we must 
have 

h?- q, (2.5) 

hence in particular 

(2.6) 

Moreover, the state I h) defined by Eq. (1. 16) is ob
viously given in the notation of Eq. (2.4) by 

(2.7) 

Next we take for the 0(2v - 1) subgroup of 0(2v) the 
group generated by the q of 0(2v) with the values 1 
and - 1 excluded from the range of the indices, together 
with additional generators C~, C~ defined by 

C2 = (C~ + C!)/v'2, C~ =(C~ + q)/v'2, 

2 ~ I a I ~ v. (2.8) 

It follows from Eq, (1. 1) that the commutation rela
tions of these (v - 1 )(2v - 1) generators are precisely of 
the same form as Eq, (1, 1) with the values 1 and - 1 
omitted from the range of indices and with C~, C~ of 
Eq. (1. 1) replaced by C~, eg. This proves that this set 
of generators generates 0(2v-1). The tilde in C2, C~ 
will be omitted whenever there is no risk of confusion. 

It is seen that the rank of 0(2 v-I) is v-I with the 
weight generators the same as in the original 0(2v + 1), 
except that q is missing. As before we have that an 
irrep of 0(2v - 1) may be specified by the weight of the 
state of highest weight. Let I r) be the state of highest 
weight, i. e. , 

cglr>=o~r.lr), v~b~a~v (±1 omitted), (2.9) 

where 

(2.10) 

and 

(2.11) 

By repeating the argument used for 0(2v + 1):J 0(2v) 
but applied to 0(2v):=J0(2v-l) we have that for ap
propriate values of q, r the state I r), which we now 
denote as 

(2.12) 

is a state in the irrep of 0(2v) specified by q, with the 
labels r specifying the irrep of 0(2 v-I) contained in 
this irrep of 0(2v). We note that this state is no longer 
necessarily an eigenstate of C~, however we still have 
corresponding to Eq. (2,6) that 

(2.13) 
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Moreover. the state I q) defined by Eq. (2. 1) is obvious
ly given in the notation of Eq. (2. 12) by 

I :)= I::: : : :: ::' ql) (2.14) 

and it is an eigenstate of Ci to eigenvalue ql' 

By combining the arguments that led to Eqs. (2.4) 
and (20 12) we also have that I ~, which we now denote as 

(2.15) 

is a state in the irrep of 0(2 v + 1) specified by h. Also, 
the state I h) defined by Eq. (1. 16) is given in the nota
tion of Eq. (2.15) by 

h) hv, 0 •• , h2' h~ 
h =' hv."" h2' hI ' 
h hv, .,., h2 

(2.16) 

The pattern for the chain 

0(2v+ Ib 0(2vb,oo::J0(2kbO(2k-lb"'::J0(2) 

should now be clear. Thus the 0(2k) subgroup is gener
ated by the ~ of 0(2 v + 1) with the values v + k, 
v + k + 1, ... , T, 0,1,0' . , v - k - 1, v - k excluded from 
the range of the indices; the 0(2k - 1) subgroup is gen
erated by the q of the above 0(2k) subgroup with the 
values v + k - 1 and v - k + 1 excluded, together with 
the additional generators C~. C~ defined by 

c~ = (C~+k'l + C~'k+I)/v'2, 

for v - k + 2"" I a I "" v, 

Changing our notation so that 

(2,17) 

(2.18) 

it is clear that according to the indicated chain a label
ing of an 0(2v + 1) state vector is given as follows, 

where 

m 2k+1 = (m~k+\ m~~\ .•• ,m~~~l)' 1"" k "" v, 

m
2k = (m~k, m~~l' ... ,m~~k+l)' 1"" k "" v, 

(2. 19) 

(2.20) 

(2.21) 

with the labels subject to the following inequalities, 

m~? m~'l and m;? m~.l' (2.22) 
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In fact, in a unitary representation the labels m have 
additional restrictions placed upon them-this will be
come clear when we construct the normalized shift 
operators. The pattern (2.19), somewhat modified to 
account for different conventions in the ordering and 
labeling of weights, is known as the Gel'fand-Zetlin 6 

pattern for 0(2v + 1). The corresponding pattern for 
0(2v) is obtained by simply omitting the topmost row in 
(2. 19). It is seen that the number of labels in the pat
tern is v(v+ 1) for 0(2v+ 1) and v2 for 0(2v), which in 
each case is half the sum of order and rank of the 
group. Consequently we have precisely the right num
ber of labels for a complete labeling of an O(n) state 
vector, which justifies the use of the term "canonical, " 
as defined by Baird and Biedenharn, 11 for this chain of 
subgroups, 

We shall denote the pattern (2,19) by 

(2,23) 

in the case that 

(2.24) 

for aU j, and all i "" no Obviously it describes the state 
of highest weight of O(n), that weight being mno 

3. O(n) TENSOR OPERATORS 

A set of operators T~, with the indices in the range 
appropriate to O(n), will be called an O(n) two-tensor 
operator if it satisfies 

(3. 1) 

It is obvious that a subset of the T~ with the indices 
restricted to the range approp·riate to a subgroup O(n') 
of O(n) is an O(n') two-tensor operator, 

More precisely, T~ is an 0(2v+ 1) two-tensor opera
tor if the range of the indices is 

(3.2) 

it is an 0(2k) two-tensor operator if the range of the 
indices is 

(3.3) 

it is an 0(2k - 1) two-tensor operator if the range of 
~e indices is 

JI - k + 2 "" I c I , I d I "" v, 

and 

c,d=O, 

where 

and 

TO = (TV.k.l + T V 'k+I)/v'2 a a a , 

T~ = (T'P+k'l + T~'k+I)/v'2, 

for v - k + 2"" I a I ~ v, 

(3.4) 

(3.5) 
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(3.6) 

In the above, the subgroups O(2k), O(2k -1) are those 
from the canonical chain defined in Sec. 2. 

It follows from Eqo (3 0 1) that 

raising 
T~ is a weight 

lowering 

a>b 
two-tensor operator if a = b o (3.7) 

a<b 

The generators are an example of a two-tensor opera
tor but there are others. In particular if Tg and wg are 
O(n) two-tensor operators, then so are (TW)g and 
(T 0 Wn, where 

(TW)g=L T~W~, (308) 

(T 0 Wn '" L Tg~, 

with c ranging over the range appropriate to O(n). 

A set of operators Vd will be called an O(2v+ 1) one
tensor operator if it satisfies 

reg, Vd ]=- 6~Vb + 6~Va 

for v~a,b,d~v. 

Again, the subset of Vd obtained by restricting the 
indices to the range 

(3.10) 

(3.11) 

yields an O(2k) one-tensor operator; the subset obtained 
by restricting the indices to 

v-k+2~ Idl ~v and d=O (3 0 12) 

yields an O(2k -1) one-tensor operator. Here 

Va'" (VV-k+l + vV+k-l)/12 . (3.13) 

It follows that 

raising 
Vd is a weight 

lowering 

d<O 
one-tensor operator if d = O. 

d>O 

(3.14) 

More precisely, the O(2k) one-tensor operator Vd when 
applied to a state of given O(2k) weight produces a state 
with the weight component W;j raised by one unit if 
v ~ d ~ v + k - 1, or it produces a state with the compo
nent Wd lowered by one unit if v - k + 1 ~ d ~ v. Similar
ly the O(2k - 1) one-tensor operator Vd , when applied to 
a state of given O(2k - 1) weight, produces a state with 
the component W ldl raised by one unit, left unchanged, 
or lowered by one unit according as v ~ d ~ v + k - 2, 
d=O, v-}?+2~d~v. 

An example of an O(n) one-tensor operator is the set 
of generators C:, where d ranges over the values ap
propriate to O(n) and P is fixed and outside the range 
appropriate to O(n). There are, however, other one
tensor operators. In particular, by contraction of an 
O(n) one-tensor and an O(n) two-tensor we may form 
another O(n) one-tensor: 

(VT)a'" L: VJ~, (3.15) 

1176 J. Math. Phys., Vol. 19, No.5, May 1978 

with aU indices in the range appropriate to O(n). 

It is clear that one can define in a similar fashion 
one-tensor operators with a superscript instead of a 
subscript, 

[ea vc]- 6cVa _ 6.1iVii, (3. 17) 
b' - b a' 

however for the application to the problem of shift 
operators this turns out to be unnecessary 0 

4. O{2k + 1) SH I FT OPE RATORS 

The O(2k + 1) shift operators will be denoted by 
2k+lS," with the index /.l in the O(2k) range, i, e. , 

v-k+l~I/.lI~v. (401) 

Throughout this section all indices are in the O(2k) 
range. The shift operators are defined by 

where 

and 

so that we have a lowering operator for /.l > 0 and a 
raising operator for /.l < O. 

(4.2) 

(4.3) 

(4.4) 

Since the patterns on both sides of (4.2) describe 
O(2k) states of highest weight we have [compare Eq. 
(201)] 

c· b 
, a ~b, 

(4.5) 

and similarly for the pattern involving ;;1 2k. It then fol
lows that we must have 

(4.6) 

and 

=0 fora>b. 

We may view Eqs. (4.6) and (4.7) as the definition of 
the shift operators. 
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Now let V(J.L)d be, for fixed value of /.L, an O(2k) one
tensor operator. The /.L is the argument serves to 
identify the particular operator-we shall actually con
struct 2k such operators. It follows from its definition, 
Eqs. (3.10) and (3.11), that if we set 

2k.lSI'=V(/.L)I" (4.8) 

then Eq. (4.6) is satisfied and Eq. (4.7) becomes 

-0, a>b. (4.9) 

Now we note that it is sufficient to require 

-0 for /.L > d (4.10) 

to ensure that Eq. (4.9) is satisfied. 

Thus the problem of determining O(2k + 1) shift opera
tors is reduced to the problem of finding O(2k) one
tensor operators satisfying Eq. (4.10). This problem is 
now solved recursively as follows. Let V(/.L)d be an O(2k) 
one-tensor operator that satisfies Eq. (4. 10) and con
sider V( J.L + l)d defined by 

V(/.L+1)d={V(/.L)(C-c~ktl)}d' (4.11) 

where C~k is a number to be determined below. First, it 
is obvious [see Eq. (3.15)] that V(f..l + l)d is an O(2k) 
one-tensor operator. Second, we have [where the prime 
on L: serves as a reminder that all indices are in the 
O(2k) range] 

d v 

V(J.L + 1)d = L: V(/.L)a(C - c~n.)~ + 2) V(J.L)aC: 
a=v a=a+l 

d 

== L' V(/.L)a(C - C~k 11)~. (4. 12) 
a='[) 

Here the symbol == is used to indicate that the equation 
holds when both sides are applied to the state 

and we exploit the fact that q for a> d annihilates that 
state. Next 

dol 

V(J.L + 1)d == V(J.L)d(C~ - C!k) + L' {C~V(J.L)a + [V(J.L)a, Cm 
a=v 

dOl 

+ L' C~V(J.L)a' (4.13) 
a=1I 

Now since by assumption 
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V(J.L)" -0 for /.L>a, (4. 14) 

the rhs of Eq. (4.13) vanishes for J.L > d. For /.L =d we 
can make the rhs of Eq. (4.13) vanish too if we choose 
C~k to be 

1'-1 _ 

c~k=m~k+ 4' (1- o~) (4.15) 
a=v 

=m~k+ /.L + v- 2(v-k + 1)8", 

where 

1 if J.L > 0, 
8" = 0 otherwise. 

Thus we have shown that 

- 0 for /J + 1 > d. 

Consequently, by iteration, 

V(/J)a= V(v) If (C_C~k~) {
,,-I } 
i=V a 

(4. 16) 

(4.17) 

(4.18) 

(4.19) 

is a solution to our problem, where the prime on n 
indicates that j is in the O(2k) range, where we define 

ii-I n: (C - C~k [) = 11 (4.20) 
j=v 

and where V(v) must be an O(2k) one-tensor operator 
obeying 

(4.21) 

However Eq. (4.21) is empty since the condition 
v> d is never satisfied. It follows that the only require
ment on V(V)d is that it be an O(2k) one-tensor operator 
and the simplest nontrivial choice is 

V(v)a =q. (4.22) 

we thus conclude that 

V(/.L)d == {c rt (C - C~k 11)}O 
i=v d 

(4.23) 

and 

It is perhaps worth noting that the raising operators 
(/J < 0) do not depend on the component of the weight 
being raised so that mf~, can be raised by, say, p units 
by acting with {2k+ lS,.}P. The lowering oprators (J.L > 0) 
depend on the entire wei~ht, including therefore the 
component that is being lowered, and this must be kept 
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in mind. This is in contrast to the situation for the 
Urn) groups and makes the procedure for the O(n) 
groups somewhat more complicated, 

5. O(2k) SHIFT OPERATORS 

The O(2k) shift operators will be denoted by 2kS jJ. with 
the index J1 in the O(2k - 1) range, i. eo , 

v-k+2-"'!J1!-"'vandJ1=0. (5.1) 

Throughout this section all indices are in the O(2k - 1) 
range. The shift operators are defined by 

(5.2) 

where 

and 

with 

"~ ~ : for fJ.>0 
for fJ. =:= O. 

-1 for fJ.<0 
(5.5) 

It follows that 2kS jJ. is a lowering, weight, or ralsmg 
operator for fJ. > 0, fJ. =0, or fJ. < 0, respectively. 

By following the procedure described in Sec. 4 for 
2k+lS jJ. mOdified slightly to account for the different range 
of the indices, we arrive at the result 

(5.6) 

Here 

Ed = (C~-k+l - C~+k-1)/v'2, (5.7) 

(5.8) 

==m~k-l+j+v-(2v-2k+3)ej-(v-k+1)1j~ (5.9) 

and the prime serves as a reminder that the indices 
range as is appropriate for O(2k - I), 
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6. CONCLUSION 

As the reader may have noticed our O(n) shift opera
tors, in contrast to those of Wong, 5 depend on the 
O(n - 1) weight that is being shifted. Although this may 
appear to be a disadvantage of the present method, the 
main application of the shift operators is towards the 
construction of an orthonormal basis for the irreps, 
That construction makes use of normalized lowering 
operators and the normalization coefficients are func
tions of the O(n) and O(n - 1) weights, Consequently the 
additional dependence on m n- 1 in our (unnormalized) 
lowering O(n) operators hardly matters, 

The evaluation of the normalization coefficients is 
quite tedious and is given in the paper2 that follows. As 
mentioned earlier, our shift operators are not the same 
as those of Wong5

; however, the normalization coef
ficients should be the same aside from different con
ventions on ordering and labeling of weights, and we 
find that to be the case. 

In evaluating the normalization coefficients one ob
tains restrictions on the allowed values of the weight 
components m ~. These restrictions are a consequence 
of Eq. (1. 4), which is the condition that the irrep be 
unitary. We may also obtain nonunitary irreps if Eq, 
(1. 4) is replaced by certain other relations. By means 
of Weyl's unitary trick, one can obtain in this way 
orthonormal bases for certain unitary irreps (namely 
those in the discrete series) of noncompact orthogonal 
groups. 
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Normalization coefficients for the O(n) shift operators 
Adam M. Bincer 

Physics Department, University of Wisconsin. Madison. Wisconsin 53706 
(Received 28 September 1977) 

Normalization coefficients are derived for the shift operators of O(n) introduced previously, The resultant 
normalized lowering operator for O( n) is presented in a form analogous to the U( n) case, 

1. INTRODUCTION 

In this paper the O(n) shift operators of the preceding 
paper' are normalized and the normalization coefficients 
are evaluated. Except when otherwise stated we use the 
notation of the preceding paper. These normalization 
coefficients are proportional (with known proportionality 
factors) to the nonvanishing matrix elements of the O(n) 
generators taken between O(n - 1) states of highest 
weight. Thus, the calculation of this paper may also 
be viewed as an evaluation of all matrix elements of 
O(n) generators in an irrep. Another application is the 
construction of an orthonormal basis for an arbitrary 
irrep of O(n): this is accomplished by successive 
application of normalized lowering operators to the 
state of highest weight in the irrep. 

It follows from the preceding paper' that the (not 
normalized) O(n) shift operators ns" satisfy 

m~ 

mr' - 0,,; + 0ii; 

(1. 1) 

where we change the notation slightly and write mf in 
place of m P of the preceding paper, and where 

(:~: -'"' +6',) 
are some numbers that will be called O(n) normalization 
coefficients provided all kets are taken to have unit 
norm. In the case that these coefficients are nonvanish
ing we may divide Eq, (1. 1) by them and define 
rwrmalized O(n) shift operators n 5 u, which obviously 
satisfy 

m~V+l 
• 

m.~+l 
• 

nS" (1.2) 

m~ • m~ • 
n-1 m; mr' - 0,,; + 0;;; 

We recall that /1 ranges over values appropriate to 
O(n - 1) and that we have here a lowering, a weight, 
or a raising operator according to /1 > 0, Jl = 0, Jl < 0, 

For the reader disinterested in the tedious details of 
the derivations we present here our main results. For 
the lowering (/1 > 0) or raising (Jl < 0) normalization 
coefficients we find 

V 11 p.-l 
= _ [I (e'!..-l _ en + 1) [I' (en-1 _ en-I) 

J::V j..L J s=v S IJ. 
(1. 3) 

iL-l 
X [I' [e!."'l _ e n- 1 + 1 + (- )"0 r1 

t=v p. t tlJ. , 

where according to the preceding paper 

(
n-l ) c~ = m: + /1 + ZJ + (n - 2 - 2ZJ)8" + -2 - - ZJ 0"0 (1. 4) 

and where the prime and double prime on the product 
indicate that the dummy index is restricted to the 
O(n - 1) and O(n) range respectively. 

For the normalized lowering operator we find 

{ 

1'-1 } "5 = D [I I D(j) /1 > 0 jJ. - , , 
j=V U 

(1. 5) 

where 

D(il: = (C - er' Il)~ I (er' -er l + 1) 

(1. 6) 

(1. 7) 

and where according to the preceding paper (1"" k "" ZJ) 

V(ii). = (~~~k+l + C~+k-1)/ f2 , n = 2k - 1, (1. 8) l
co n=2ZJ+ 1, 

(C~-k+1 _ C~+k-l)/ f2 , n = 2k. 

Lastly, we find that the labels in the Gel 'fand-Zetlin 
patterns mllst satisfy the "inbetweenness" conditions: 

m " > m"-1 > m" > m"-l > ••• ;;, I m" I n - 2k v :-- V "'"" v-l;"'- v-l.....- ...- v-k'+l' - , 

(1. 9) 

with all m's simultaneously integer or semi-integer. 
This paper is organized as follows. In Sec. 2 we relate 
the normalization coefficients to matrix elements of 
generators and thus obtain a connection between raising 
and lowering coefficients. In Sec. 3 we use a recursion 
relation to express the raising coefficients in terms of 
so-called elementary raising coefficients. The 
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calculation is completed in Sec. 4 where we evaluate 
the elementary raising coefficients by making use of 
the quadratic Casimir operators. 

2. RELATION BETWEEN NORMALIZATION 
COEFFICIENTS AND MATRIX ELEMENTS OF 
GENERATORS 

According to Eq. (4.13) of the preceding paper we 
have 

V(j.l)dlmj"l) ={(C d -C,,_1)V(j.l-1)d 

+aE_:C~V(Jl-1).}lmTl). (2.1) 

Here and in what follows we suppress the (n - 1) super
script on the c's and omit in the symbol for the normal
ized kets and bras all but the bottom row. The prime 
on L: serves as a reminder that all indices are in the 
O(n -1) range. The V(j.l -1)d in the above may be 
eliminated in favor of V(j.l - 2)d by using Eq. (2.1) with 
j.l replaced by j.l - 1. Repeating this procedure an 
appropriate number of times yields 

,,-1 
V(j.l)4 I m'rl) = Il~(cd - c.) {V(v\ 

J:V J 

0.-1 d-l 

<?i'}l'(cd-cJ1 .~'C~V(K).}lm7-1). (2.2) 

We define a unitary representation by 

(2.3) 

so that C; in Eq. (2.2) when acting to the left is a 
raising generator and annihilates any O(n -1) state of 
highest weight < iJ.1r11 . Setting in Eq. (2.2) j.l =d and 
contracting from the left with < mr11 we obtain 

(2.4) 

According to Eq. (1.1) the lhs of the above equation 
vanishes except if m'rl = mi-1 -15,,; + 15;:i;' in which case 
it is equal to the normalization coefficient. It will be 
seen in what follows that the factor Il~~j;l(c" - c) never 
vanishes and therefore the nonvanishing matrix 
elements of V(V)" are proportional to the normalization 
coefficients. Since the generators of O(n) consist of the 
V (v)" and the O(n - 1) generators, and the latter 
necessarily have vanishing matrix elements between 
O(n -1) states of highest weight (except, of course, 
for the weight generators whose matrix elements, 
however, are trivial to calculate) we have here proof 
of the statement given in the Introduction. 

Exploiting the fact that 

V(V): = (- )"V(ll)" (2.5) 

we may deduce from Eq. (2.4) the following relation 
between raising and lowering normalization coefficients 

(2.6) 
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We remark in passing that for IJ. = 0, Eq. (2.6) shows 
that the corresponding coefficient, which is the eigen
value of the weight operator "So, is real. 

3. RECURSION RELATIONS 

(3.1) 

which is derived in Appendix A, with the relation 
between raising and lowering coefficients derived in 
Sec. 2 we obtain the following recursion relations: 
for a> B> ° 

( 

"-1 ) 2 
m; (c'" -ca+ l)(c" -q;+l) 
m'rl + 15",; 

(3.3) 

Since, as shown in Appendix B, in a representation we 
must have 

mil - mr1 = nonnegative integer, f3 > 0, (3.4) 

we may use these recursion relations to express the 
coefficient involving the weight component wa = mg-l in 
terms of the coefficient involving the weight component 
wg=miJ. The result is 

where 

,,-1 (c7 - c" - 2)(c] - c'" -1) 
11 (c j -c",-l)(cj-c",-l) 

_{V-k+1 for n=2k+ 1 , (3.6) 
y - v - k + 2 for n = 2k , 

and where we define the elementary normalization 
coefficient "N", by 

"N = IJ 0:+1' 0:' 0:-1 (
m"" 'm" m"-l m""') 

0:- m: ••• m~+1,m~-1+8Ct' m~_l· •.. 
(3.7) 

Before proceeding to the evaluation of the elementary 
coefficients we note that for QI = 0, Eq. (3.5) reduces to 

(mi~l)= (mi\, 
mi 1 m~J 

(3.8) 
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where we have used the fact that this coefficient is real 
as noted in Sec. 2. We have here a direct demonstration 
that the weight operator 'So is an O(n) invariant (n even). 

4. ELEMENTARY NORMALIZATION COEFFICIENTS 

By making repeated use of Eq. (2.2) and the identity 

~, .-1 
L.; (C b - CJ-l 11' (c. - C){cb - Cj )-1 = (C b - c.)-', b > a, 
•• " j"V (4.1) 

we can show that 
ii-I 

< mr' l V(v)~ V(v)E - n' {cii - C .)-2 "Si "S,/! 1 m;-') 
J.;; J 

ii-, ii-I 
= 6' (cji - cbt' ._n' [1 - (cii - cJ t'] b=v ;-b+1 

x < m';-'I V(i7)! V(V)b I m';-'). (4.2) 

Now let in Eq. (4.2), [m;-')= [a), where 

la)= Im~"'m~+" m~-1 j m~_I" .), a>O. (4.3) 

For i3 = a the rhs of Eq. (4.2) vanishes because the 
state V(V)b [ a), b> a, has weight higher than the highest 
weight, which is impossible. Thus we obtain 

(i-I 

I"Na 12= n: {c" - C'J)2 < r:i I V(V)~ V(V)ii 1 a), 
;:v 

(4.4) 

On the other hand, for 1)1 > (3 > 0 we show in Appendix 
B that 

"S;la > =0, (4.5) 

which allows us to deduce from Eq. (4.2) that 

t ii-, 
< a I V(~ V(vlji 1 a) = (c~ - c~Y' n [1 - (eli - c;t'] 

J'rl+l 

x < a I V(~ V(V>a I a), a> B > O. (4.6) 

To proceed we make use of the O(n) quadratic Casimir 
operator "Q defined by 

(4.7) 

where the double prime indicates that all indices are in 
the O(n) [not O(n -1)] range. For n = 2k + 1 we have 

v 

2k+'Q = 6 {c:[ c: + 2(a - v + k) - 1] + 2V(i7~ V(iJ~} 
a=v-,lt+l 

+ '>" C~ c· L.J • b' 
.>b 

(4.8) 

Since "Q is an O(n) invariant we may evaluate "Q I r:i) 
by setting m~-1 equal to its highest value m~: 

v 

2k+lQ I a) = 6 m!k+1[m;k+1 + 2(a -lJ +k) -1]1 a) 
4~V-k+l 

(4.9) 

and consequently 

'" 2 6 V(v)~ V(v).1 a) 
.:.v-,,+1 

= (m~k+l _m?)[m~+1 + m~k +2(a -lJ +k) -1]1 r:i). 
(4.10) 

By combining Eqs. (4.10) and (4,6) we find for v - k + 1 
,,; a ,,; lJ, n = 2k + 1, 

1181 J. Math. Phys., Vol. 19, No.5, May 1978 

< a I V(v)~V(V)(i I a) 

a a-I 

=~(C~-C(i) n (ei"-c",-I) n (c;-c",-2t', 
J=V-k+l s=v-k +1 

which completes the evaluation of the elementary 
coefficients in the case n = 2k + 1. 

(4.11) 

The case n = 2k is somewhat more complicated. In 
place of Eq. (4.8) we now have 

v t 
2kQ= L: {C·[C"+2(a-v+k-1)]+2V(V)~V(Vl-} 

a=V-k+2 (I a: a. a 

(4.12) 

where we note that 

C~:::f = V(V)o' (4.13) 

Instead of Eq. (4.9) we now have 
v 

2kQla)= 6 m 2k[m2k +2(a-v+k_l)]la); 
I=v-k+l a a 

(4,14) 

and instead of Eq. (4.10), 

= {(m2k )2 + (m2k _ m2k-') 
v-k+l Q" a 

(4.15) 

The added complication is due to the presence of 
V(i7)o and it is resolved by using Eq. (4.2) with 8=0 to 
give 

< a I V(v)bV(v)ol a) -(~: =~:kr (m~~k+l)2 

x < a I V(v)~ V(v)(i I r:i ) , 
where we have also used [since 2kSo is an 0(2k) 
invariant] 

< a 1
2kS); 2kSO I a) 

= < m:k 12kSb 2kSo I m~k) 

(4.16) 

(4.17) 

By combining Eqs, (4,16), (4,15), and (4.6) we now 
find for lJ - k + 2 ,,; a ,,; v, n = 2k , 

< a I V(v)~ V(iJ)(i I a) 
(c:l.- Clf)(e~-k+l - cg ) 
(eO-COl -1)(c", -c-a +2) 

'" x n (ci" - C - 1) 
J =v-k+l a: 

a-I 

X n (c;-c", _2t', 
s=v-,,+2 

(4.18) 

which completes the evaluation of the elementary coeff 
cients for the case n = 2k. 
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CONCLUSION 

Collecting all these expressions yields the result for 
the magnitude squared of the raising and lowering 
normalization coefficients as stated in Eq. (1.3) of the 
introduction. The phases of these coefficients may be 
chosen arbitrarily except that the relative phase of a 
raising and lowering coefficient is fixed by Eq. (2.6). 
Since the formalism was developed in terms of states 
of highest weight it is the lowering operators that are 
of particular interest. We therefore choose all lowering 
normalization coefficients to be positive and thus obtain 
for the normalized lowering operators the expression 
given in the Introduction. A similar expression may be 
written down for the normalized raising operators. 
Finally the conditions that the labels m'; must satisfy as 
stated in the Introduction come about as a result of Eqs. 
(B9) and (B10) and the requirement that the magnitude 
squared of a normalization coefficient be nonnegative. 

APPENDIX A 

In this Appendix we prove a generalized version of 
Eq. (3. 1) valid for all 0', f3 subject only to the require
ment 10' I * 1$1. Starting from Eq. (1.1) and using 
Eq. (2.2) we may write 

( 
mi-l + <\d + Oii~ (m7"1 + O"'i + O~i\ 
mi-I + 0C;i + Oiii) mi-1 

+ O"'i + Oei) 

= P~ii (m7"1 + 0c; i + O~i I V(iJ)", "S~ I mI"l + ° "'i + O~) 

~_I ~-1 

+ Bf .zf Gil V(K ).(P;;:l)"I}lm;-1 + O"'i + OM)' (A1) 
I(=V a =1( 

where 

r-I 
pr",~,=nJc,,-Cj+e"+Oj~+e~(Ojii-.oj~)1. (A2) 

J =V 

Noting that C~, a < (3, is a raising generator when 
acting to the left, that 

[V(V)", ql=<'l~V(v)~, In!! * 1f31, (A3) 

and that 

< m7"1 + O"i + 0iii I [V(v)"" V(v)~ll m7"1 + Ii"'i + O~i) = 0, 

10'1* 1f31, (A4) 

we may write for the rhs of Eq. (A1) 

P~iiPg" < mI"l + O"i + 0iii I V(iJ)~{V(V)", 
'" 

+ e~_", L;!' V(K )",(~:1)"1} Im£,"1 + O"i + O~i) 
K=V 

x < m'( + O~i + .oiii I V(i7)~ V(i7)", I m7"1 + 0"i + \Sa;) , (A5) 

where we use Eq. (2.2) once more and note that 

ea_", t, (P8:1 )"1.P'"a = e~_", (c~ - c" +e~ - e",)"I. (A6) 
K=1' 

Inspection of the rhs of Eq. (A5) shows that it is a 
symmetric function of 0' and f,3 and so we arrive at the 
identity 
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(A8) 

10'1 * 1$1, 

(A9) 

Taking in Eq. (A8) 0', 13;" 0 we obtain Eq. (3.1) of the 
text. 

APPENDIX B 

In this Appendix we show that 

"Sii I 0' ) = 0, (3 > 0, M 0' , (B 1) 

where 10') is the state defined by Eq. (4.3). We start 
with the observation that 

"Sii I mTI = mn = 0 (B2) 

because 1 m1> is the O(n) state of highest weight and 
must be annihilated by the raising operator "Sii' f3 > O. 
In view of the definition, Eq. (1. 1), this means 

(

mry \ 0 

m; + O~i)= . 
(B3) 

.!aking Eq. (A7) with mr1=m7-0",; and with f3 relabeled 
f3 we get 

(:~=:::+6,X:~-6}O, .'~, ", H, (B') 

which means 

0'*(3, 0',f3>0. 

The result is only of interest if the state I m7 - O"'i) 
is in the representation space which means 

and consequently 

nSilmi'-o",i)=O, 0'*f3, 0',f3>0. 

Iterating this procedure we find for any positive 
integer p 

Adam M. Bincer 

(B5) 

(B6) 

(B7) 
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(BB) 

which is Eq. (B1). 

We note the important conclusion that in a representa
tion the weight components mu st obey 

m~ - m~-l = nonnegative integer, (B9) 

(II> a and in O(n -1) range, 
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and by a very similar argument one also shows 

m~-l - m~_l = nonnegative integer, 
(Bla) 

(II> a and in O(n - 1) range. 

IA. M. Bincer, J. Math. Phys. 19, 1173 (1978). 
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I. Exact relations among correlation functions of inherently 
nondynamic interacting systems8 ) 

Stephen B. Haley 

Institut de Physique Theorique, Universite de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland 
(Received 27 June 1977) 

The standard basis operator (SBO) equation of motion is solved exactly for the class of interacting many
body Hamiltonians which can be constructed from a complete set of mutually orthogonal projection 
operators. This class includes the Ising model Hamiltonians. Two integration procedures are presented: (1) 
term by term integration over the poles of the SBO double-time temperature-dependent Green's functions 
in the spectral representation; (2) direct integration of the time-dependent equation of motion of an SBO. 
An ensemble average expression relating correlation functions among systems in different energy states is 
derived. For the Ising model this expression relates correlation functions of spin clusters of different 
orders, and it is analogous to a relation derived from the master equation under equilibrium conditions. 

I. INTRODUCTION 

Hamiltonians describing interacting quantum mechani
cal multilevel systems, each of which is modelled by 
operators that are diagonal in some representation 
possess no inherent dynamical properties. An important 
example is the Hamiltonian for Ising spin systems, on 
which an enormous amount of theoretical effort has been 
expended over the last 50 years. 1,2 Dynamical studies 
of Ising spin systems have been based on the phenomeno
logical master equation. 3-5 In equilibrium, use of this 
equation leads to strictly algebraic relationships among 
spin correlation functions of different orders. These 
relationships were used in Ref. 5 to give explicit 
expressions for spin cluster correlation functions in 
the square lattice by making use of previous two-spin 
correlation function calculations. 6 

In this paper an exact expression relating correlation 
functions is derived for a broader class of Hamiltonians 
than has previously been considered. This is made 
possible through the utilization of Standard Basis 
Operators (SBO). 7 In the SBO representation the most 
general Hamiltonian for an ensemble of pairwise inter
acting systems, each of which possesses discrete 
energy levels, and which can be modelled by a diagonal 
operator is 

(1. 1) 

The scalar E~ is the energy of a noninteracting system 
in the state /1, and W~~ is an intersystem-inter level 
i.!,lteraAction constant, with W~/v = O. The operator 
p~ =L~", is a diagonal SBO, which are in general defined 
in terms of state vectors I all of system l in state a by 

(1. 2) 

The operators p~ form a complete set of mutually 
orthogonal projection operators, and the general SBO 
have a simple commutator relation, 7,8 

(1. 3) 

The equation of motion for a SBO in the Heisenberg 
representation follows readily from Eqs. (1. 1) and (1. 3). 

a)Work supported by the Swiss National Science Foundation, 
Grant No.2. 403-0.75 

Choosing an arbitrary system labelled 0, we have that 

d AO A A A A A 

i
dt 

L",,,,,(t) = [L""",(t) , H] = - (Z~ - Z~, )L~",,(t), (1. 4) 

where 

i o =Eo + !:0 (WOI + WID )Pl 
a 0: 2J..Lrl oq.L p.a I-L' 

(1. 5) 

and 

i ~",(tl = exp(iHt)L ~",(O) exp( - dit). (1. 6) 

Since the operator Z~ contains only diagonal SBO, it 
commutes with Ii and is thus time independent. Hence, 
the solution of the equation of motion (1.4) is given 
immediately by 

(1. 7) 

with together with the transformation equation (1.6) 
yields the commutation formula 

exp(iHtlL cx ",,(0) = exp[it(Z~ - Z~,)]L~o<'(O) 
xexp(iHt). (1. 8) 

In principle Eq. (1. 8) embodies all the information about 
the time development of the individual system 0, but its 
application in calculating correlation functions is in 
general quite complicated. It should be noted that Eqs. 
(1. 4)-(1. 8) are valid for any complex number t; thus 
Eq. (1.4) may be considered as a complex operator 
differential equation. 

II. CORRELATION FUNCTIONS 

In this section exact correlation function relations of 
SBO's referring to different systems will be derived. 
The first approach taken is based on the SBO Green 
functions,7 and the second on straightforward use of 
Eq. (1. 7). The Green function method to be presented, 
although circuitous for this problem, has the possibility 
of being generalized to many-body Hamiltonians 
containing non diagonal operators, i. e., interlevel 
transition operators L 0< 0<' with a * a' . 

The Green functions employed are the double-time 
temperature dependent functions,9 which in the spectral 
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representation satisfy the equation of motion 

(2.1) 

The bracket < ... > represents a canonical ensemble 
average, and A and B are operators, assumed here to 
obey Bose statistics. The spectral Green function 
{(.4I13»E is related to the correlation function (BA) 
through the integral 

x j(E) exp(iE(t - t'), (2.2) 

in which 

(2.3) 

Making use of Eqs. (1.4) and (2.2) it follows that the 
SBO spectral Green function equation of motion for the 
Hamiltonian (1. 1) is 

(E - A~ex.l(Pk i~ ex' I ie-a»E = 2~ ([PkL~ ex" i;r'iJJ> 

+« Q~,:;lpk+1i~ex' liB't! »E ,(2. 4) 

with 

(2.5) 

The operator pk is an arbitrarYAproduct of diagonal SBO, 
excluding the system operator po, having the form 

(2.6) 

with po= 1. 

Since the Hamiltonian contains only diagonal opera
tors, the only nonzero correlation functions are those 
of diagonal operators. This is simply the manifestation 
that the ensemble of systems under consideration 
possesses no inherent dynamics. It follows, using 
commutator expansion rules and Eq. (1. 3), that the 
inhomogeneous term in Eq. (2.4) reduces to 

(2.7) 

in which C k is a k + 1 system SBO correlation function 
given by 

C~=(PkP~). (2.8) 

The equation of motion (2.4) is a recursion formula in 
the subscript k, whose inhomogeneous term vanishes 
for all Green functions except «pki~ex' 1.t~'ex»E' Iterating 
Eq. (2. 6) for k = 1, 2, ... yields an infinite series 
expansion in powers of the single system excitation 
energies A~ex" It is 

(2.9) 

with IT:=k+1Q~'~' = 1. 

It is seen that for given values of the level subscripts, 
the Green function has a singularity at only one energy 
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A~ex'; thus the integrals necessary to determine the 
correlation functions are all of the form 

(21Tit 1 f.:dE {(E - A - iOtO+ 1
) - (E - A + iotO+1 )}g(E) 

=(lI)"lddllg(X)1 = (ll)"lg (I)(A). (2.10) 
x X=A 

For evaluation of this integral, see Ref. 10:. Su~stituting 
Eq. (2.9) into Eq. (2.2), using (2.10), and L~'exL~ex' 
= P~" gives the static correlation function relation 

ole Z"'k 

Ck _""(l')-l~I)(,O ) IT QO.i(C1+k_C 1+k) 
a:/~L..i • } I\.O:O!'. 0:0:' a 0:'. (2.11) 

l =0 :::;k+l 

Before proceeding it is convenient at this point to 
discuss the generalization of the term-by-term integra
tion method introduced here to Hamiltonians containing 
nondiagonaloperators. In the general case, arbitrary 
SBO Green functions can be expanded into sums of 
infinite series, each of which is similar to Eq. (2.9). 
These series contain products of poles at many different 
combinations of the single-system excitation energies, 
depending on the energy level structure of the individual 
systems. Since the argument used to obtain the 
reduction of the inhomogeneous term Eq. (2.7) does not 
hold for Hamiltonians containing nondiagonal operators, 
the Green function series expansions contain different 
types of static correlation functions constructed from 
nondiagonal and diagonal SBO's. Applying partial frac
tion exapnsions to products of unlike poles, one can 
integrate term-by-term over each pole to obtain 
correlation function relations, as done in obtaining Eq. 
(2.11). Since this procedure can be carried out in 
coordinate space, it is applicable to disordered 
systems. 

Returning to the analysis of Eq. (2.11), it is seen 
that once again we have a recursion formula in the 
subscript k. Iterating over k = 0, 1, 2, ... to eliminate 
C~, on the right at each step, and carrying out the 
differentiation to obtain f I) (A) leads to the expression 

(2.12) 

Noting the definitions in Eqs. (2.5) and (2.6), the sum
mation is readily performed giving 

A .... k........ ;...... k .... n .... 
(Pk P~,) = (!l P:i.p~,) = (exp[i3(Z~ - Z~,)]!l P jJ.i.p~). (2.13) 

:=1 " t=1 " 

Equation (2.13) relates the joint probability of finding 
systems nu •.. ,nk in states 111" •• , 11k and sy stem 0 in 
state ct' to the probability that systems nu ... ,n

k 

are the same states, but that system 0 is in another 
state CY.... The operator Z~ is defined by Eq. (1. 5). 
Since pk is an arbitrary product of diagonal SBO, 
excluding p~, any diagonal operator which does not 
contain a part acting on the system 0 may be constructed 
from pk. It follows that Eq. (2.13) can be written in 
the form 

pO(QO) = (Qo exp(Bi~ )p~) = (Qo exp(i3i~,)p~,), (2.14) 

where QO is an arbitrary diagonal operator which can act 
act on any system except system O. The correlation 
function F O depends on QO, but is independent of the state 
subscripts ct and ct' of system O. The operators p~ 
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are subject to the normalization condition 

L:fi~ = 1. (2.15) 
'" 

Equation (2.14) follows alternatively from the com
mutation formula (1. 8). Setting i3 = it, and using P:", 
=i~,,,,(t)i~,,,,(t) and [i~, H]=O in the definition of FO 
for any (}' yields Eq. (2.14).11 

The normalization condition (2.15) together with 
Eq. (2.14) define a set of hierachy equations relating 
correlation functions of system clusters of different 
orders. Whether or not this set is in general complete 
in the sense that correlation functions of some given 
order only can be related remains unproven here. When 
this reduction to the same order, using the arbitrariness 
of QO, is possible, the resulting equation can be solved 
for a given correlation function. An example of such a 
case is the one-dimensional random Ising chain treated 
in the following paper. 

In the next section an explicit form of Eq. (2 0 14) is 
developed for the Ising model. 

III. ISING SYSTEMS 

The Hamiltonian for an ensemble of interacting Ising 
spin systems of spin a1 is given by 

11= _L:h1ryl - ~L: J1,m{jl&m. (3.1) 
I l.m 

The local magnetic field strength at spin a1 is hI, and 
J1,m is the interaction energy between spins a1 and am. 

The transformation of Ii to SEQ representation of the 
form (1.1) is accomplished through the relations 

(3.2) 

and 

E~=-l1hl, W~'i!=_Jlml1v, for 11, v=±1. (3.3) 

Using Eqs. (3.2) and (3.3) the operator i~ defined by 
Eq. (1. 5) is 

(3.4) 

Eliminating P' l from Eq. (2.14) with the help of Eq. 
(3.2) and the normalization condition, yields the follow
ing expression, 

< QO(aO coshpZo - sinhJ3Z0) > = O. (3.5) 

If QO is chosen to be some product of spin operators, 
Eq. (3.5) relates spin correlation functions of different 
orders. Although Eq. (3.5) is in an altered form, it is 
analogous to the equilibrium spin correlation relations 
derived from the master equation. 4 

An expression useful for explicit calculation is 
obtained from Eq. (3.5) by introducing the expansion 

exp(/3JOlal)=coshBJ01(1+flal), with i 1=tanh/3J01. (3.6) 

This expression for lattices having inversion symmetry 
is 

(3.7) 
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with the operator T given by 

T=fl(1+t1a1) and Vo=tanhi3ho. 
I 

(3.8) 

The "even" and "odd" notation means that after the 
product in f is carried out, only terms containing an 
even, or an odd number of operators is kept, 
respectively. 

IV. CONCLUSIONS 

The exact correlation function hierarchy equations 
(2.14) have not been solved for dimension d> 1; 
however they can be a useful tool in evaluating higher 
order correlation functions once lower order ones are 
known. This has been done previously for the d = 2 
Ising model. 5 Under certain factorization assumptions, 
Eqs. (2. 14) are solvable, e. g, , the simplest is the 
molecular field approximation ~n which Z~ is replaced 
by its thermal average value < Z~ >. 

In constrast to the d> 1 cases, the hierachy equations 
have an exact analytic solution for a random Ising chain 
in a magnetic field. This solution is given in the 
following paper. 

The method of term-by-term integration introduced 
in Sec. II is quite general, and it is applicable to SEQ 
Green function expansions for Hamiltonians containing 
nondiagonal operators. The resulting equations relating 
correlation functions are then approximated by some 
appropriate factorization scheme and solved by strictly 
algebraic manipulation. 
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II. Exact solutions of disordered Ising spin chains in a 
magnetic field8
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The one-dimensional Ising model with arbitrary nearest neighbor interactions and a magnetic field is 
formulated in terms of the spin correlation function relations derived in the preceding article I. The local 
magnetization and the two-spin correlation functions are shown to satisfy a set of coupled algebraic 
summation equations. The solution of this set is given in terms of a power series in hyberbolic tangents of 
the magnetic field strength, for chains of arbitrary length. For cases in which the interaction constants are 
random variables, explicit expressions are derived for the configurational averaged magnetization and the 
two-spin correlation functions to the lowest order in the magnetic field. 

I. INTRODUCTION 

The Ising model in one dimension with nearest neigh
bor exchange forces does not exhibit a phase transition 
at a nonzero temperature, 1 and as such, it offers no in
sight into the understanding of critical phenomena. How
ever, this model has often been the basis for under
standing and developing theoretical techniques for use 
in higher dimensions. In particular, the "transfer 
matrix" method, 2 was the basis for the solution of the 
two-dimensional Ising model. 3 This method has also 
been used to solve the random ISing chain for narrow 
distributions of the interaction constants. 4 Previous 
methods concentrate on the direct analysis of the par
tition function. In this paper a completely different 
approach is taken. 

The one-dimensional ISing model is solved exactly by 
manipulation of the expressions developed in the pre
ceding article which relate correlation functions of dif
ferent orders. In the next section a set of summation 
equations which couple the local magnetization and two 
spin correlation functions is derived. In the following 
sections this set is solved for the special cases of a 
homogeneous chain in a magnetic field, a random chain 
in the absence of an external field, and finally for the 
general case of chain of arbitrary exchange interactions 
in a magnetic field. 

II. DEVELOPMENT OF THE BASIC EQUATIONS 

The Hamiltonian for a chain of N + 1 Ising spins al 

coupled to a neighbor spin 0-1+1 by an arbitrary exchange 
constant Jl+l is given by 

N N 
Ii = - h ~ a 1 _ ~ JI+lalal+l , (2.1) 

1:0 1:0 

The parameter h is proportional to a homogeneous ex
ternal magnetic field. 

From the preceding paper I, Eq. (I. 3.7), constructed 
from the model Hamiltonian (2.1), for an arbitrary 
spin site n is 

(Q(1- V&n)[8"(1 + tntn+l&n-1an+1) - (tnan-1 + tn+lan+I )]) == 0, 

(2.2) 

a)Work supported by the Swiss National Science Foundation, 
Grant No, 2.403-0.75. 

where 

(2.3) 

Choosing the arbitrary operator Q to be (j times 1, 
an+l , an-I, and &n-I x & n+l successively, where q is 
another arbitrary diagonal operator, excluding an, gen
erates four equations from Eq. (2.2). Using these four 
equations, which are not all independent, to eliminate 
the correlation functions (qan-Ianan+l) and (qan-la'+ I) 

yields the following independent, but coupled equations: 

~nq - V(a"xn_1 + ~"xn - an+IXn+l ) + anY n-I - an+1 Y n = ° 
for n = 1, 2, 0 • , , 

and 

V(Yn + ~n)q + (1- V2)a"xn_1 - (Yn + ~n V2)Xn 

+ (1 + V2)a n+IXn+l- 2Van+IYn=0. 

The coefficients in Eqs. (2.4) and (2.5) are 

Yn = (1 - t~t~+I)(1)n1)n+l)"l, an == tn1)~I, 

~n == 1)~~1 - 1);1, with 1)n == 1 - t~, 

and the correlation functions are 

q = (q), Xn = «(jan), and Yn = (qifan+1). 

(2.4) 

(2.5) 

(2.6) 

(2,7) 

Equation (2,4) is a recursion relation in Yn' Iterating 
Eq, (2.4) over n = 1,2, 0" to determine Y n as a function 
of Yo and Xn gives from Eq. (2.5) 

n 
VD(q, Yo) + V2{_ D(Xo,XI ) + ~ rn(X._1 - X.) +gn(X)} 

.=1 

-gn(X) =0, forn==I,2,00', 

where 

D(a,b)=(rl -2a l )a-2a l b, r.=(1 +t.)(I-t.)"I, 

and 

(2.8) 

(2.9) 

(2.10) 

Equation (2,4) is the basic summation equation which 
couples correlation functions of two orders in the spins, 
depending on the choice of the operator q. The case to 
be considered here is that for whic h fj == 1 and q = ao• 
For this choice of ij, the correlation functions appearing 
in Eq. (2.8) and defined in Eq. (2. 7) are given by 
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~=.I: C."O=1 a
o 

Yo= C1 a1 

X n = an C n 

where an=(an) and Cn=(&o&,,). 

Explicitly, using the Table (2.11), Eq. (2.8) is the set 
n 

VD(C o, C 1) + V2 {- D(ao, a1) + 6 r k(ak_l - ak) +gn(a)} 
k=1 

-gn(a)=O, (2.12) 

and 
n 

VD(ao, a1) + V2{_ D(Co, C 1) + 6 r k (C k _1 - C k ) 

k=1 

+ gn(C)}- gn(C) = 0. 

It is seen explicitly in Eq. (2.12) that the presence of a 
nonzero magnetic field, manifested by V * 0, couples 
the local magnetization an to the two-spin correlation 
function Cn. The general solution of Eq, (2. 12) is quite 
complicated due to the presence of the summations. To 
obtain a feel for the difficulties involved, we consider 
in the next two sections the case of a homogeneous 
chain in a magnetic field, and that of a random chain 
in the absence of a magnetic field. The important sim
plification occurring in both these cases is that the 
summation does not appear in Eq. (2.12). 

III. HOMOGENEOUS CHAIN IN A MAGNETIC FIELD 

The homogeneous chain of spins is characterized by 
one exchange constant Jj thus the subscript denoting a 
spin position in the chain may be dropped from all quan
tities in Eq. (2.12) except from two-spin correlation 
functions. Noting in particular that an =a and rn =r for 
all 11, Eq. (2.12) reduces to 

and 

Hr + aCn_1 - (r - 2a +Hr)Cn + aCn+1 = 0, 

where 

H = V2(1 - V2)"1 = sinh2/3h. 

(3.2) 

(3.3) 

In order to solve Eqs. (3.1) and (3.2), one must 
first solve Eq, (3.2) for Cn. Since Eq. (3.2) contains 
the constant term Hr, we assume the solution of an in
finite chain to have the form 

(3.4) 

which is normalized such that Co = 1. Substituting Eq. 
(3.4) into Eq. (3.2) defines A and yields ¢ as the solu
tion of a quadratiC equation. Using the result to elimi
nate C1 from Eq. (2.1) gives A =a, and the complete 
solution, 

_~ [ (.!..=i)2]-1}1I2 
a_y! H+ l+t 

= sinh/3h(sinh2/3h + exp(- 4i3J) ]"112, (3.5) 

and 

2 2)(I-v/a)n Cn=a +(I-a I+V/a for n=O,I, "'. (3.6) 
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Expression (3.5) for the magnetization per spin is that 
originally derived by Ising. 1 The correlation functions 
C n can also be derived using the transfer matrix tech
nique5 j however the nice form of Eq. (3.6) does not appear 
to have been given previously. From Eq. (3.6) it im
mediately follows that C~ =a2 for any value of the mag
netic field and that Cn = tn in the absence of a magnetic 
field. Thus long range order is only present when the 
magnetic field is nonzero. 

IV. NONHOMOGENEOUS CHAIN IN THE ABSENCE OF 
A MAGNETIC FIELD 

When the magnetic field is absent V = 0, and Eq. 
(2.12) reduces to the uncoupled equations 

g~O) (X) = - QI.x~~l + YnX~O) - Ql n+1 x~~l = 0, for n = 1,2, •.• , 

(4.1) 

with Xn = a~O), or X~O) = C~O), and coefficients given in 
Eq. (2,6). The superscript (0) is introduced to signify 
that these correlation functions are the zero field 
functions. 

Iterating Eq. (4.1) over n and using the details in 
Appendix A leads to the equation 

QllAl,nX~O)-QlIAo,nxlO)+TI,nX~O)"",O forn=I,2, "', 

where T/,n and A/,n are defined by 

and 

n 

T/,n"",n t k , with Tn+1,n=l, 
k=l 

(4.2) 

(4.3) 

(4.4) 

The complete solution of Eq. (4.2) is obtained by in
troducing an appropriate set of boundary conditions, 
The conditions usually applied are cyclic or open chain. 
The more easily applied cyclic boundary conditions 
will be assumed here, These are expressed by the 
equations 

(a) XN+l=XO' forXn=an, andXn"",Cn, 

(b) XN+2=Xl' for Xn=an, only. 
(4.5) 

The superscript is dropped in Eq. (4,5), since these 
conditions hold in the presence of a magnetic field, The 
second boundary condition (4, 5b) cannot be applied when 
Xn "'" Cn because this would violate the original restric
tion that n * ° when q = &0. If Eq. (4. 5b) were applied for 
Xn = Cn it would lead to a contradiction, since Cn is 
uniquely determined by Eq. (4. 5a) and Co = 1. The 
equation for an, however, is homogeneous and its solu
tion requires two boundary conditions. Application of 
Eq. (4.5a) to Eq. (4.2) gives 

X~O)=(I+TN+l)-I(Tn+Tn+l.N+l)X~O) for 11=0,1, '''. (4.6) 

The local magnetization X~O) =a~O) is obtained by apply
ing the second boundary condition (4. 5b) to Eq. (4.2), 
and solving for ao using Eq. (4.6). The result, as ex
pected from spin flip symmetry in zero magnetic field, 
is that a~O) =0 for all n. 

The two-spin correlation functions C~O) are immedi
ately given by Eq. (4.6) using Co = 1. They are 
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C~O) == (1 + T N+ltl(Tn + T"+I.N+I) for n = 0,1, ..• ,N. 

(4.7) 

In the thermodynamic limit N - 00, the products T N+1> 
T"+I.N+I with n «N tend to zero for nonzero tempera
tures; thus 

(4.8) 
N~~ 

This limit is derived and discussed by Stanley. 6 The 
same result follows for an open chain by assuming 
C~) - 0 for N - 00 in Eq. (4.2). If the exchange con
stants J" are random variables, the configurational 
average value of the correlation functions in the thermo
dynamic limit is (C~O»c == (t)~. This is identical to the 
same expression as that of a homogeneous chain with 
exchange J whose hyperbolic tangent t == tanhFlJ = (t)c' 
For homogeneous chains, the finite chain Eq. (4.7) re
duces to the previously derived expression for C~O). 5 It 
should be noted that for values of FlJ?; 4, the tanhFlJ'" 1 
and the values of C~O) for a finite number of spins N '" 104 

are quite different from the thermodynamic limit val
ues. This difference is the result of the choice of cyclic 
boundaries, and its presence should serve a Warning 
against the use of cyclic boundary conditions to explain 
physical phenomena in finite systems, such as macro
molecules containing 103_104 atoms. In contrast, the 
application of open chain boundary conditions does not 
present this problem, since for N?: 10~ the thermody
namic limit is essentially attained. 

V. INHOMOGENEOUS CHAIN IN A MAGNETIC FIELD 

The solution of Eq. (2.8) in the general case is com
plicated by the presence of the summations. Although 
direct iteration of this equation is possible (see Appen
dix B), evaluation of the resulting recursion relations 
for coefficients of the correlation functions Xo and XI, 
has not been achieved. Noting that the difficult summa
tion term is multiplied by V2 = tanh2tlh we seek solu
tions of Eq. (2.8) in the form of a power series in V, 
i. e., it is assumed that 

Xn=tx~/)v' and D=tD(I)V' . (5.1) 
1.0 100 

Substituting these series into Eq. (2.8) yields a set of 
algebraiC recursion relations for the functions X~/) of 
order l in terms of the same functions of lower orders. 
This is 

g~I)(X)-F~I)(X)=O for n=1,2, '" andl==O,1, "', 

(5.2) 

where gn(X) is defined by Eq. (2.10) and F~I)(X) is 

I I-I 
F~21)(X)=.0 G~2J)(X), F~21-/) =.0 G(2i+/)(X), 

i.1 i.O 

with 

n 

+.0 rk[X~:i2) _X~'-2)J. (5.3) 
k.1 

If the order superscript of any function in (5.3) is nega
tive, that function is defined to be zero. 
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Iteration of Eq. (5.2) over spin site label n leads to 
(see Appendix A) the equation 

(5.4) 

with Tn and A"" defined by Eq. (4.3) and (4.4) respec
tively. For correlation functions Xn == an and X" = Cn, 
Eq. (5.4) is a coupled set of equations, the coupling 
occurring in D(I) in (5.3). 

Applying the cyclic boundary conditions (4.5) to Eq. 
(5.4) withX~/)=a~1) andX~I)=C~1) yields the local 
magnetization 

a~l)==i"(I)(a) forn=O, ... ,N, 

and two-spin correlation functions 

(5.5) 

C~I) == C~O)[ 6' •
0 

- io{/)(C) J + i~ I)(C) for n == 0,1, ... ,N. 

(5.6) 

The function.f"I)(X) is defined as 

i"( I) (X):::: (1 - T N+ltl{t (Tk+I ." + Tk T"+I.N+I) F~')(X) 
k.! 

N+l } 
+ ~ (T"+l.k+TnTk+l.N'l)F~I)(X) • 

k="+1 
(5.7) 

The functions F~I)(X) are determined by substituting 
a~1) and C~I) from Eqs, (5.5) and (5.6) into G(X) in Eq. 
(5.3). The result is the following complicated set of 
coupled recursion formulas: 

(a) F121)(C)=w_W:I [-1 +w:1 EI (1 +t",)(T",_I- Tm+I •N+I )] 

I {N+I (2j-l) +~ _W:I~ (Tm-Tm+I,N+tlFm (a) 
J=I ... 1 

+ (W_w+tl [2E (Tm-Tm+I.N+I)-E(1+t,) 

- ~ (T'+I,m- Tm+I,N+IT'_I) 0 F~2J-2)(C) , ~ J} 
m·1 

(5.8) 

(b) F(21-0 (a) = w w-I + ~ - 2w-1 ~ (T _ T ) F(2J) (C) I-I { N 

k ... + + m 171+1, N+l 171 
i·O m.1 

N+I 
+w-I ~ (T - T )p(2J-fl(a) ... m m+l,N+l 171 

m=1 

where 

W~==1±TN+l' 

Equations (5.5)-(5.8) completely define the local 
magnetization a" and two spin correlation functions C" 
for an inhomogeneous chain in a magnetic field h, ex
pressed in the form 
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an=6 a~21-1)V21-1 
1:1 

with V = tanhj3lzo 

and en = 6 e~2/)v21, 
1=0 

(5.9) 

In view of the complexity of the expression (5.8) 
there appears to be little hope of obtaining closed ex
pressions for F~ II (X), and hence for an and en, for ar
bitrary distributions of interaction constants J". Exact 
expressions for first field dependent terms in the 
thermodynamic limit are given by 

n N+1 

a~ll = 6 Tn+l,k + 6 (Tn+l,k + TnTk+1.N+l), 
k=1 k=n+l (5.10) 

and 

e~2) =(t Tk+1,n + £ Tn+l,k - Tn t T~ ,(I! _ i51
) 

k=1 k=n+1 k=1 kJ m=1 m=k+l 

X (T m - T m+l,N+l)' (5.11) 

From these expressions one is in position to calcu
late the configurational average zero field magnetic 
susceptibility and energy per spin to second order in the 
field for any given distribution of exchange constants 
J". This can be done explicitly for random distributions, 
since in this case (T1,n)c= (t)~-I+l where ("')c denotes 
configurational average. The averages (a~ll)c and (e~2»c 
are arithmetico-geometric progressions which in the 
limit N - 00 yield the expressions 

(5.12) 

and 

( 
1- (t)~ «t)~- (t2)~ 2) 

x (1- (t)y + «t)c- (t2)Y (t )c 

1 + (t\ (1 - (Otl (Ot 1 
- (t2)~+I) 

+ 1 - (f)c 1 - (Oc - (t)c - (t2)c 

(1 - (t 2)n 2 

+ (1- (t5Y (t)c' (5.13) 

From Eq. (5.13) it follows that in the limit n - ex) that 
(e~2»c = (a~j)~; thus it is seen from Eq. (5.12) that for 
ferromagnetic exchange I n > 0 there is always a tem
perature low enough such that long range order is pres
ent in any nonzero magnetic field. It should be noted that 
tanhj3Jn approaches its maximum value 1 very rapidly 
for j3J" > 3. In contrast, for antiferromagnetic exchange 
J" < 0 l;ng-range order is absent, except at zero tem
perature. This same behavior is exhibited in homo
geneous chains, as may be shown from Eq. (3.5). 

The zero field average magnetic susceptibility <X(O»c 
calculated from Eq. (5012) is 

(X(O»c=j3J..l~(l + (t)c)(l- (Octl. (5.14) 

This expression, which also can be calculated from 
(e~O»c in Eq. (4.8) using the fluctuation-dissipation 
theorem, is identical with the homogeneous chain 
susceptibility with t replaced by (t>c. 6 

As a final result, the configurational average energy 
per spin, (E)c = - (a)ch - (Je1)c, calculated to second 
order in the magnetic field using Eqs. (5.11) and (5.12) 
is given by the expression 
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xC !'(t>C Y (5.15) 

VI. CONCLUSIONS 

The exact expressions give here for the local mag
netization and two-spin correlation functions in a dis
ordered Ising chain in the presence of a magnetic field 
appear to have only academic value. Although there 
exist magnetic materials in which the magnetic ions 
may be considered to form linear chains, 7 the Ising 
model is not applicable. 

An important elucidation arising in the method pre
sented here is the explicit manifestation of the close 
connection between the magnetization and the two-spin 
correlation functions when a magnetic field is present. 
Not only was the usual relationship between the mag
netization and the infinite distance correlation function 
exhibited, but it was also shown that the local magneti
zation is intricately coupled to all the two-spin correla
tion functions through the nearest neighbor correlation 
function. Since coupling of this genre is also present in 
higher dimensions, it may be construed as an indication 
of why the problem of the Ising square lattice in a mag
netic field is so complex that it has not yet been solved. 

APPENDIX A 

Using the definition of gn(X) in Eq. (2.10), Eq. (5.2) 
is explicitly 

anx~:l- YnX~l) + an+lx~!l + F~l)(X) =0 for n = 1,2, ... , 

(AI) 

Iteration of (AI) gives 

a 25 X(l) a5 X(Il+Py(l)+R(l)(X)=O (A2) 1 2, 11 0 - 1 1 f n 1 rr L n n , 

where 5 I, n and R~I) are functions satisfying the following 
recursion formulas: 

51,n+l=Yn5I,n-a;51,n_l with51,1=1, 5 1+1,1=0, 

and 

R (l)(X)-y R(l)(X)_a2R(/)(X)+P F(/)(X). 
11+1 - n n n 11-1 n n 

The function P n is defined by 

n 

P n = TnAi~ n with AI,n = n (1 - til, 
k=i 

and Tn is defined in Eq. (4.3). 

Iteration of (A3) and (A4) gives 

5 I,n = (1- TLn) A;!n 
and 

n-I 
R~Il(X)= 6 5k+l,nPkF~l)(X). 

k=1 

Using (A6) and (A7) in (A2) yields Eq. (5.4). 

APPENDIX B 

Direct iteration of Eq. (2.8) gives 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

a I A n(l)B(q, Yo) + Cl!rAn(2)Xo - Cl! IAn (3)XI + PnXn = 0 

forn=1,2, "',(Bl) 
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where 

B(q, Yo) = v'H(1 +H)[(rt - 20't)q- 20'tYol 

+ 20'tH (Xo +X t ), 

H = sinh2/3h. 

The functions An(k) satisfy the four point recursion 
formula 

A n•t (k) = (Yn + O'n + Hr n)An(k) - O'n(Yn-t + O'n + Hrn)A n_t (k) 

+ 0'~_t(llnAn_2(k), 

with initial values 

At(1) =0, 

A 2(1)=1, 

A t (2) =0, 

A 2(2) = 1, 

Ao(3) == 0, 

A t (3)==1, 

1191 J. Math. Phys., Vol. 19, No.5, May 1978 

(B2) 

(B3) 

When H =0, (B2) reduces to the three point recursion 
formula (A3) for Sin, but for H"* ° evaluation of An(k) has 
not been achieved. 

IE. Ising, Z. Physik 31, 253 (1925). 
2H.A. Kramers and a.H. Wannier, Phys. Rev. 60, 252 

(1941). 
3L. Onsager, Phys, Rev. 65, 11 7 (1944). 
4C. Fan and B.M. McCoy, Phys. Rev. 182, 614 (1969). 
5B.M. McCoy and T. T. Wu, The Two Dimmsional Ising Mod-
el (Harvard U. p., Cambridge, Mass., 1973). 

6H.E. Stanley, Introduction to Phase Transitions and Critical 
Phenomena (Clarenden, Oxford, 1971). 

7J. Skalyoetal., Phys. Rev. B 2,1310 (1970). 
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Eigenstates of complex linear combinations of J HJ2,J3 for 
any representation of SU(2) 

H. Bacry 

U.E.R. Scientifique de Luminy. Marseille. France. 
Centre de Physique Theorique. CNRS Marseille, France. 
and Physics Department. Technion. Haifa. Israel 
(Received 27 May 1977) 

The states which minimalize the uncertainty relation I::.J1 I::.J2 ;::: (1/2)kJ3~ are eigenstates of complex 
linear combinations of J1 and J2 [So Rushin and Y. Ben-Aryeh, Phys. Lett. A 58, 207 (1976)]. This kind 
of state is shown to have a very simple geometrical interpretation in the constellation formalism. A 
detailed description is given in the present paper. 

1. INTRODUCTION 

Whenever SU(Z) or the rotation group occurs in phys
ics, two kinds of states are utilized, namely the old 
standard discrete states l 

: jm) with 111 = - j, - j + 1, 
-j + 2, ... , + j' and the continuous spin coherent states 
I j8qJ) (or equivalently I jz»), where (8, qJ) labels points 
of the ordinary two-dimensional sphere 52' and z is the 
image of (1:1, qJ) in the stereographic projection of 52 on 
the complex line. The spin coherent states have been 
introduced by Radcliffe2 and are known in quantum 
optics as Bloch states. The use of the word coherent is 
justified not only by the close analogy of their math
ematical properties 3 with those of the ordinary 
Schrodinger-Glauber coherent states 4

•
5 but also by 

their interpretation in quantum optics. 6.7 

It has been shown in Ref. 8 that any state of spin j 
can be represented with the aid of 52 as a geometrical 
being: a constellation of order 2j. States Ijm) and 
Ijz) are only special kinds of constellations (ljm) is of 
apparent order 1 or 2, Ijz) of apparent order 1). The 
advantage of the constellation concept is to visualize a 
state as a geometrical object on 52 and to see very 
easily how the rotation group acts on it: Just rotate the 
sphere. Some applications have been made with the aid 
of this new tool, especially the classification of kinds 
of spin states8 (that is the classification of orbits of the 
rotation group on spin states), the quantization of the 
three-dimensional harmonic oscillator, 9 the relation·
ship between the Radcliffe-Bloch sphere and the 
Poincare sphere." Here we present a new application. 

The application we are dealing with has been suggested 
by a recent work of Rushin and Ben-Arieh. 10 These 
authors started from the property that Radcliffe-Bloch 
states minimalize the uncertainty relation 

(1) 

and generalized this property by proving that all states 
which minimalize (1) are eigenstates of complex linear 
combinations of J l and J 2 0 Moreover, any given such 
linear combination, except J l ± iJ2 has 2j + 1 eigenstates 
of eigenvalues - j, - j + 1, 0 0 0, + j. The operators 
J

l
± iJ2 only have one eigenstate, a Radcliffe-Bloch 

state, All these properties are quite simple to describe 
in the constellation formalism. In the next section, we 
will recall the constellation description of a spin state. 
In Sec, 3, we will show that any operator of the form 

J 0 F (where F is a complex vector, i. e., an element of 
the Lie algebra of the complex rotation group) can be 
associated with a constellation of order 2. Finally, in 
Sec _ 4, we will find out the constellation associated 
with eigenstates of a given element J. F. 

2. CONSTELLATION DESCRIPTION OF A SPIN STATE 

Let us recall here some results of the works where 
the constellation concept was introduced (the word itself 
has first been introduced in Ref. 5). It is well known 
that a spinoI' up to a com,fJlex factor can be written as 

(2) 

provided we include the possibility of having z = co, 

which corresponds to the case A = 0, AZ '" O. The stereo
graphic proj ection from the 50uth polell associates with 
i/J the point (8, qJ) on S2 such that 

8 . 
1 cos 2" exp(-zqJ/Z) 

1;= (3) 

sini exp(iqJ/2) tani exp(iqJ) 

Since a state is defined up to a factor (or, equivalent
ly, normalized and defined up to a phase), any ~-spin 
state is uniquely characterized by one point on 52 0 Such 
a point will be called a constellation of order L The 
states I~I (North pole) and I~I (South pole) are eigen
states of J 3 = ~a3 with eigenvalues 1 and - ~, 
respectively 0 

Any state of spin j is characterized by a constellation 
of order 2j. By this we mean a set of 2j complex num
bers {Zl,Z2' 0,0 ,Z2J} not necessarily distincL 12 The num
ber of distinct values is called the apparent order of 
the constellation. l2 It is clear that through a stereo
graphic projection, the 2j complex numbers are re
placed by 2j points on 52' The relationship between con
stellations of order 2j and states of spin j is the follow
ing oneo Let 

(4) 

be such a state, The constellation associated with liP > 
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is given by the relations; 

50 = 1 

5 _ Z 1 + z 2 + z 3 + • 0 0 + Z 21 
1- f2J ' 

5 _Z1Z2+Z2Z3+"'+Z2t_1Z21 
2 - ,Jj (2j -1) , 

(5 ) 

where the summations are made on all combinations. 
If two (or more) of the Z k 's are equal, the constellation 
is said to be degenerate 0 In particular, if all the Z k 's 
are equal, the apparent order is equal to one. 

3. CONSTELLATION ASSOCIATED WITH Jo F 

Let us now consider an element of the complex Lie 
algebra, say (Jo F 0 Since we are interested in its eigen
states (in the representation of spin j), we do not have 
to distinguish between (J. F and >C(J' F where >c is an 
arbitrary nonzero complex numher. In other words we 
are only interested in the class [F] of elements (J. F 
such that13 

(6) 

that is a state of spin 1 or, equivalently, a constellation 
of order 2. It is clear that constellations of order 2 are 
of two types, those which are of apparent order 2 (non
degenerate) and those of apparent order equal to 1 (deg
enerate). In order to classify these constellations, let 
us associate with [F] the following 2 x 2 matrix sym
metric in Z1,Z2' 

(7) 

(8) 

The associated constellation is {Z l' Z2}' We note that 
detofF] is zero if and only if the constellation is deg
enerate (Z 1 =z2L We also note that if F is real, a[FJ is 
Hermitian (up to a factor) and {ZpZ2} corresponds to 
opposite points on the sphere: z1z2+1=O. The proof is 
as follows: Take the Hermitian conjugate of (7), 

By comparison with (7), one gets the conditions for 
afF] to be Hermitian up to a factor: 

Z1+Z2=-(! +!), Z1Z2=--~ 0 

Z1 Z2 Z1Z2 

It is a simple matter to prove that it is equivalent to 

1193 J. Math. Phys., Vol. 19, No.5, May 1978 

Z 1Z2 + 1 = 00 The associated constellation will be said 
to be real 0 14 

Let us now state the following theorem, 

Theorem 1: The eigenstates of ofF] associated with 
the nondegenerate constellation {z l' Z J are the con
stellations {z J and {Z2}' The eigenstates are orthogonal 
(then opposite on the sphere) if and only if {z 1'Z2} is 
real. If Z1 =Z2' there is a single eigenstate, namely 
{Z1}' 

The proof is quite easy. In fact, if Z1 *Z2 

a[F]j~1j =(Z2-Z1)j~J ofF]j;J=-(Z2-Z1)/:J, 
and the eigenstates are orthogonal: 11 z111! I =Z1Z2 + 1 
=0 if and only if afF] is Hermitian up to a factor. If 
now Z1 =Z2=Z, the matrix ofF] reads 1~2 :;l and has 
determinant zero, The only eigenstate is 1;1 with eigen
value zero, 

It is of interest to consider the following particular 
cases: 

2 1 0 

0-1 

I f we remember that a3 generates rotations around the 
third axis and that to be an eigenstate of a3 means to be 
invariant under a rotation around the third axis, the fact 
that {O} and {oo} are both invariant constellations under 
those rotations is quite obvious in Fig. 1. Similarly 

(b) z1=1, z2=-1 

a[F]= I~ ~1=al' 
(c)z1=i, z2=-i 

a[F]= j~ ~il=a2' 

z=_i 
""---""-Z-:-i--4~ ~ 2 

FIG. 1. 
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~3 ~3 

0; 
(b) 

Again, in these two cases, the interpretation is im
mediately obtained from Fig. 1. 

It is a simple exercise to generalize the above results ~ 
If {zl} and {Z2} are opposite on the sphere, they are 
eigenstates of the generator of rotations around the 
corresponding diameter, in the spin-1 representation. 

We are now going to generalize the above results for 
any spin representation. 

4. EIGENCONSTELLATIONS OF J. FIN 
REPRESENTATION OF SPIN i 

Theorem 2: Given a constellation {Zl'Z2} associated 
with the matrix a[F], the eigenconstellations of its rep
resentative in the representation of spin j are the con
stellations (of order 2j) of the form {Zl'Zl"'" 

Zl'Z2,Z2'''' ,Z2}' If Zl *Z2' they are 2j + 1 in number 
and of apparent order 2 or 1. If Z j = Z2' there is a single 
constellation of apparent order 1 (Bloch constellation). 

This simple result is obtained as follows. Let us de
note by J[F] the representative of a[F] in the repre
sentation of spin j, 

J[F] = (Zj + Z2)J3 + ZjZ 2J_ - J+. 

It is a simple calculation to verify that the state 

- t j-m[(j+m)!(j_m)!]1/2 
11J!~) - m=-j kId (2j)! 

x (j - A) ! (j + A) ! 
k! (j - A - k)! (j - m - k)! (A + m + k)! 

is an eigenstate of J[F], 

J[Fll1J!x) = A(Z2 - Zl) l1J!x)' 

Moreover with a small combinatory calculation, it is 
not difficult to show that the state 11J!) is represented 
by the constellation {Zl'Zl' •• ·,Zl'Z2' •• ',Z2} where the 
multiplicity of Zj is 2A and the multiplicity of Z2 is 
2j - 2A. Moreover if Z2 becomes equal to zl' all 11J!~) 

collapses in a single state and the corresponding eigen
value is zero. It is this case which corresponds to 
Radcliffe-Bloch states. 

In order to illustrate our final theorem, let us give 
the constellations associated with the Rushin-Ben-
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~ 
(2) 

(To\-

(e) 

FIG. 2. Constellations a[Fl 
= at + 0'2 cose (multiplicities 
are in brackets). 

Aryeh states, i.e., eigenconstellations of linear com
binations of J j and J 2 • Since these states minimalize 
the uncertainty relations associated with the frame 
o ~l ~2 ~3' it is clear that they must have some geometri
cal relationship with the three axes. The result is 
represented on Fig. 2. We note that the ~3 axis is a 
symmetry axis for the constellation; the ~l ~3 plane is 
also a symmetry plane. A greater symmetry is present 
when 

(i) F is real [maximum symmetry, Fig. 2(b)], 

(ii) F is singular (deta[F] =0, Fig. 2(c)]. 

In the other cases, the axes ~l' ~2' ~3 play dis tinct 
privileged roles. In case e = 0 (or 7T) which is rep
resented in Fig. 2 (c), the uncertainty relation is mini
mal not only for the product 6.Jl 6.J2 but also for any 
product of the form 

6.(Jj cosq; - J 2sinq; )6.(Jj sinq; + J 2cos q;). 

5. CONCLUSION 

Up to now, the Rushin-Ben-Aryeh states have re
ceived no interpretation, If we identify the complex 
rotation group with the Lorentz group, such states can 
be interpreted as boosted spin states of the type I jm). 
For example, the state represented in Fig. 2 (b) is an 
eigenstate of J 1 with j = 1, m = O. By boosting it in the 
~3 direction one gets a state like the one of Fig. 2(a). 
Such an interpretation is merely a curiosity. There is 
some hope in finding more concrete applications in 
quantum optics. 
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Pauli matrices and the usual spherical coordinates on the 
sphere. 

12A more sophisticated definition would be as follows: A con
stellation of order 2j is a mapping j of SJ on IN. (the set of 
nonnegative integers) such thatj-l(lN.-tO}) is finite and the 
sum of the images is 2j. Also see Ref. 5 for another defini
tion. The definition given here is the original one. 8 

13We are dealing with the projective complex Lie algebra of 
SO(3,C). 

14Note that the conditions for two spin-! states to be orthogonal 
is that the associated constellations are opposite on the 
sphere. The concept of real constellation will be generalized 
later. 
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The projective Lie algebra of the Lorentz group and 
homographic transformations 
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The Lorentz group is used as the group of homographic transformations on the Riemann sphere. Its Lie 
algebra is shown to have a very simple interpretation with the aid of cross products and constellation 
formalism. This property is used to give a constellation description of the Clebsch-Gordan series for the 
product of two states of spin I. 

A homographic transformation is defined by 

, az + b 
z =---

cz +d' 

where z and z' are complex numbers (including the 

(1 ) 

point at infinity). It is labeled by four complex numbers 
a, b, c, d, satisfying ad- bc=l. Each such transforma
tion is known1 to leave two points invariant (these two 
pOints are not necessarily distinct). We will refer to 
this set of two fixed pOints as a constellation of order 
tw02; the constellation is said to be degenerate when
ever the two fixed pOints are equal. It is clear that the 
homographic transformations form a three-dimensional 
complex group G.3 This group acts transitively on non
degenerate constellations of order tw04 and also transi
tively on degenerate constellations of order two. 4, 2 

The Lie algebra of the group is the three-dimensional 
complex vector space V. Any two elements of the Lie 
algebra f10 f2 generate the same one-dimensional sub
group if and only if there exists a complex number ,\ 
"* 0 such that fl = ,\f2• It follows that such a subgroup is 
characterized by a ray in V. In other words, there ~s 
a one-to-one mapping between the projective space v 
associated with V and the set of one-dimensional com
plex subgroups of G. 

Now, given a ray in v, say f, one can associate in a 
unique way a constellation {z 10 Z2} in the following way2: 

a (f) _IZI +z2 - 2 1 (2) 
- 2Z 1Z2 - (ZI + Z2) • 

The converse is also true. We note that a (f) (defined up 
to a factor) is a traceless matrix and, therefore, is an 
element of the Lie algebra of SL(2, C). Moreover it is 
symmetric with respect to z 1 and Z2, a condition which 
is necessary to define a constellation. 

It is interesting to underline that the constellation 
{z 10 Z2} is the one which is invariant under the subgroup 
generated by a (f). In fact 5 

a (f) 1;1 1 = (z 2 - Z 1) 1 ;1 /. (3 ) 

Let us look for the geometrical interpretation of the 
commutator [a(f),a(f')]. It is easy to get 

[ f '] ( , ,)/ZI+ Z 2 -2 I a(f),a() =2z1+Z2-Z I -z2 2Z
1
Z

2 
-(ZI+ Z 2) (4) 

with ZI, Z2 being the roots of a polynomial of degree two, 

(ZI + z2 - Z~ - Z2)Z2 - 2(ZIZ2 - z;z;)Z 

+ (z; + Z2)z1Z2 - (ZI + z2)z~z2' 

the roots of which are 

Z _ ~~=-3;zf ± )(ZI -~(zz...= zlHz..1.=.. Z2)(Z2 - zft 
- zl + Z2 - z; - z2 

(5) 

(6) 

The constellation {Z1o Z2} has a simple geometrical 
interpretation. In fact, a simple calculation leads to the 
relations 

(7) 

which show that the constellation {Z1o Z2} forms with the 
constellations {z 10 Z2} and {z;, Z2} two harmonic 
quadrangles. It is a simple matter to prove that this 
condition uniquely defines the constellation {Z I, Z2}' 

Let us examine the following cases: 

(1) The constellations {ZI,Z2} and {Z;,Z2} are non
degenerate. Since the cross ratios of Eq. (7) are equal, 
it is a well-known result that there exists a homo
graphic transformation mapping {ZI,Z2,Zj,Z2} On 
{ZI,Z2,Z;,Z2}, respectively. In other words, there 
exists a transformation mapping the constellation 
{z 1, Z2} on the constellation {z;, z;}, generated by the 
constellation {ZbZ2} (or, equivalently, with {Zt.Z2} as 
the fixed constellation). 

As a peculiar example, we suppose that {z 1> Z2} and 
{z;, zH are real constellations, 2. 6 that is, they are both 
symmetric with respect to the center of the Riemann 
sphere (diameter constellations). The commutator of 
these two constellations is the diameter perpendicular 
to the given constellations. This corresponds to the 
vector product in the three-dimensional real space. 

(2) One of the two constellations, say {z;, Z2} is de
generate; this means that Z;=Z2=Z'. Then 

{z Z} _) ~z l z 2 - (z 1 + Z2)Z' ~ 
1,2-l zl+z2-2z"z~. 

(3) Both constellations are degenerate: z 1 = z2 =' z, 
z; =Z2 = z'. Then {Zu Z2} =' {z, z'}. 

(4) Suppose that z2 = Z2. The commutator of {z l' Z2} 
and {z;, zf} is just {Z2, Z2}. 

(5) Whenever zl + z2 = z; + zf, Eq. (5) is of degree one. 
Since we are working with projective spaces, it is 
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necessary to consider the value 00 as a solution. There
fore, the constellation associated with the commutator 
is {Zit Z2}={00, (ZI + z2)/2}. 

Let us state our result in the following way. 

Proposition 1: With each ray of the complex Lie 
algebra of SL(2, C) can be associated a constellation of 
order 2 denoted {z It Z2}. The constellation {ZI, Z2} as
sociated with the commutator [{Z1tZ2},{Z~,zm is the 
one given by the cross product conditions 

[{Zit Z2}' {Zj, Z2} 1 = [{Zi, Z2}, {zf, Z2}] = - 1. 

As a direct consequence, we get the Clebsch-Gordan 
decomposition of the series D j ~ DI (tensor product of 
spin 1 states). We know that 

(8) 

A state of spin j is dese ribed by a constellation of order 
2j.7 In the series, the state of spin 2 is obtained by 
symmetrization of the two spin I-states and taking out 
the trace o If {Zj,Z2} and {zf,z;} are the states involved in 
the left-hand side of (8), the state of spin 2 is 8 simply 
{zj, z2,zf,z;}. Now the state of spin 1 of the right-hand 
side is given by the same condition as the one given in 
Proposition 1 (the vector product in V is the 
commutator). 
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Proposition 2: Given two elementary states of spin 1 
described by the constellations {Zt,Z2} and {zf,zf}, 
the global state is the linear combination of a constella
tion of spin 2 (order 4), {Z1tZ2'Z~,Z~}, a constellation of 
spin 1 (order 2), {Zj, Z2}, with ZI, Z2 given by Eq. (6) 
and the constellation of spin 0 (order 0). 9 

1L.R. Ford, Automorphic Functions (Chelsea, New York, 
1929, reprinted 1951). 

2H. Bacry, "Eigenstates of complex linear combinations of 
J h J 2, J 3 for any representation of SU(2)," J. Math. Phys. 
19, 1192 (1978). 

3Isomorphic to SL(2,C) and locally isomorphic, as a veal 
group, to the Lorentz group. 

41n the following, all constellations are implicitly supposed to 
be of order two except if it is otherwise stated. 

5The converse is true for a nondegenerate constellation; 
Given a nondegenerate constellation {ZI' Z2}, the transforma
tions which leave it invariant form a one-dimensional sub
group, generated by the (J(f) associated with {zl' Z2}' 

6This means that ZIZ2 + 1 = Z(2; + 1 = O. 
7H. Bacry. J. Math. Phys. 15, 1686 (1974). 
BThis can be generalized as follows. If {Zto z2 • •••• Z2j } and 
{z£, z2 •••• ,z2h} are states of spin j! and h. respective1y. in 
the tensor product, the state of spin j 1 + h is simply given by 
{Zh Z2,. 0", Z2j ,Zl:l 22, •• ", Z2j~}" 

sIt is clear that the constellation of order 0 is unique. 
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The aim of this series of papers is to develop both the field and constitutive equations for general 
relativistic electromagnetic continua. In this paper, the formulation starts from first principles of 
conservation and basic thermodynamical assumptions. This axiomatic character, however, is tempered by 
the use of results deduced from microscopical arguments by de Groot and Suttorp insofar as relativistically 
invariant expressions of the ponderomotive force and couple and of the electromagnetic power are 
concerned. This formulation is given entirely in terms of spatial space-time geometrical objects to 
facilitate the comparison with the Galilean theory of electromagnetic continua. It provides the 
thermodynamical cornerstone, i.e., the Clausius-Duhem inequality, in various equivalent forms which 
will be exploited in Papers II and III for material behaviors of interest in general relativistic, 
cosmological, and astrophysical problems which involve both the effects of gravitational fields and electric 
and/or magnetic fields. 

1. INTRODUCTION 

Several works have been devoted in recent years to 
an axiomatic approach to the formulation of the covari
ant field equations for electromagnetic relativistic 
matter, for instance, the works of Grot and Eringen, 1 

Boulanger and Mayne, 2 and Romano. 3 The problem then 
arises of choosing the source terms due to electromag
netic fields in the presence of magnetized and electri
cally polarized matter. The controversy about this 
problem is best dealt with by de Groot and Suttorp, 4,5 

Penfield and H aus, 6 de Groot, 7 Brevik, 8 Sedov, 9 and 
Pao. 10 Certain authors favor the a priori choice of a 
certain electromagnetic energy-momentum tensor and 
justify their choice by the successes obtained in deduc
ing some well-known simple (i. e., linear) constitutive 
equations and force expressions and in accounting for 
the results of some experiments in electromagnetic 
optics. This is the case of Brevik. Boulanger and 
Mayne base their choice on pure Lorentz invariance 
regulations. Another possibility, however, is to search 
for some microscopic justification for the choice of 
the terms looked for. The most extensive microscopic 
treatment that has appeared so far is that of de Groot 
and Suttorp. 11 Our conviction is that sensible macro
scopic expressions for the total matter- plus-field quan
tities must emerge from a compromise between the 
a jJriori choice and the relevance of microscopic con
siderations. Thus our first aim in this series of papers 
is to combine a somewhat axiomatic approach (needed 
to obtain nonlinear constitutive equations) insofar as the 
contributions labeled "material" fields are concerned, 
with the acceptance of the expressions deduced by de 
Groot and Suttorp in their formulation for the electro
magnetic contributions, adjustments being made by 
means of the (in general nonlinear) constitutive equa
tions that remain to be constructed with the help of 
thermodynamic arguments nowadays accepted in con
tinuum thermodynamics. The field equations thus ob
tained in this first part, devoted to media without in
trinsic spin, are Lorentz invariant and are equally ap
plicable in the general relativistic framework. This ap
proach avoids the use of variational principles, 12.13 and 

is based on the postulate of local balance laws for 
mechanics and thermodynamics. It is the relativistic 
analog of the Galilean invariant approach recently given 
by Maugin and Eringen, 14 

In the first part of this work, after introducing the 
basic concepts and notation needed in the four parts, 
we construct the local covariant conservation laws and 
the local entropy inequality, which will be exploited in 
Parts II and III, We acknowledge the ambiguity of split
ting in matter and field contributions, but show in an 
example how the underdetermination is removed by the 
fact that source terms which differ slightly from those 
proposed by de Groot and Suttorp in fact yield the same 
mechanical and thermodynamical equations thanks to the 
automatic adjustment of the "material" contributions. 

Part II will be devoted to deducing sets of nonlinear 
or linear constitutive equations for electromagnetic 
fluids. Part III will be devoted to constructing nonlinear 
or linearized constitutive equations for electromagnetic 
elastic solids with an emphasis on the cases which 
prove useful in practical applications where the rela
tivistic framework is needed, e, g" nonlinear elastic 
magnetized bodies in general relativity with the spe
cial case of magnetoelasticity under very high pressure 
(in neutron stars), and piezoelectric bodies (which can 
be used in piezoelectric detectors of gravitational 
waves). Part IV is devoted to showing that the present 
formulation accomodates the relativistic theory of mag
netized continua with intrinsic spin previously developed 
by the author, 15 as well as the theory of electromagnetic 
continua endowed with a rigid microstructure, 

2. PRELIMINARIES, NOTATION 

The arena of relativistic events is a space-time. A 
space- time 1''vI = (V 4,g (8) is a differentiable manifold of 
dimension four, of continuity class CP, p;, 2, equipped 
with a normal hyperbolic Riemannian metric g a8 =g8",' 
hence with Lorentzian signature + 2. That is, the 
squared element of distance in V 4 in general is given 
by ds2=g"'8(X~)dxadx8, where {x"';Ci,/3,A=1,2,3,4} is a 
local chart of V4 • In special relativity, we have the 
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global reduction ds 2 = TJotl3dx'" dxlJ , where TJ",IJ 
= diag( + 1, + 1, + 1, - 1)0 The space-time then is the 
flat Minkowskian space-time M4

0 The same reduction 
holds good, but only locally at each event point, in the 
standard theory of general relativity (Einstein, 1916), 
where the space-time is a curved manifold V4 in the 
presence of matter and energy, Expressions valid in an 
inertial frame are indicated by the sign:!, Such ex
pressions are written in "rectangular" coordinate sys
tems x'" ~{xi = (x ,y ,z), i = 1,2,3; X4 = ct}, 

All rectifiable curves in V4 being parametrized pro
portionally to the length of their arc in the metric as
sociated with V4

, the proper time T, defined by 

(2,1) 

is the relevant time like parameter for the parametriza
tion of timelike world lines of particles, c is the veloci
ty of light in a vacuum. Timelike 4-vectors V'" are such 
thatg",IJV"VIJ<O. The world line of a pointlike particle 
X (of nonzero mass) in V4

, 

(2.2) 

is such that its tangent, the world velocity of X, de
fined by u'" '= aX" JOT, is everywhere timelike, for 
g:lJu"ulJ=- c 2 ~y virtue of Eq. (2,1). We note a", = oj 
ax"', and 'V", is the covariant derivative. D '= u"''V '" is the 
invariant derivative in the direction of u'" • a'" '= Du"', with 
a"'u", =0, is the 4-acceleration of X. A relativistic mo
tion for which a'" = ° at all proper times is said to be 
inertial. 4-vectors such as the 4-acceleration which ad
mit the world velocity as a zero vector will be called 
spatial 4-vectors, The 4-vector c-2a'" is none other than 
the curvature vector of C(X, T), If the motion of X is al
ways inertial in V4, then C(X, T) is a straight line in V4• 

A frame attached to a moving particle X is called its 
proper frame or comoving frame RdX), The rest 
frame of a particle is the frame in which the particle 
(three-dimensional) velocity vanishes, 

3. MATERIAL CONTINUUM 16,11 

Let /113 be the three-dimensional manifold which 
serves to describe a material continuum, and {XK; K 
= 1, 2, 3} a local chart of /11 3• A material continuous 
body B is an open region of /113; its constituents, the 
material particles, are the points X of Bc/l13. In New
tonian mechanics /113 is related to the Galilean space
time by a one-parameter (the absolute Newtonian time 
t) family of differential embeddings. However, as V4 in 
general does not possess a canonical time in general 
relativity, it is preferable to describe the relationship 
existing between /113 and V4 in relativistic continuum 
mechanics by means of a canonical differentiable pro
jection P such that P: T _/113 of an open T of V4 onto 
/11 3• T[B; XE B] may be thought of as the region (a tube) 
of V4 swept out by B at time goes on. We have X 
= P(x), where x is the variable event of V4 described by 
the "particle" XE/I1 3• We can write 

(3,1) 

and 

T=T(X"'), (3.2) 

where T is the proper time of X. 
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P has the following property: The inverse image 
P-1(X) c V4 of any XE B c/l13 is the timelike world line 
of X, i, eo, the space-time curve 

x'" =X"'(XK, T), 

XK and T are independent variables, so that 

DXK=O, 

(3,3) 

(3,4) 

The XK are referred to either as Lagrangian coordi
nates (in the case of fluids) or as material coordinates 
(in the case of deformable solids), 

The projection P determines the fundamental flow of 
vectors u"'. The latter in turn defines the fundamental 
field of proj ection operators P otll, which acts as a posi
tive metric tensor on the tangent subspace orthogonal to 
u ot , The (covariant) prOjection operator P ",13 (x) at x 
EC(X,T), is such that 

P otlJ(x) '=g",Il(X) + c-2u",(x)J.ls(x) =Ps", (x), (3.5) 

(3.6) 

The introduction of this operator leads to the notion of 
space and time decomposition. 

SPace and time decomposition11, 18: Consider the gen
eral space-time M = (V\g",s)' Let x, T x , Ux , and Mi(x) 
be respectively an event point on C(X, T), the tangent 
vector space to M at x, the vector subspace of 4-vec
tors collinear with uot at x, and the three-dimensional 
hyperplane orthogonal to u"'(x). Let T~, U~, and Alt(x) 
be the dual spaces of these spaces. Then T x = Ux 

EEl Mi(x), where EEl indicates the direct sum. An analo
gous relationship holds good for the dual spaces. A 
tensor field defined at XEC(X, T), which is m times 
contravariant and n times covariant, belongs to 

y'~0)n 0n = (Ux EBAI i(X»0m0(U~ EB Mt(x))0
n
, (3.7) 

where 0) indicates the tensor product. Expanding the 
right-hand side of this expression shows that such a 
tensor can be canonically decomposed, or projected in 
various manners. A tensor field A, III times contra
variant and n times covariant, is said to be spatial at 
XEC(X, T) if and only if 

A E AIT,n(x) '" (jH i (x)J0 m ° 0Vlt(x»0n. (3.8) 

In these conditions the world velocity is a zero vector of 
all spatial tensor fields. The symbolic notation ( . , )i is 
used to indicate the projection onto lVI'j},n. For example, 

(A';fj)i "'P':'uP;/J.A~iJ.' (A':'fj)iU", =0, (A;'fj)/lll=O, (3.9) 

Three examples of canonical decomposition performed 
in accordance with Eq, (3,7) are particularly useful, 
those of a contravariant vector field A, of a general 
second- order contravariant tensor field T, and of a 
two-form G of components G"'1l = - GS"'. We have 

A'" =A'" +Au"', A'" - c-2A"'u"" A'" '" (A"')L' 

T"'1l = c-2wu"'US + c-2u"'Qs + P"'1l1l _ til"', 

where 

W'" c-2u", T"'sus, tS'" '" - (T",S)L' 

QS'" _ (u",T"'S)v p'" '" _ c·2(T",1l1lfj)u 

and 
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(3. 13) 

with 

(C",a) - .!.7)",aYo II u 
.t- c ny 0, 

Ii - 1 ( 81') 0 .!. * (CIl'Y) n", = 2c 7)",aro C .tu = 27) ",ar .t. 

(3.14) 

Here, II '" is the spatial axial 4-vector which is asso
ciated in a unique way with (CIl'Y).t, 7)",a1'o and 1)",Il'YO are 
the tensorial densities (g = detg ",a) 

1 ;::::P; ",arO -- E",a1'o 
1)",aro = - gE",aro, 7) = - .;-:::;; , (3.15) 

where E",aro and E",8rO are four-dimensional alternation 
symbols such that E1234 =E1234 = + 1, and 

1)* = -17) u6 7)*r",a:; c-11)r",aou ",1l'Y-c ",a1'O' o· (3. 16) 

Brackets around a set of indices indicate alternation 
while parentheses indicate symmetrization. For further 
use we also define the" *" product of two spatial co
variant 4-vectors A and B by 

(A * B)"':; ~",ar AaB", 

so that 

* u"'7)",a1' = 0, u'" (A * B)'" = o. 

(3. 17) 

(3.18) 

The" *" product of two spatial contravariant 4-vectors 
is defined in a similar fashion. 

Although it is expressed in a fully invariant form, a 
spatial tensor field has essentially spatial and three
dimensional values on M. It reduces to the equivalent 
three-dimensional object of classical physics in a local 
instantaneous rest frame. The decomposition procedure 
of which the essence is summarized in Eq. (3.7), is a 
technique of intrinsic character in curved space-time, 
which provides definitions for relative, but nontheless 
covariant, quantities and operations. In particular, the 
covariant derivative V' '" can be decomposed according 
to 

L -2 
V'",=V'",-c u",D, (3.19) 

where -{7",:; p ~a V' a is the transvers e or spatial covari
ant derivative. Then the relativistic velocity gradient 
e a the relativistic rate of strain d",a, the relativistic 
r;t~ of rotation w",a, and the spatial vorticity 4-vector 
w'" are defined by 

and 

respectively. Hence19 

* l' -2 V' aU", = d",a - 1)",arw - c a",ua' 

(3.20) 

(3,21) 

(3.22) 

(3.23) 

A relativistic motion for which w'" = 0 for all T is said 
to be irrotationaL A relativistic motion for which dO/ 8 

= 0 for all T is called a Herglotz-Born rigid body 
motion. 20 
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4. RELATIVISTIC CONSERVATION LAWS IN 
ABSENCE OF SPIN 

The basic local conservation laws expressed in an 
inertial frame can be written in the following form21

: 

cons ervation of mas s : 

o"p'" ~o, 

balance of energy-momentum: 

° TO/a.! FO/ B m - , 

balance of moment of energy-momentum 

o"S",a" ~x("Fa] +L",a, 

second principle of thermodynamics 22 

(4.1) 

(4.2) 

(4.3) 

0",1)"""0. (4.4) 

These are supplemented with Maxwell's equations (cf. 
Appendix A). Here, FO/ is a 4-force and L"a = - LaO/ are 
the components of the couple 2-form. Both include con
tributions due to the interactions exerted between mat
ter and electromagnetic fields. The mass flux p", the 
"matter" energy-momentum tensor ",T"1l (a general 
second-order tensor), the total (orbital plus intrinSiC) 
spin tensor S"a" and the entropy-flux 4-vector 1)'" have 
the following decompositions: 

pOl =pu", 

m T",a = p(l + C-2E) u"'u8 + C-2u"'Q8 + paull _ til'" , 

S"'Il":!X('" mTIl]"+s"'Il"=_SIl"''', 

1)'" = p7)u" + N'" • 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

P is the proper mass density which is related to the 
number density n of particles by the equation p =nrno, 
where rno is the mean rest mass per particle. The de
composition (4.6)-compare (3. H)-is that considered 
primarily by Eckart23 and Taub. 24 E is a density of in
ternal energy, the factor one representing the contri
bution of the rest energy. t8

'" is the spatial relativistic 
stress tensor. p'" is the nonmechanical momentum 
spatial4-vector. The total 4-momentum is 

(4,9) 

and obviously is not collinear with the world velocity 
except when pOl :; O. The spatial 4-vector Qil is the ener
gy 4-current. It necessarily contains the spatial heat
flux 4-vector q8 in order that the mixed component 
mT4i at least contains, in an inertial frame, the classi
cal expression qi _ tilv i + pEV i • 25 Thus, we shall write 

QB=qll +QIl, (4.10) 
All . 

where the spatial 4-vector Q remams to be chosen. 
The spin tensor S"'Il" = - Sll"" can be decomposed as 

(4.11) 

where 

S"'Il=_SB'" =_ 2p-1C-2(S",Il"U,,).t (4,12) 

and 

(4.13) 

are the spatial intrinsic spin 2-form and the spatial 
relativistic couple-stress tensor, respectively. In ab-
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sence of these effects, we shall set 

saS = 0, MaS" = O. (4.14) 

Finally, T/ is the entropy per unit of proper mass and 
N a is the spatial entropy-flux 4-vector. According to 
classical thermodynamics, N a and qa are related by 

(4.15) 

where 0 is the proper thermodynamical temperature 
such that 0> 0, infO == 0, and26 

(4.16) 

where 0lab is the temperature in a laboratory frame with 
respect to which v is the matter three-dimensional 
velocity . 

Taking account of Eq. (4.2) to reduce Eq. (4.3) and 
passing to an arbitrary frame by replacing partial 
derivatives with covariant derivatives, we obtain the 
following set of local conservation laws: 

Vs mTas==Fa, 

V "saS" _ mT["S] ==L aS , 

VaT/a ~ O. 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

If Eqs. (4.14) hold true, then Eq. (4,19) reduces to 

(4.21) 

We consider that the hypotheses (4.14) are valid in the 
subsequent analysis of this paper (no spin). Thus Eqs. 
(4.17), (4.18), (4.21), and (4.20) form the set of basic 
local covariant conservation laws. We assume in the 
sequel that Fa and LaS result solely from the presence 
of electromagnetic fields, and are thus denoted by MFa 
and MLaS in conformity with the notation adopted in a 
previous paper, 27 These geometrical objects admit 
general canonical decompositions of the type (3.10) and 
(3.13), Explicitly, 

with 

MFa == Mfa + c-2 iiJua , 

ML"S= ML [auS] + MC,,8, 

Mfa=(MFa)u Mcas=(MLa8)~=_MCs", 

MW = - MFaua, ML a = - 2c-2 ML aSU8 . 

(4.22) 

(4.23) 

(4.24) 

(4,25) 

We shall call pvnderomotive 4-force and ponderomotive 
couple 2-form, per se, the purely spatial fields Mfa and 
Mcas, respectively. MW is the electromagnetic power de
veloped by electromagnetic fields in presence of matter. 
The spatial vector ML a has the dimension of a 4-momen
tum. It may be either zero or nonzero depending on the 
theory considered. 

Projecting now Eqs, (4.18) and (4.21) onto M~ and 
along ua , using Eq. (4,7) and the various canonical de
compositions, we obtain the 4-vector form of the con
servation laws: 

cvnservativn of mass: 

Dp +pe~,,=O, (4.26) 
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local balance of 4-momentum (Euler-Cauchy equations 
of motion): 

p( 1 +~) (Dua)~ + p[D(~a) 1 = (V8t8a)~ + Mr 

- c-2Qae~8' (4.27) 

local balance of energy: 

pDE +V8Qa +paDua =taa e"8 +~, 

local bal ance of moment of momentum: 

t[a,,] = Mca8 , 

and 

pa == c-2Qa - ML a , 

local balance Of entropy: 

pDT/ + V sN8 ~ O. 

(4,28) 

(4.29) 

(4.30) 

(4.31) 

Introducing the free energy per unit of proper mass, 
ljJ, by 

(4.32) 

and eliminating DT/ between Eqs. (4.28) and (4.31), we 
obtain the Clausius-Duhem inequality in the following 
form: 

-P(DljJ+T/DO)+ovltT8- ~) +eQa-era(~)-P"'DUa 
(4.33) 

Now, taking account of Eqs. (4.29) and (4.30), of the 
decomposition e",a =daa + waa, and assuming that Qa 
=0 (or Qa=qa) and that Eq, (4.15) holds true, Eq. (4.33) 
yields 

* - p(DljJ + T/DO) - 0-lq",0", + t(aa)da8 

+ LCaaW",8 + ML "'Dua + MW}?- 0, 

where we have introduced the field 
* ~ 

(4,34) 

0;: VaO + c-20a"" (4.35) 
~ 

USing the latter instead of vaO means that we consider 
that thermal equilibrium corresponds to constant red
shifted temperature in a stationary gravitational field in
stead of constant temperature. 28 

By the same token we can rewrite Eqs, (4.27) and 
(4.28) as 

P(l + ?}DU"')~ +c-2(Dcq'" +2qae'!a) 

= (V 8tS"')~ + Lr + P[D(MC / p)U, (4.36) 
and 

pDE + (~8qa + 2C-2q8a8 ) = tSadas 

+ Lca8was + ML aa", + MW}, 

(4.37) 

respectively. The latter equation will provide the equa
tion that governs heat propagation. Herein above we 
have used the fact that, on account of Eq, (4.26), 

pD(q"'/p) =Dq'" +qa(VsuS), (4.38) 

and we have introduced the contravariant convective 
time derivative-noted by the symbol Dc-by 
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(4.39) 
u 

where the Lie derivative noted l is given by (after pro
jection) U 

(~q")l(X)~ P·{d~ P(q")(X, T)}X) 

= (Dq")l- qSvaU", (4,40) 

in terms of the canonical projection P. 29 

To complete the present general scheme of the equa
tions of relativistic continua in absence of spin, it re
mains to specify the expressions of Mf", MC"S, ML"-or, 
equivalently, of MF" and ML"s-which contribute to the 
expressions placed within braces in Eqs, (4,36), (4.37), 
and (4,34). In these equations, the factor c·2 places in 
evidence the purely relativistic contributions, For 
further use we note 

5. ELECTROMAGNETIC INTERACTIONS 
WITH MATTER 

(4,41) 

In order to avoid a fully arbitrary choice of a 4-force 
MFOI. and of a couple ML"S, a microscopic model of inter
actions must be considered as a starting point, The 
relativistically moving electromagnetic matter may be 
considered as an aggregate of stable groups of pointlike 
particles labeled k = 1,2,0' " of electric charge aq(k) in 
their own rest frame and of world velocity U(k)OI., and 
situated at the position R(k)S in flat space-time, upon 
which a relativistically invariant Lorentz force ark)OI. is 
acting, This force reads 

ark)", ~ !aq(k)f"'S(R(k»D(k)R(k) (5.1) . c J S , 

where D(k) ~u(k)OI.a"" and f0l.8 = - fsOI. is the "microscopic" 
magnetic flux tensor evaluated at R(k). Performing a 
Lorentz invariant phase-space averaging of the rela
tivistic equations of motion that govern the individual 
particles II = 1, 2, 0 0 " de Groot and Suttorp30 were able 
to smooth out the force expressions (5.1) in order to 
obtain a sensible expression for both MF'" and MLOI.s 
which act per unit of proper volume on a piece of elec
tromagnetic matter considered as a continuum. These 
expressions read30 (in our notation and in an arbitrary 
frame) 

F'" 1 F"'SJ 1 "'1J.<:7 Fffr 
M == C 8 + 2 71erg IJ. 

- c·2pD[p·l(F",S71ar - 7101. SF ar)uY ] 

+ c·4pD[p·lu"'usF Sy71Y€u.l, (5.2) 
and 

ML"'S=71~~FS]1J. +c·2ul8(F"']Y71ye _71odYF y ,)u'. (5.3) 

In these equations, J s is the electric current 4-vector, 
F ,,8= - F Set is the macroscopic magnetic flux tensor, 
and 7T ",S = - 71 S" is the polarization- magnetization tensor. 
We refer to the original work of de Groot and Suttorp 
for the definition of these macroscopic fields in terms 
of microscopic fields. F "s and 7T"'s admit decompositions 
of the type (3.13). That is, 

(5.4) 

(5.5) 
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where the spatial 4-vectors (S, 8", P"', and In IJ. are the 
spatial electric-field, magnetic-induction, polarization, 
and magnetization 4-vectors, respectively. These are 
fields evaluated in a comoving frame. Furthermore, 
J s admits a decomposition of the type (3.10), which 
reads 

Js=f)a +qus, (5.6) 

where f) S is the spatial electric current, or cOllduction 
current, 4-vector, and q is the density of free charges 
per unit of proper volume. 

Substituting for (5.4), (5.5), and (5.6) in Eqs. (5.2) 
and (5.3), it is found after a somewhat lengthy calcula
tion that 

and 

l l 

+/hIJ.<:7s151J. + MplJ.<:7SUP. 

+pD(p·l MPS)] +c·2(C,P)(Du")u 

MW = p{ '" D7T" -!il"'DBOi + f) • C, 
ML"'~O, 

MC",a = P[",{S] +/)J[OiBS] , 

where 

710i ~ pOi/p , 

and 

.~I p'" ~ ~(P *B + C *!i1)0i, \/pOiUOI. = O. 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

The definitions (3,15)-(3,19) have been used to write 
down Eqs. (5.7)-(5,13). 

Define now the covariant convective time derivative
noted .Dc-by 

.D CAOi ~ (l A,,)l +AOi <:78 US 
u 

( ) 
1 . S S = DAO/ 1 +As<:7 O/Il +AOI. <:7su , (5.13) 

a new electromagnetic power .ii by 

.if, "" f) • C -IW'D15" - P"D{" = ,/ii' - pD( (,,71"), (5.14) 

a new internal energy E and a new free energy ;;: by 

E =E - {0/71
0i

, ;f=E -1]8, (5.15) 

and the ponderomotive force .\J" by 

f" =q[Oi +!( () ",B)Oi + p"S[ P"~ [ M. C , 8 IJ. 

+/)JIJ.~sB" +.DdMP S )], (5,16) 

on account of Eq. (5,13) and of an equation of the type 
(4.38) for MPS' Substituting from Eqs. (5.7)-(5.10) in 
Eqs. (4.36), (4.37), and (4.34), and taking account of 
the definitions (5.14)-(5.16), we find that the local 
balance laws of momentum and energy read 

P(l +~ )(DUOl )l +c·2(D cCJ Oi +2CJse~s) 
= (<:7 8tS

")1 +\17", 
and 
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pDf + (V Il qll + 2c-2qBaa) 

=t(llcd dall + (p[a{ll] +;11["'B Il1 ) W"'1l + MW, (5.18) 

while the Clausius-Duhem inequality now reads 

- * - p(DIjJ + TjDB) - B-1q"'Ba + t(lla) d",1l 

+ (P[",{Il] +;11["Ba]) W",1l + MW "" O. (5. 19) 

Equations (5.15) represent Legendre transformations of 
the internal and free energies. IjJ now depends on ('" and 
B a as electromagnetic constitutive arguments, Other 
possibilities exist, which will be fully exploited in Part 
II of the present study, For instance, defining 

~'=IjJ+Jl"'Ba=lf+{,,7T'" + Jl"'B", , (5,20) 

where 

(5.21) 

introducing a new (symmetrical) spatial stress tensor, 
Etll"', by 

EtB'" '= t(a",) +{('" Pll) +B ("';11B) = Et"'ll, (5.22) 

in such a way that 

(5.23) 

on account of Eqso (4.29) and (5.10), and using defini
tion (4,39), we can rewrite Eq. (5019) in the following 
form: 

- p(DIjJ + TjDB) + Etil'" d",1l + 9 ,( + (a (DCPOI.) 

* +B ",(D c;11"') - B-1q'" Ba "" O. (5.24) 

Similarly, defining another symmetrical spatial stress 
tensor, P'" by 

ta'" '= t(Il",) - ((ap"') _ B(Il;11"') + (C. P +B ,;11) p",a = t"'ll, 

in such a way that 

tBa = lll'" + {IlP'" +BB;11a _ (C' P +B .;11) pall, 

inequality (5.19) transforms to 

- p(D~ + TjDB) + Ill", daa - P a(DCC"') -;11a(DcBa) 

* + 9 'C - B-1q"'BOI. "" 0, 

(5.25) 

(5.26 ) 

(5.27) 

If we adopt the contemporary viewpoint on continuum 
thermodynamics,31 inequality (5,24) or (5.27) consti
tutes a constraint which must be satisfied for any 
thermodynamical process, This constraint being placed 
upon the constitutive equations which are needed to 
close the system of field equations, it is a tenet for the 
constitutive theory. Since constitutive equations must 
be objective, 32 the cofactors of the dependent constitu
tive functions in the Clausius-Duhem inequality must 
also be objective. This is the case of 

* daa, C, ea , 

and of the contravariant convective time derivative of 
objective vector fields according to a previous study 
of the author. 33 Hence, the inequalities (5.24) and 
(5.27) are in a ready-for-use form for the constitutive 
theory of media without spin developed in Part II, The 
choice of either one of these inequalities depends on the 
behavior studied. The form (5.24) is more convenient 
for the study of elastic solids, whereas form (5.27) 
allows one to study the case of electromagnetic fluids 
in a simpler fashion. 
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6. REMARKS ON THE PONDEROMOTIVE 
FORCE AND COUPLE 
A. Comparison with the Galilean invariant formulation 

Because of the systematic use of spatial 4-vectors, 
the expressions obtained above are readily compared 
to the Galilean expressions arrived at in other works. 
For instance, using the conventional three-dimensional 
notation, the spatial 4-force (5.16) yields the spatial 
component 

Mf =qE' + ~ 9 XB' + (VE')· P' + (VB') 0 M' 

+ !.(vv) , (P' XB' - M' X E') 
c 

+.e. !!. (71' XB') _ .e. ..!!... (Il' x E') 
c dt c dt ' 

(6.1 ) 

where d/dt indicates the usual material derivative, and 
the primes indicate that the fields are measured in a 
comoving frame (i, e., by an observer moving with the 
velocity v of the medium), at the nonrelativistic limit. 
The expression (601) is none other than the Galilean 
invariant ponderomotive force obtained by de Groot and 
Mazur. 34 As to the Lorentz invariant electromagnetic 
power (5.8), it has exactly the same structure as the 
Galilean invariant expression obtained by Maugin and 
Eringen. 35 In fact, in terms of the expression MW ob
tained by these authors, we have up to relativistic 
terms of the order of v2 / c2 , 

(6,2) 

That is, MU} is the total electromagnetic power minus 
the power developed by the ponderomotive force. The 
comparison can be carried on, To that purpose, it is 
convenient to introduce the notion of electromagnetic 
energy-momentum tensor. 

B. Electromagnetic energy-momentum tensor 

de Groot and Suttorp36 have shown that the expres
sions (5,2) and (5,3) are expressible in terms of a 
(nonsymmetric) electromagnetic energy- momentum 
tensor, MTOI.Il, in such a way that 

(6.3) 

Introducing the electric displacement-magnetic intensity 
tensor GOI.B = - GIlOl., so that 

MTOI.B has the following expression: 

MT"'Il=F""G~, +}FjJ.vFvjJ.gOlB 

+ C-2uB(F OI ' 7Tre 

- 7T""FYE )uE - c-4uOluBu'Pre7TECue' 

(6.4) 

The equations (6,3), (4,18), and (4.21) show that the 
present formulation is compatible with the standard 
theory of general relativity (in absence of spin), for we 
can define a total energy-momentum tensor, TOIB, in 
such a way that 

TOI.B,= mT"'1l + MTOI.B, (6.6) 

and 
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'VBT",B=O, T[",8l=O. (6.7) 

Decomposing C"'B as 

(6.8) 

whereLJB=[B+pB andHx=B x-iJ1x are the spatial elec
tric-displacement and magnetic-intensity 4-vectors, 
respectively, we deduce from Eq. (6.5) the following 
canonical space and time decomposition of MT",B, 

'" B 
T",B = ~([2 +B2) U U + c-2(U"'SB +uBS"') _ tB'" 

M ----;::r .II , (6.9) 

where 

(6.10) 

and 

(6.11) 

are the spatial Poynting 4-vector and the spatial elec
tromagnetic stress tensor, respectively. The latter 
yields the spatial components 

Mtji t:DJEj +BJHj - ~(E'2 +B,2 - 2M" B')Oji, (6.12) 

in a local inertial frame. The electromagnetic stress 
tensor thus defined is the relativistic analog of the 
Galilean invariant one considered by various authors, 37 

We note that the skew symmetry of .IfT",B results 
solely from the skew symmetry of MtB"'. This is in 
agreement with the fact that in the present formulation 
ML"'B is purely spatial [compare Eqs, (5.9) and (5,10)]. 
Obviously, the tensor (6.5) is none of the well-known 
energy-momentum tensors considered by Minkowski, 
Abraham, Einstein, and Laub and Dallenbach38 at the 
beginning of this century. Nonetheless, it is intimately 
related to the electromagnetic energy-momentum ten
sor considered by Grot and Eringen39 in special rela
tivity, Maugin40 in general relativity, and Israe141 in the 
kinetic theory of spinning continua. This tensor reads 

(6,13) 

Its much simpler form than that of the tensor MT",B al
lows a straightforward deduction of ./1",B from a varia
tional principle. 42,43 Its canonical space and time de
composition is easily shown to be 

'" 8 
./1"'8 =~([2 +B2 + 2[, P) u c1{ 

1 1 
+ -u"'([ *H)B + -([) *B)"'uB- Il tB", , 

C C ' 
(6.14) 

where Alt8", is the same as that defined by Eq. (6.11). 
Grot and Eringen considered that MF'" and ML",B were 
given by 

(6.15) 

A long calculation allows one to show that, in this case, 

a .... cx 1 v: ex 
MF = Mf + cr .111/, U , (6.16) 

where 

.J'" =q['" + ~(9 *B)'" +p"'B(PIL~B[1L 

(6.17) 
and 
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(6. 18) 

and 

ML",B = P[",[Bl +iJ1["'BBl +\fpl"'uBl, (6.19) 

where MP'" is defined as in Eq. (5.12). Then Eqs, (5.9) 
and (4.30) are replaced by 

~ 

.ilL'" '" .liP"', 

P'" = c-2q'" - .liP'" , 

(6.20) 

(6. 21) 

whereas Eqs, (5,10) and (4.29) remain unaltered, It is 
then a simple matter to show that if one uses the above 
expressions one obtains the same final form for the 
field equations (5,17) and (5.18) and the Clausius
Duhem inequality (5.24) or (5.27). Indeed, in this new 
formulation, the spatial 4-force defined by Eq. (4.41) 
is easily shown to be equal to the 4-force defined by 
(5.16) on account of Eqs. (6.18) and (6.20). The ener
gy density present in the left-hand side of Eq. (4.36) 
must depend on ['" and B '" in agreement with Eq. (6. 19). 
Thus the local conservation of momentum is the same 
in both formulations, The same holds true as far as the 
energy equation is concerned, since 

(6,22) 

and on account of the general expression (4.28) and the 
peculiar Eqs. (4.30), (5.9), and (6,21). Finally, the 
same Clausius-Duhem inequality (5.18) obtains on ac
count of the general expression (4,34) and of Eqs. 
(4.30), (5,9), (6.21), and (6,22). The choice of the ex
pressions (6,13) and (6.15) to start with seems to be 
much simpler but rather formal, while the choice (6.5) 
allows one to exhibit a strong relationship with an ac
cepted microscopic model. As far as an a.xiomatic 
theory is concerned, this choice clearly is irrelevant. 

APPENDIX A: COVARIANT FORMULATION OF 
MAXWELL'S EQUATIONS IN MATTER 

The covariant formulation of Maxwell's equations at 
the event points x of the tube T considered in Sec, 3 is 
usually given in terms of the field F ",8, C"'B, and J"'. In
deed, the conservation of magnetic flux and, together, 
Ampere's and Gauss' laws are represented by the 
space-time equations (in Lorentz-Heaviside units) 

and 

'V 8C",8 = 1:.. J"', 
c 

where P"'s is the dual form of F ",B' defined by 

F"'B __ l n",8lLvF 
- ~'I /.LV" 

(A1) 

(A2) 

(A3) 

It follows from Eq. (A3) that Eq. (A1) can also be writ
ten in the more usual form 

(A4) 

On account of Eqs, (3.15) and of the algebra of the 
alternation symbols, it is a simple matter to show that 

(A5) 

Then using the decompositions (A5), (6.8), and (5.6), 
projecting Eqs, (A1) and (A2) onto AIl and along u"" 
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and using the definitions (3.17), (3.19), (3.22), and 
(4.39), it is possible to obtain a covariant formulation 
of Maxwell's equations of which the expressions are 
very close to those of the classical three-dimensional 
formulation. We obtain after some algebra44

: 

conservation of magnetic flux: 

V/lB/l- ~w"[ =0 C J a , 

Faraday's equations: 

~ I 
[(V + c·2a) * []" + -DcB" =0, 

c 

Gauss' equation: 

V,,!f +~w"H,,=o, 
c 

Ampere's equations: 

(A6) 

(A7) 

(AS) 

(A9) 

Taking the covariant divergence of Eq. (A2), we obtain 
the equation of conservation of charge in the form 

V", J'" = O. 

Upon use of Eq. (5,6), this can be rewritten as 

(DcQ +c·2 9 "'Du(y) + v'" r =0. 

(AIO) 

(All) 

For an irrotational (w'" =0) and inertial (a" =0) rela
tivistic motion, Eqs. (A6)-(All) take on the same form 
as the three-dimensional equations obtained in the 
Galilean invariant formulation of Maxwell's equations 
for matter. 45 

The system of differential equations (A6)-(All) can 
be closed if and only if constitutive equations are given, 
for instance, for the fields Po" /1J", and 9", The 
Clausius-Duhem inequality (5,27) shows that these 
constitutive equations can be studied by the method of 
the thermodynamical admissibility (cf. Part II). 
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On the covariant equations of the relativistic 
electrodynamics of continua. II. Fluids 
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Based on the thermodynamical equations and conservation laws of a previous work which synthesized the 
axiomatic approach to relativistic continuum physics with the acceptance of the relativistically invariant 
ponderomotive force and couple and electromagnetic power derived by de Groot and Suttorp from a 
microscopical treatment, this paper develops a constitutive theory for general relativistic electromagnetic 
fluids. These include nonlinear and linear fluids with e1ectrostriction and magnetostriction effects, 
dissipative fluids, and the "perfect magnetohydrodynamical" scheme as the extreme simplified case. 

1. INTRODUCTION 

Having established a useful form of the Clausius
Duhem inequality in Part II-on the basis of axiomatic 
relativistic continuum thermodynamics and of the 
expressions derived by de Groot and Suttorp2 from 
a microscopical approach for the electromagnetic 
"source terms" in the relativistic conservation laws
we propose in this part a brief thermodynamical consti
tutive theory for relativistic electromagnetic fluids, 
The equations deduced provide, also, a basis for 
various Galilean approximations in which small material 
velocities and weak gravitational fields are involved. 
First, exact nonlinear constitutive equations are 
derived on account of the Lorentz invariance of the 
free energy density for general nondissipative electro
magnetic fluids (Sec. 2). Then the attention is focussed 
on the special case of constitutive equations linear in the 
electromagnetic fields (Sec. 3). This model exhibits 
both electrostrictive and magnetostrictive isotropiC 
effects. Recombination with the" material" contributions 
which were separated in a somewhat arbitrary way 
from the "ponderomotive" contributions singled out by 
the deliberate choice made in Part I in favor of de Groot 
and Suttorp's expressions, allows us to answer some 
of the critical comments made by Brevik,3 who favored 
Minkowski's electromagnetic energy-momentum tensor 
on the basis of various arguments. Here, however, it is 
shown, on the one hand, that the various static or 
quasistatic approximations yield the expected force 
densities (which are all in agreement), and, on the 
other hand, that the expected momentum densities of 
interest for the description of optical properties 
emerge quite naturally. Elementary dissipative 
phenomena are easily described on the same basis 
(Sec. 4). Finally, the extremely simplified scheme of 
perfect mangetohydrodynamics is shown to follow in a 
straightforward manner (Sec. 5). The main tool used 
to arrive at these various approximations is that 
provided by Legendre-i. e., contact-transformations 
of the energy densities. This is illustrated in the 
Appendix by showing that similar results can be 
obtained if one selects a different set of independent 
constitutive variables. 

2. NONDISSIPATIVE ELECTROMAGNETIC FLUIDS 

The general thermodynamics of electromagnetic 

fluids is governed by the local statement of the second 
principle of thermodynamics known as the Clausius
Duhem inequality. This inequality which has been 
obtained as Eq. (5.27) in Part I reads 

- p(DJ; + 17De) + l6f>.df>.6 - P ",(DeC"') 

* - 1Yi",(DeBn) + fl",c'" - B-1q"B,,?- O. (2.1) 

!.,n this equation p is the invariant proper mass density, 
i/J is the proper density of free energy, 17 is the proper 
density of entropy, B is the thermodynamical tempera
ture, and e", is the relativistic gradient of temperature 
definedbyEq. (1.4.35). crx,fl"" Prx,liI n , andq'" are 
the spatial electric-field, conduction-current, polariza
tion, magnetization, and heat-flux 4-vectors, 
respectively. d", B is the spatial relativistic rate -of
strain tensor. /f>'" is a symmetrical stress tensor which 
is related to the (in general, nonsymmetrical) Cauchy 
stress tensor t6 '" by 

Finally, D,=u"'V", is the invariant time derivative if u'" 
is the world velocity, and the symbolism Dc indicates 
the contravariant convective time derivative such that 

1 
DeC"'"" (DC")l - caVBua + {a Veils • (2.3) 

1 

Here VB is the spatial convariant derivative and the 
symbolism ( .. )1 indicates the spatial projection. 

For a nondissipative electromagnetic fluid, f)", = 0 
and qa = 0, so that inequality (2.1) reduces to Gibbs' 
equation 

(2.4) 

Perfect electromagnetic fluids have constitutive equa
tions which are derivable from the potential 

(2.5) 
- -

The Lorentz invariance of F requires that F be form 
invariant under the connected Lie group L ~ 
(orthochronous Lorentz transformations), hence in 
particular under the infinitesimal transformations 
(in rectangUlar coordinates) 

(2.6) 

of M4 onto M 4
, where E is infinitesimally small and Las 

has arbitrary £omponents. Applying this form 
invariance to F, we obtain the following constraint 
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which must be satisfied by F (and here rewritten in 
an arbitrary frame): 

- -
2F [61 + 2F B~I = O. 

2[!", ~ 
(2.7) 

In virtue of the spatial character of [6 and B6, this 
constitutes a set of three linear differential equations 
of the first order, which, for the time bei!,!g, does not 
need to be integrated. Then, computing DF on account 
of the continuity equation (I. 4.26), 

(2.8) 

and of Eqs. (2.3) and (2.7), and substituting the result 
in Eq. (2.4) posited to be valid for arbitrary non
vanishing objective5 time rates D8, d",6' De["', and 
DeB"', we are led to the following constitutive 
equations: 

and 

If ot = [(F _ 2F) _ of [Y _ of BY] pot6 
Pop ocr 2l!l 

- -
+~(6)+~B~) 

0[(" oB(<>: ' 

of 
P"'=-o[" ' 

_1 0F 
1)=-p ae' 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Substituting for Eqs. (2 0 9)-(2.11) into Eq. (2.2), we 
obtain 

(2.13) 

where the thermodynamical pressure p is defined by 

(2.14) 

We remark that the Cauchy stress tensor ~CJ< is now 
symmetrical. Indeed, on account of Eqs. (2.10) and 
(2.12) and of Eq. (I. 5.10), we see that the pondero
motive-couple 2 -form vanishes identically in perfect 
electromagnetic fluids, hence the symmetry of tIl<>: in 
virtue of Eq. (1.4.29). Furthermore, integrating 
the system (2.7) of linear partial differential equations 
by the classical method of characteristics and accounting 
for the fact that B<>: is an_axial 4-vector while the 
invariance required for F is tha,! under the proper 
Lorentz group, we deduce that F necessarily has the 
following functional dependence: 

(2.15) 

where the invariants l(k)' k = 1, 2, 3, are such that 

1(1) = i[2, 1(2) = }B2, 1(3) = i(cyBY)2. 

It follows that Eqs. (2.10) and (2.11) yield 

P'" - ~'" - B'" M - B - ~ =O'(1)L +0'(3) ,/11"'=0'(2) ot+0'(3)L"', 

where -

1207 

- of 
a(l)= -a;.-- , 

(1) 

- aF 
0'(2) = ---, 

a1(2) 
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(2.16) 

(2.17) 

(2.18) 

Of course, (X(i) = a(i)(p, 8, l(k»)' i=}, 2, 3. These scalar 
coefficients are positive provided F has the appropriate 
variational behavior with respect to the variables 1(k). 
Equations (2.17) are exaet nonlinear electromagnetic 
constitutive equations. By the same token Eq. (2.14) 
takes on the form 

(2.19) 

where F is given by the general invariant function 
(2.15). 

3. LINEAR ELECTROMAGNETIC CONSTITUTIVE 
EQUATIONS 

Linear approximations of Eqs. (2. 17) for weak 
electromagnetic fields are obtained by discarding terms 
containing a(3)-which are at least quadratic in the 
fields-and setting 

X'(p,8)o=&0)1[ =0' Ci 2 (p,8)O=(X(2)1[ =0' (3.1) 
(k) (k) 

so that 

p'" =X'(p,8)[", /f1" = Ci 2 (p, e)BCt. 

Now consider the following speCial case of Eq. 

F= Fo(p, e) - [x'I(1) + 0'21(2)]' 

Then Eq. (2.13) yields 

(20 15): 

(3 2) 

t6Ct 
= - {Po +i[2 [X' - pe~') J 

+ f,82 [0'2 - p(~~2) J} pCt6, (3.3) 

with 

Define the dielectric "constant" E and the magnetic 
permeability Il by 

(3.4) 

so that the spatial electric displacement 4-vector, 
D" and the spatial magnetic field 4-vector HCt are given 
by 

DCt=["'+P"=E(p, e)[", 

H" =B<>: -hi'" = 1l-1(p, e)B"'. 

(3.5a) 

(3.5b) 

The general expression (1. 6. 9) of de Groot and 
Suttorp's electromagnetic energy-momentum tensor 
then reads 

U OlU 6 
MT <>:6= i([2 +B2)C2' + )rl(uCt(? + 1l~C;"') 

- [EC[$ + 1l-1B"'B~ - i([2 + B2 - 2a~2)p"'~], (3.6) 

where 

By the same token the "matter" energy-momentum 
tensor (1. 4.6) can be written as 

(3.7) 

mTot6=p[e2+Eo(V'17)+V;'[2_V~2B2]1/;~16 -l~'" (3.8) 

G.A. Maugin 1207 



                                                                                                                                    

on account of Eqs. (1.4.30) and (I. 5. 9) and account of 
the fact that qa = 0 and the excess-energy-current it' 
introduced in Part I has been set equal to zero. In Eq. 
(3.8), v'" p-l is the proper specific volume, and the 
internal energy Eo(V, 1) has been introduced on account 
of the definition (I. 4. 32) and of Eqs. (3.2) and (I. 5.15). 
1. e. , 

E=e + Carra =~ +1)8 +VC apa 

(3.9) 

where 

(3.10) 

On account of this Legendre transformation Po and e are 
now given by the constitutive equations 

P (v 1/)=_(ilEo) , e(v 1)=(~Eo\ 
o , av n ' or,-; v 

(3.11) 

in terms of the equation of state EO =EO(V, 1). 

Using now Ha instead of 13" on account of Eq. (3.5a), 
the total "matter plus field" energy-momentum tensor 
(1. 6. 6) has the following space and time decomposition 

Ta~ = mTa~ + M T"~ 

=C~2W uau~ + fI~l(uar:~ +u lYa ) _ t~" 
(t ot ) '"" '1 ':J (t ot) , (3.12) 

where the total energy density w(tot) and the total spatial 
(symmetrical) relativistic stress tensor ~rot) are given 
by 

(3.13) 

and 

~rot) == -{Po + t[2[E - pG~) J tH2 

X [fJ.-pG~) J}p,,~ +€{aC~ + fJ.H"H~, (3.14) 

respectively. The last expression contains isotropic 
effects of electrostriction and magnetostriction via the 
dependence of f and fJ. upon p. These effects are also 
expressible in terms of derivatives with respect to v 
taken at constant entropy if, in agreement with Eqs. 
(3. 11), we consider the functional dependence e(v, 1) 
and fJ.(v, 1). The expresssion (3.14) is important for, 
in agreement with Brevik,6 its electrostatic approxima
tion, or, rather, the electrostatic approximation of the 
total spatial 4-force 

(3.15) 

allows one to test the validity of the expression chosen 
for the electromagnetic energy-momentum tensor. 
Indeed, in the electrostatic approximation where the 
magnetic fields are discarded and [ can be replaced 
by the three-dimensional electric field E expressed in 
a fixed Galilean inertial frame, while the remaining 
Maxwell equations read 

(3.16a) 

(3.16b) 

Eq. (3.15) yields the total three-dimensional force 
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acting on the fluid in the form 

f(tot)= - VPo+{qE + V[p~2 G~)J _ ~2 v+ (3.17) 

The expression within braces is the so-called Helmholtz 
force. 7 For a dielectric fluid q = O. Taking account of 
the fact that E = E(p, e), Eq. (3. 17) then takes the form 

(3,18) 

which is the expression given by Landau and Lifshitz. 8 

In the case of a dielectric liquid where the free charge 
density q is due to injected charges (through electrodes 
injecting ions or with an electron beam), and where the 
electrostriction effect can be neglected so that 
E =E(e) only, Eq. (3.17) reduces to 

f(tot) = - VPo + .f , 

where .r is the so-called Korteweg-Helmholtz 
electrostatic force 9 defined as 

E2 
.f=qE -""2VE. 

(3.19) 

(3.20) 

This expression is of central importance in electro
hydrodynamics. On account of Eqs, (3.16), we have 

efi=/ji,i' (3.21) 

where 

.,lji=t(EJEj _~E26ji)=.tij (3.22) 

may be referred to as the electric stress tensor. 

Another way of arriving at the expression of the 
total force is to consider the electrostatic approxima
tion of the right-hand side of Eq. (I, 5. 7). On account 
of Eqs. (2.13) and (1. 5. 16), and (3.16b), we obtain 

(3.23) 

where ]!"f is Kelvin's force density, 10 which is given 
by 

(3,24) 

It is easily shown that Eqs, (3,23) and (3,17) are in 
agreement by noting that, in electrostatics, P and Po 
are related by 

1 z[ (aXe) ] P=Po+-zE X"-P -a-
p 9 

(3.25) 

on account of Eqs. (2,19) and (3.2). 

Other consequences of the linear constitutive equa
tions (3.5) can be noted by way of conclusion of this 
section. First, it is a simple matter to show that, 
on account of the decompositions (I. 5.4) and (I. 6.8), the 
4-vectorial constitutive equations (3.5) are equivalent 
to the single tensorial constitutive equation 

(3.26) 

where 
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and 

ca8rO = ~ -1 [pay _ (~YuauyJ [PSO _ (~YUBuoJ 
= ~-{gay _ (n2 ~ 1) u"';y J[g80 _ (n2; 1) ua;o J. 

(3.27) 

n= .fiJi being the refractive index of the medium. 
Finally, substituting from Eqs. (3.5) into the 
definition (I. 5. 12) of the induced momentum density, 
here a spatial 4 -vector, we find 

(3.28) 

This is nothing but the induced momentum density 
invoked in the case of an optical wave in the experiment 
of Jones and Richard, 11 but expressed in covariant form 
in a comoving frame. This momentum runs away with 
the electromagnetic field whose energy 4-current is 
given by the spatial Poynting vector S'" = dE * H)" and 
whose spatial 4-momentum ;P'" is given by 

- 1 
Mpa = -(E * H)'" = c-2S'" 

c 
(3.29) 

on account of the space and time ~ecomposition (I. 6. 9). 
The difference between MP'" and MP'" then is 

(3.30) 

This is Minkowski's momentum density expressed in 
covariant form in a comoving frame. 12 

4. ELEMENTARY DISSIPATIVE PROCESSES 

Discarding any electromagnetic dissipative processes 
such as hysteresis effects (the media described are 
either dielectrics or paramagnetic or diamagnetic 
media) without light absorption, we find on account of 
Eqs. (2. 1) and (2.4) that the dissipative contribution 
(if it exists), nfl'" = nt",a, to the relativistic stress 
tensor, the conduction current, and the heat flux satisfy 
the following dissipation inequality: 

(4.1) 

Linear isotropic constitutive equations which satisfy 
both Eq. (4.1) and the Onsager-Casimir pinciple, are 

and 

* q",=-[K(p, e)e",+eA(p, e)[",l 

with 

7]a"'l.I" =7]I(P, e)pa"'pI.IL +7]2(P, e)(pal.p"'IL +pilILP"'I.) 

and 

37]1 + 27]2 '" 0, 7]2'" 0, 

a~O, K"'O, aK_e- 1A 2",0. 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

7]1 and 7]2 are viscosities, K is the thermal conductivity, 
a is the electrical conductivity, and A is the material 
coefficient which accounts for the Thomson and Peltier 
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effects. If there is no such couplings, A= 0, then 

f) '" = a(p , B )[ '" , 

* q", = - K(p, e)e",. 

(4.7a) 

(4.7b) 

The last equation is a relativistic version of Fourier's 
law. 13 For a perfect electricity conductor, a goes to 
infinity. The magnitude of the total electric current 
(I. 5. 6) then remains finite if and only if 

["'=0. 

5. PERFECT RELATIVISTIC MAGNETOHYDRODYNAMICS 

The "perfect magnetohydrodynamic" scheme of 
relativistically moving fluids corresponds to the follow
ing hypotheses: The material continuum is an isotropic 
fluid with 

(5.1) 

The magnetostriction effect then is discarded while 
condition (4.8) must be fulfilled. It then follows that 
S'" =C;'" = 0, and Eq. (3.12) reduces to 

T ",a - T",a + T",a 
- (~.f) (H)' 

(5.2) 

where 

(5.3) 

and 

(5.4) 

represents the energy-momentum tensor of a 
relativistic perfect fluid (the magnetic field being 
turned off) and the energy-momentum tensor due to the 
magnetic field alone, respectively. The latter is the 
same as that which is deduced from Minkowski's tensor 
under the same hypotheses. 14 The splitting achieved in 
Eq. (5.2) is not as arbitrary as it would appear to be, 
since Tr:.f) contains no magnetic field at all. Introduc
ing the thermodynamical function known as the index 
! of the fluid and defined by 

!=I+c-2
(E o +VPo), (5.5) 

we can rewrite Eq. (5.2) in the equivalent form 15 

(5.6) 

Remarks: (i) The equations derived in Secs. 2-5 
have been obtained by considering the formulation 
(2.1) of the Clausius-Duhem inequality. There, from 
the magnetic viewpoint, it is the magnetic induction 
4-vector E'" which is taken as a constitutive independent 
variable. Other choices, however, are possible as, 
for instance, those of iJ1 '" or Ha. In the Appendix we 
show that identical results can be obtained if one 
considers H'" (under the perfect magnetohydrodynamic 
hypothesis) . 

(ii) The fluids described by Eq. (2.15) or (3.2) are 
isotropic. That is, they exhibit no preferred direction 
in their mechanical and electromagnetic behaviors. 
Recent studies, 16 however, have been devoted to what 
is referred to as relativistic anisotropic magneto
hydrodynamics. The main peculiarity of such fluids 
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is that, at rest, they do not obey EUler's hydrodynamics. 
This behavior which closely resembles that of liquid 
crystals,17 can be reproduced by considering that, in 
addition to the already present independent variables, 
Eqs. (2. 15) and (302) depend also on a unit vector field 
dOl., (dOl.uOl. =0, P OI.Bda.r?== 1), which points instantaneously 
in the preferred direction around which the properties 
of the fluid are invariant by rotation. In relativistic 
magnetohydrodynamics, this vector field may be none 
other than the magnetic field itself, normalized to 
unity. Developing such a scheme presents no major 
difficulties and will not be done here o 

APPENDIX 

On account of the relationship HOI. =B" - /Y1'", we note 
that 

/Y1 D f)"=/Y1 DH"-+pD~/}F a. cu a. c 2 
(Al) 

.. 
Defining a new free enegy denSity </J and a new 
symmetrical relativistic stress tensor I!OI. by 

~=~+~ftF, (A2) 

and 

(A3) 

and using the hypotheses of the perfect magnetohydro
dynamic scheme (POI =(ja = f) 01.= q'" = 0), we can rewrite 
Gibbs' equation (2 A) in the following manner: 

pD~ = - (1)D8 + tBadOl.B -/Y1 o,D cHa. (A4) 

By the same token the Cauchy stress tensor (2.2) is 
given by 

(A5) 

Constitutive equation for the present scheme are deriv
able from the potential per unit volume, 

F=p~=F(P, e, H). (A6) 

The Lorentz invariance of i leads to the linear first
order partial differential equation [compare Eq. (2.7)] 

aF HB1-0 aR;: -, 
which has the integral 

F=F(p, e, ~H2). 

(A7) 

(A8) 

Computing pD</! from Eq. (A6), taking account of Eq. 
(A7) and of the definition (203) applied to HOI., we find 
that Eq. (A4) is identically satisfied for arbitrary 
(nonvanishing) independent objective time rates De, 
d,,{3' and Dc HOI. , if and only if the constitutive equations 
are 

v .. 

tea = - (p + ~frt) pOl.B + aH:a He), 
... 

/hOI. = - aF/aHOI., 

11=-vaF/ae, 
with 

aF ... 
P~pa;;-F. 
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(A9) 

(A10) 

(All) 

(Al2) 

If follows from Eqs. (A7), (A9), and (AlO) that Eq. 
(A5) yields 

fla. = _ ppa.B = taB. (A13) 

Consider now the special case, 

F=Fo(P, e)-~Xm(p, e)f/2, (A14) 

of Eq. (AS). Then Eq. (A10) gives 

Ina =Xm(p, e)Ha, (A15) 

while Eqs. (A13) and (10 6.11) yield 

flOl.=_{Po+~H2[xm_p(a:;) J}pa.a, (A16) 

and 

MtBa. = flH"'Ha - ~flffpcta, 

where 

(A17) 

: ~-F 1 Po-Pap 0' fl~ +Xm • (A1S) 

Moreover, defining the internal energy Eo as in Eq. 
(3.10) and noting that the internal energy E present in 
the general equation (1. 4. 6) is related to Eo by 

(A19) 

on account of Eqs. (3.10), (5.15), (A2), (A6), and (A14), 
neglecting the dependence of Xm upon p and gathering the 
results (A16), (A17), and (A19) in the expression (1. 6. 6) 
of the total energy-momentum tensor, we are led to the 
expression (5.2). Q. E. D 
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On the covariant equations of the relativistic 
electrodynamics of continua. III. Elastic solids 
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Based on the thermodynamical equations of a previous work, which synthesized the axiomatic approach to 
relativistic continuum physics with the acceptance of the relativistically invariant ponderomotive force and 
couple and electromagnetic power derived by de Groot and Suttorp from a microscopical treatment, this 
paper develops a constitutive theory for general relativistic deformable solids .. After a . review of the 
essentials of deformation theory of general relativistic continua, particular attention IS paid to nonlinear 
elastic electromagnetic solids in normal conditions of pressure and temperature, then to the linear 
piezoelectric scheme which can be used for the theoretical analysis of gravitational-wave detectors that use 
a piezoelectric device, and, finally, to magnetoelasticity under high pressure which descnbes the 
magnetomechanical behavior of matter in certain astrophysical objects (neutron stars). 

1. INTRODUCTION 

This paper is a continuation of two other papers 
herein after referred to as Parts I and II.l,2 Upon 
accepting the general thermodynamical inequality-the 
Clausius-Duhem inequality-derived in Part I and 
which resulted from a compromise between a purely 
axiomatic approach to relativistic continuum physics 
and the reliance upon specific electromagnetic source 
terms as obtained by de Groot and Suttorp3 from a 
microscopical approach, we develop in the present 
part a thermodynamical constitutive theory for general 
relativistic electromagnetic deformable solids. Instead 
of constructing a complete logico-deductive theory of 
the behavior of such materials, we content ourselves 
with the study of specific schemes of matter, which can 
be of practical use in problems involving both the 
effects of gravitational fields and of electric and/or 
magnetic fields, 

Having exposed the essentials of deformation theory 
of general relativistic continua in sec, 2, we construct 
in sec, 3 a quite general case, that of nonlinear thermo
elastic electromagnetic solids, This is done for normal 
conditions of pressure, density, and temperature, when 
the deformation mapping from an ideally relaxed, un
stressed state to the present state is sufficiently 
smooth and involves no structural change, Although 
rigorous and generaliZing to the general relavistic 
framework the Galilean theory of thermo-electro
magneto-elasticity, the description thus obtained is 
of weak practical interest. Next, in sec, 4, we concen
trate upon the case of solid dielectrics in general 
relativity 0 There the whole description is made with
out recourse to a three-dimensional background, The 
constitutive equations obtained at first are nonlinear. 
However by studying the superimposition of infinitesi
mal stra~ns, electric fields and space-time metric 
variation on a finite initial state of strain and fields, 
we are able to construct constitutive equations valid 
for initially strained ferroelectrics and pyroelectrics. 
Such equations must enable one to study photoelastic 
and electro-optical effects in the material if the latter 
is transparent, Furthermore, if this linearization 
procedure is performed about an initially nonpolarized 

and negligibly strained state, then there follows the 
constitutive equations of piezoelectric bodies, which 
can be used in gravitational-wave detectors in which 
the influence of possibly incident waves can be detected 
via the induced piezoelectric effect, These equations 
are a general relativistic generalization of Voigt's 
classical equations of linear piezoelectricity in that 
they account for infinitesimal perturbations in the 
space-time metric. In the last section, conSidering 
the anomalous conditions of pressure and magnetic 
field existing in astrophYSical objects such as neutron 
stars, we develop a theory of general relativistic 
magnetoelasticity valid under conditions of extremely 
high pressure. For this purpose the hypotheses set 
forth by Carter and Quintana4 are used. In particular, 
all fields depend upon the matter denSity as can be 
expected. 

2. ELEMENTS OF DEFORMATION THEORY 
A. Nonlinear deformations 5,6 

The relativistic motion of a continuum is described 
either by means of a canonical differentiable projection 
p such that p: T[B]-;113, or with the aid of the space
time parametrized congruence of world lines C: x 
=X(X,T), XEB, TElR, Here T[B]is the open tube 
of the space-time V4 which is swept out by the material 
body B (Whose constituents are the material "particles" 
X) and;113 is the three-dimensional manifold which 
serves to describe the material continuum. B is an 
open region of;113, T is the proper time of X. In terms 
of local charts x''', (CI=1,2,3,4)andXK (K=1,2,3), 
these two manifolds are equipped with the background 
metrics g",a and GKL , respectively, and we have 

p:xK =XK(x"'), 

T=T(X"'), 
and 

C:x"'=X"'(XK,T), 

(2.1a) 

(2.1b) 

(2.2) 

Both relations (2, la) and (2.2) are assumed to be suf
ficiently differentiable, so that the direct and inverse 
relativistic deformation gradients, 

(2.3) 
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(2,4) 

are well defined, The last equation within parentheses 
is none other than DXK = 0, which signifies that X K and 
T are independent variables. Here D==u"'V"" where u'" 
is the world velocity of X, and the symbolism (,oo)L in
dicates the spatial projection obtained with the help of 
the projection operator P~a == o~ + c-2 u"'ua, 

g",a being the reciprocal of g ",a, a space-time in
variant (but tensor field on ;)13) is formed from the 
spatial 4-vector a ~K by 

~KL ==g",Bo ~KoaXL =p",ao ~KoaXL = t;LK, (2,5) 

This defines the relativistic analog of the Piola strain 
tensor of classical continuum mechanics, 7 The geo
metrical significance of definition (2,5) is clear: The 
relativistic Piola strain tensor is the image of the 
space-time metric g",a by the projection of the space
time on its quotient by the congruence (2,2), Noting 
from Eqs, (2.3) and (2,4) that we have 

(2,6) 

it is also possible to construct the relativistic version 
of the Cauchy, Lagrange, Green, and Euler strain 
tensors by 

and 

CKL ==g ",axtxi =p ",a(o KX")(O LXa ) = CLK' 

EKL == ~(CKL - GKL ) = ELK, 

C",a == GKLo ~KoaXL = ca"" 

(2.7) 

(2.8) 

(2.9) 

C "8 == t(P ",8 - c",a) =C 80<' (2.10) 

respecti vely, C ",8 and C "'8 are spatial symmetrical 
tensors, It is readily checked that 

C ",a = EKLo ~KoaXL, EKL =C ",axtx'l. (2.11) 

Let G =det IIGKLII and 1)KLM == G- 1 / 2CKLM, where CKLM 
is the three-dimensional alternation symboL Then, 
with the notation of Part I, the Jacobian determinant 
of the mapping (2,2) is given by 

Let Po(X) be the matter density at X EO B C;)13 at a 
certain proper time T=To' We have Dpo(X) =0, Then 
the invariant relativistic density of proper mass, p, 
can be formally defined as being the image of Po by 
the projection p, Hence 

B. Rates of deformation 

We recall that 

e",a==(VaU",)L 

and 
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(2.13) 

(2.14) 

(2.15) 

defines the spatial relativistic velocity gradient and 
the rate-of-strain tensor, respectively. From Eqs, 
(2.3), (2,4), and (2.12) it then is a simple matter to 
show that 

[D(O"XK))L=- e~",oaXK, 

(DX~)L = e~Ax}, 

(2,16a) 

(2, 16b) 

(2,16c) 

Noting that DGKL =0 and Dpo=O, it follows from Eqs, 
(2,7), (2,8), (2,5), and (2,13) that 

(2,17) 

-1 
DcKL = - 2pIJ. "'d"'/lpaV(o IJ.XK)(o.)(L), (2,18) 

and 

(2,19) 

Whereas on account of the definitions of P "'8' C "'8' and 
C ,,8' and that of the Lie derivative with respect to the 
world velocity u"', we have 

(tC",8)L == 0, 
and U 

(2,21) 

(2.22) 

The result (2,21) and Eq, (2,9) indicate that C"'8 serves 
as a local background metric to measure strains in 
space-time (in the same way as GKL serves as a local 
background metric to measure strains on ;)13), 

Finally, let us note the following result, Let A'" be 
a contravariant spatial 4-vector field, If we construct 
the space-time scalars 

(2,23) 

where DA indicates the invariant derivative in the 
direction of A"', we deduce from Eq. (2,16) and the 
definition (1, 4, 39) of the contravariant convective time 
derivative, noted Dc, that 

(2,24) 

c. Infinitesimal deformations in space-time 

The spatial tensor field which measures infinitesimal 
deformations in space-time can be obtained by consid
ering the infinitesimal variation (oC "a)L of C "a' which 
results from both a variation of the space-time metric 
and a variation of the space-time evenL It follows 
from the definition of P <>8 that 

(OP ",8)L = (og",a)L == ""'-8 = h8"" (2,25) 

""'-8 is the spatial perturbation in the space-time metric. 
Noting that [compare Eq, (2.16a)) 

[0(0 ~K)l = - pIJ.A(O IJ.XK)(V "'~A)L' (2,26) 

where ~A == ox\ we deduce from Eq. (2.9) and the fact 
that GKL remains invariant in the variation procedure 
that 

(2,27) 
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Upon again using Eq .. (2.10) and carrying the resulting 
expression and Eqo (2025) in the variation (oC ",e).1. com
puted from Eq. (2.10), we arrive at the variation 

(oC o<e).1. = ~ {h"e + p>.I' l(p I'a - 2C I'a) 

Linearizing the right-hand side of Eq, (2028) by dis
carding the contributions of C "8' we obtain the spatial 
infinitesimal- strain tensor 

(2,29) 

Clearly, the contribution of haa is a purely general 
relativistic effect. 8 In special relativity we thus have 
E"'8 = ('V (a~8»).1. ""E a8 , an expression which is entirely 
similar to that of classical continuum mechanics, ~ a 

playing the role of the infinitesimal displacement. De
fine the spatial rotation tensor by 

\1>.y=- ('Vlr~>'I).I.=-?2r).' (2,30) 

Then using the decomposition of ('V y~>.).1. in symmetrical 
and antisymmetrical parts, we deduce from Eq. (2.29) 
that 

(2.31) 

3. THERMOELASTIC ELECTROMAGNETIC INSULATORS 

The general thermodynamics of relativistically 
moving electromagnetic deformable solids is governed 
by the local statement of the second principle of thermo
dynamics, or Clausius-Duhem inequality, Eqo (I. 5. 24), 

- p(D~ +7)De) + Et8adaa + 9"'C a 

* + C ",(Depa) +8 a (De/ha ) - e-1 qaea ? o. ( 3.1) 

Here $ is the free energy per unit of proper mass, 7) 

is the entropy density per unit of proper mass, e is 
the (proper) thermodynamical temperatureo f" C "" 
8 a' P''', and /Na are, respectively, the conduction
current, electric-field, magnetic-induction, polariza
tion, and magnetization spatial*4-vectors. qa is the 
spatial heat-flux 4-vector and e a is the relativistic 
temperature gradient defined by Eq. (1. 4.35). Finally, 
EtBa is a spatial symmetrical stress tensor which is 
related to the relativistic Cauchy stress tensor by 

(3.2) 

It is convenient at this point to define various fields on 
!IJ 3 in terms of the spatial tensor fields which appear in 
Eq. (301) with the help of projection (2.1a). Indeed, 
define ETKL, P\ j)JK, pK, QK, CK' 8K, and 6 K by: 

(30 4) 

9K"" JpaoaxK, QK =' JqaoaxK, (3.5) 

and 

(3.6a) 

(3.6b) 

(3.6c) 
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Then, on account of Eqs. (3.3)- (306), of Eqs. (2.13) 
and (2.17), and of identities of the type (2.24), we can 
rewrite Eq. (3.1) in the following form: 

( ~ ) KL K -Po DqJ+7)De +E T DEKL+p CK 

+ C KDPK + 8KD/h K - e-1 QK6 K? O. (3.7) 

A homogeneous thermoelastic electromagnetic insulator 
is such that pK =0 and its constitutive equations have 
the following a priori functional dependence, 

A * ~ =<J!(o0K, pa, ;rIa, e, e",). (3.8) 

An analogous dependence holds good to start with for 
E T KL , C K' 8K, and QK. The Lorentz invariance of the 
free energy function (3.8) is identically satisfied if if! 
has the follOwing reduced functional dependence: 

., -lKL pK ~"K ) <J!=<{!(C , ,/1/, e, 6 K 0 (3 0 9) 

We note from Eqso (208), (2.17), and (2018) and the 
t th -1 K L K 

fac at C C Loll = 0 K that 

Now we compute D~ from Eq. (3.9) on account of Eq, 
(3.10), carrying the resulting expression in Eqo (307), 
and assuming that the latter is to be satisfied for arbi
trary independent time rates De, DEKL , DP K, and 
D!lJK while noting that the factors of these rates do not 
depend on the rates themselves-by virtue of the very 
reduction (3.9)-whereas QK depends on 6 K• This is 
realized if and only if we have the following invariant 
constitutive equations9

: 

C _ o~ 
K-POapK, 

a-
7)=- o~, 

where the dependence of <J! has been reduced to 

if!=~(CKL, pK, !lJK, e) 

and QM, which still is of the form 

QM = (JM «(;KL , pK, j)JK, e, 6 K), 

satisfies the remaining disSipation inequality 

il> = - e-1 QM6 M ? O. 

(3.11) 

(3012) 

(3013) 

(3014) 

Furthermore, if (JM is assumed to be of class C1 in its 
arguments 6

K
, K = 1,2,3, then Eqo (3015) implies by 

continuity that 

(JM(CKL , PK,f}']K, e, 0)=0. (3.16) 

The spatial constitutive equations corresponding to the 
results thus derived are obtained by inverting Eqso 
(303), (3.4), and (3. 5b) and using Eq. (302). We thus 
have 

EJa ( aF 81' L aF' pB 1MB of)pav(a yK) 
t = - 2 ocKLP a "x + a(51' + /1/ aj)JK 11'., 

(3.17) 

CCit_pa,,(o XK) aF' 
- I' opK' 

8 Cit - p"'I'(a XK) of 
- "aj)JK' (3 018) 

_ ol oF 
1] -- Po ail' (3019) 

and 
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qa=rlx~QM(-CKL, pK, IJ1K, e, 6.11)' 

where 

(3. 20) 

(3.21 ) 

A linear approximation of qa in the neighborhood of 
eM = 0 then yields a heat flux constitutive equation of 
the formlO 

(3.22) 

on account of Eq, (3,6c) and of a definition of the type 

(3.23) 

for the spatial heat conductivity tensor. 

Equations (3017)-(3019) and Eqo (3,22) are consti
tutive equations which are nonlinear in the deformation 
field and in the electromagnetic fieldso They are valid 
for large deformation fields and strong electromagnetic 
fields in normal conditions of pressure and tempera
tureo In particular, it has been implicitly assumed 
that the projection (2.1a) is well behaved and that the 
Jacobian determinant J keeps the same sign during the 
deformation process, no peculiar change of material 
structure occuring in these normal conditions o Hence 
exotic situations such as those encountered in certain 
astrophysical objects (white dwarfs, neutron stars) 
are not accounted for by the equations above. Such 
situations require particular attention and the develop
ment of special models which account for the influence 
of the denSity in an appropriate mannero (See Sec. 5 
belowo) Given the general functional dependence (3,22)
note that the material symmetry has not been specified
Eqs, (3,17)-(3,18) account in an intricate way for 
coupled nonlinear effects of elasticity, piezoelectricity, 
and piezomagnetism, pyroelectricity, pyromagnetism, 
electrostriction, and magnetostrictiono They clearly 
are too general to be of direct practical use o However, 
they show that such effects can be reproduced in the 
general relativistic frameo They generalize to elec
tromagnetic bodies the equations recently developed, 
for instance, by Barrabes. 11 In the absence of heat 
conduction, they coincide with the equations deduced 
previously (along with Maxwell's equations and Einstein 
field equations) by the author from a variational princi
pleo 12 They contain as special cases both the case of 
thermoelastic nonpolarizable (P a = 0) nonlinear para
magnetic and diamagnetic insulators and the case of 
nonmagnetizable (1J1 a = 0) dielectrics. In virtue of their 
nonlinearity, they also contain the case of so-called 
soft ferromagnetic elastic bodies (in which spin effects 
are discarded). However, they are insufficient to 
describe hard ferromagnetic elastic bodies (in which 
spin and exchange effects must be taken into accounC 13 
The formulation given above places in evidence the 
role of the strain state described on the material mani
fole 1J13 0 To arrive at sensible spatial linearized ex
pressions in the case of dielectrics we shall avoid any 
reference to such a state in the next sectiono 

4. PIEZOELECTRIC SOLIDS 
A. Exact nonlinear theory 

For the sake of simplicity we consider the case of 
nonmagnetizable (1J1 '" = 0), nondissipative (9'" = q'" = 0, 
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no hysteresis) dielectrics. Then Eq. (3,1) yields 
Gibbs' equation, 

pD/jJ = - PTJDe +Et8ad a8 + (, (DcP a). 

In order to be closer to the conventional formulation 
of piezoelectricity14 it is preferable to express the 
right-hand side of Eq, (4.1) in terms of C" as an in
dependent constitutive variable while keeping Eta~ as 
the thermodynamical dual of d"'8' This is achieved by 
noting that 

["(DcP"')=pD(C,,rr Ct )- pe(t[8)~' (4.2) 
u 

where rra"Op",/p, andt[8 is the covariant Lie deriva-
tive defined by U 

Then, on account of Eq, (2022) and of the Legendre 
transformation 

~=$_[",rra, 

Eqo (401) takes the form 

p~ = - PTJDe + Ete"'(t[ a8) - P8(t[a)p 
u u 

(4,3) 

(4.4) 

(4.5) 

The constitutive equations of nonmagnetizable nondissi
pative piezoelectric solids are derivable from the 
potential 

(406) 

To be valid in special relativity this scalar expression 
must be Lorentz invariant. Let us define ljJ",e and l/L'" by 

,La _ a~ 
'IL = a[ a • 

(4.7) 

The form invariance of ~ under infinitesimal transfor
mations of M4 onto ~ of the type (in rectangular coor
dinates) 

x~~(6",~+CLCte)xe (L",e=-Le",), (408) 

where [ is infinitesimally small and La8 has arbitrary 
components, is satisfied by discarding terms of the 
order of [2 if and only if Ijj satisfies the following set 
of first-order linear partial differential equations 
[compare Eqso (110 207)]) 

(409) 

These equations are rewritten in an arbitrary frame, 
Projecting them orthogonally to u Ct and along the direc
tion of u a then yields the constraints 

ljJY'" = (ljJr"')~, J4 Ct = (Ji<a)~ (4010) 

after a little algebra, We thus have 

~ =ljJa8(D[ ae)~ +l/L"'(DC ,,)~+ G~) De o (4.11) 

On account of Eqo (40 3)of the fact that [",e is sym
metrical, 

(4.12) 

and using the decomposition of e~e into symmetrical 
and skew symmetrical parts and Eq, (409), we trans
form Eq, (4.11) to 

~ = [ljJ~(~(p."~ - 2[ ~i)-!/!. (d[ Ct») -l/!. (e[ ,,) ](t[ a~)~ 
• 

+ JkCt (t[ at ~~~) De. (4,13) 
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Gibbs' equation (405) being posited to be valid for arbi
trary, independent, nonvanishing, objective time rates 
D8, (t[ "'8).U and (t[ "')~, we are led to the constitutive 
equati'bns v 

oJj 
Y/=- -

08 

(4014) 

(4015) 

Et8a o=P<f!)'(8(P~l- 2[:'l)=p(zJ;a8- 2lj;).(a[~D=EtaBo 

(4016) 

Then Eq. (302) yields 

t8"'=EtB"'- PI8["'), (4,17) 

Taking the skew symmetric part of both sides of this 
equation yields t(8 a l = P ("'[B) in accordance with the 
general equation (10 5, 10) and the fact that !11 '" 0= 0 0 

Equations (4,14)-(4.17) are exact nonlinear constitu
tit'e equations for the theory of piezoelectricity in 
relativistic continua. In most experimental cases of 
interest (eo g., in gravitational-wave detectors), how
ever, infinitesimally small strains, space-time metric 
variations, and electric field must be considered. 
Thus, there is need for a linearized version of the 
equations just obtained, For this purpose we shall 
consider an infinitesimal variation of Eqso (4,14)
(4.17) about an initially well-defined state of tempera
ture, strains, and electric and gravitational fields, 
That is, we superimpose infinitesimal variations on 
finite fields, 

B. Linearized theory 

We consider infinitesimal variations (ot8a)~, (oP 8t, 
and or) which result from infinitesimal variations 
(B[ ",8)l.> (B[ ,,)~, oe, and (og"'B)~' Noting that 

fig ,"v =-g'""gVl!og",B 

so that 

(4.18) 

on account of Eq, (2.25), defining the instantaneous 
values of the components of the elastic stiffness tensor, 
c~"'r5, of the piezoelectric tensor, eY"'B, of the thermo
elastic tensor, e8a , of the electric susceptibility ten
SOl', X "'B, of the pyroelectric vector, A8, and of the 
specific heat C by 

c~"'YO "'P 'I' =p -- , (
0,/,"'8 ) (o</!'o ) 
~ ~ O[",B 1 

(4.19) 

er"'B=_p _'1' _ __ p _!t:_ (
0,/."'8) ( o,/,r ) 

. - o[ r ~ - o[ "'B ~, 
(4.20) 

(4.21) 

(4022) 

(4023) 

and 
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respectively, and noting that 

6p = - pP"'B(O[ aB)~' 

(4,24) 

(4.25) 

we obtain the following variations after a somewhat 
lengthy, but simple, calculation16 : 

(6tB"')~ = (ci"'YO _ eIBlrol[a) _ 2c~("'IYOI[~{ 

- 2</J°(apBlr _ tB",PYO)(o[ roll 

- (eYa8+XYIB[a) + PIPp"'l" +2erA("[~D(o[y)~ 

+ (eBa _ 2e).(o:[~{ _ A I B["')08 

+ (2C;).if)'(Bpalv +['"plBpa]v)h,"v, 

(OPB)~ = (e BYO - pBpYO)(O[ YO)~ +XBY(O[ Y)~ +AB08, 

and 

Or} = 8-1 Coe + p-l[AY(O[ Y)~ - eYO(o[ Yot), 

(4026) 

(4027) 

(4028) 

On account of obvious symmetries the spatial tensorial 
fields defined by Eqs. (4019)-(4,23) have, respectively, 
21,18, 6, 6, and 3 independent componentso The ex
pression for (o[ a8)~ is provided by Eqo (2028)0 As for 
the variation (o[ )~, it results from a self variation of 
the electric field, Ey = (Ey)l.> and a variation due to the 
infinitesimal variation in the space-time event, 1;>' = ox>'. 
That is, similarly to Eq. (4,3), we have 

(4 0 29) 

Let us denote by the subscript (i) the fields evaluated 
at an initial state of strains, temperature, electric 
field and gravitational field. Then the equations 

tBa=t~~l + (6t8a )v 

I)B =P~i) + (OPB)D 

(4.30a) 

(4.30b) 

Y/=Y/(i) +01], (4.30c) 

describe the infinitesimally varying state with (otll"')~, 
(OPB)~, and 01] given by Eqs. (4,26)-(4.28) in which 
all factors of hall' (v a~B)~' E y , and 08 obtained after 
substitution of the expressions (2028) and (4029) must 
be evaluated at the state (i). 

For nonvanishing initial strains and electric fields 
the equations obtained can be used to study photoelastic 
and electro-optical effects (in the absence of light 
absorption and dichroism since dissipative effects 
have been discarded) since we have infinitesimal 
strains and infinitesimal electric fields (the latter, for 
instance, due to light propagating in the transparent 
medium) superimposed on initial finite states of strain 
and electrical polarization, The existence of such an 
initial polarization also allows us to account for ferro
electric and pyroelectric effects, In addition, Eqso 
(4,26)-(4,28) contain the effect of a variation in the 
space-time metric (the general relativistic effect), 
These equations thus are appropriate for studying the 
influence of an incident gravitational wave of infinitesi
mal amplitude on a piezoelectric sampleo This will re
sult in infinitesimally small displacement gradients 
(v "'~Il)l coupled to an infinitesimally small electric 
field Ey (which needs amplification to be practically 
detectedl7

), 
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Consider now, for instance, an initially unstrained 
body, ({"'B)W=O, Le" P"'BCi)=c"'BCj) according to 
Eq, (2,10), Then Eqs, (4, 30b) and (4,27) yield 

p B =P~i) + X~LEy + (em - P~j)P~~) +x~I){~il)ErG 

- X~;){~i/~hGY + nor) + A~j)B e 
on account of Eqs, (2,29), (4.29), and (2,31), For an 
isothermal variation in special relativity, Eq, (4,31) 
reduces to 

pB =Pfi) + X~;)Er + (em - P~i)P~~) + X~L{~il)E\o 
(4.32) 

In agreement with the noncovariant equations recently 
obtained by Lax and Nelson,18 this equation shows that 
both infinitesimal strain ErG and infinitesimal rotation 
nr6 are involved, and not only ErG' in the constitutive 
equation of P B in the presence of initial electric and 
polarization fields (L e" in ferroelectric and pyroelec
tric crystals), The same comment holds true if we 
write down the complete expression, (4, 30a) in the 
presence of initial strains and initial electric and 
polarization fields in special relativity, This means 
that, in these conditions, the photoelastic effect involves 
rotation as well as shear, 19 

In the study of gravitational-wave detectors that use 
a piezoelectric device, it is sufficient to consider the 
approximation of Eqs, (4,30) for vanishing initial fields 
and isothermal processes. Then, on account of Eqs, 
(4,26) and (4,27) and the fact that p can be considered as 
being constant without loss of generality, we obtain the 
linearized constitutive equations 

(4.33) 

and 

fl = eBYG(O)Ero +EBY(O)Ey (4.34) 

on account of f)B = {B + PB. We have defined 

(4,35) 

where F == pI/! and (0) indicates that the tensorial coeffi
cients are evaluated at the zero value of the fields 
Ero and Er, The free energy F per unit of proper volume 
then has the quadratic expression 

F= ~c~"'ro(O)E"'BEro - txB"'(O)EBE", 

- eBrO(O)EBEroo (4,36) 

On account of the definition (2,29), Eqs. (4,33) and 
(4,34) are the equations that we have considered in a 
previous more naive approach, 20 They are the general 
relativistic generalization of the equations of Voigt's 
linear theory of piezoelectricity, 21 In the application of 
the linearized equations (4,33) and (4,34) to wave 
propagation the relevant material tensor to be con
sidered is the spatial piezoelectricity stiffened stiffness 
tensorcBc<ro, If Ac<, Ac<U"'=O, is a unit spatial4-vector 
in the direction of travel of the piezoelectric Vibrations, 
this tensor can be defined by22 
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cBcnG == c~c<ro(o) + [A"E"V(O) Av]"1 

X AKeKB"'(O)Aaearo(o) 0 (4,37) 

Clearly, this tensor possesses the same symmetries 
as ~"ro(o), 

Finally, let us comment upon the use of Eq, (4.33) 
in the relativistic Euler-Cauchy equation of motion 
(I. 5.17). Equation (4.33) is linearized in the infinitesi
mal electric field Er• Furthermore, the Cauchy stress 
tensor thus approximated is symmetricaL This means 
that, in accordance with these approximations, the 
ponderomotive force and the ponderomotive couple are 
neglected since they are of second order in the electro
magnetic fields. Electrostriction effects, which yield 
contributions of the second order in the Cauchy stress, 
have been accordingly neglected. These are the hypo
theses upon which Voigt's classical linear theory of 
piezoelectricity rely, It remains to specify the material 
symmetry (which, of course, allows for the piezoelec
tric effect) for a given material (eo g., tetragonal barium 
titanate or trigonal lithium niobate). 

5. MAGNETOELASTICITY UNDER HIGH PRESSURE 

The developments given in Secs, 3 and 4 are based 
on the clear cut definition of the spatial space-time 
background metric CaB or, equivalently, on that of the 
metric GKL on !iJ3. In exceptional conditions such as 
those thought to occur in neutron stars, extremely 
high densities and pressures are developed. These 
are responsible for the crystal-like structure of the 
neutron star crust. One cannot relax this crystalline 
structure to reach a zero state of stress without break
ing down the structure. Thus C"'B and GKL are not even 
defined in these conditions, while they defined a relaxed, 
ideal nonstressed state in the foregoing developments. 
To cope with this type of situation where strong mag
netic fields may be expected to be present, 23 we need 
to devise a general relativistic magnetoelasticity under 
high pressure. Following Carter and Quintana, 24 we 
may assume, however, that for any deformation at 
constant volume, there exists a minimum of free energy 
denoted by ~(P). Let C"B(P) be the spatial space-time 
metric corresponding to this state 0 Then, similarly 
to Eq, (2,10), we define the relativistic Euler strain 
tensor by 

(5.1) 

The def2rmation which yields C"'B(P) being isochoric, the 
tensor [ocB represents shearing effects and, conse
quently, must be tracefree with respect to C"Bo That is, 

(e-1
) "'BLB =0 (5.2) 

as can be checked if c·1 is such that (C· 1 )"8 CBr = P~ro 
Equation (2,20) still holds true as well as Eq. (I.4,26), 
Le" 

(5.3) 

We consider nonpolarized, nondissipative media in 
isothermal evolution (P'" = g '" = q'" = 0, De == 0), Then 
Eq. (3.1) yields Gibbs' equation 

(5,4) 

Noting, on account of the definition of Dc given in Part I, 
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that 

- 2 13 (a/l1~)daB' 

we can rewrite Eq. (5.4) in the form 

pDJ = Et~adaB + 13 a(t /11 o).!.. 
u 

Here, 

Et~a '" EtBa + B r/l1 rpaB - 213 (a/l1B) = Et aB, 

(5.6) 

(5.7) 

It follows from Eqs. (507) and (3.2) that the relativistic 
Cauchy stress tensor is given by 

tB'" = Et Ba -B"Ii1 rPCtB + 13 ("i1JB) -/11 [~13 al, 

We naturally assume in general that 

4'=IP(p, t",~, ftJa), 

and define the fields 

oj 
~ = ~ p - cp , 

(5.8) 

(5.9) 

(5.10) 

The Lorentz invariance of ~ requires [compare Eqs. 
(4.9) and (4.10)] that $aB and!k be spatial objects, 
while they satisfy a constraint of the type (4.9). We 
have assumed that /11 a =/fJ alP), i. eo, the magnetic 
dipole depends on the proper density in the same way 
as taB' We thus define 

A '" (~) =_l.(~) A (il/l1
A 

/ ) Pa~ ilp.!. 2 dp / Pa '" a ilp .L0 

Hence, 

(D{ "'~).L = (D{ aB)lP
) + P"'BDp, 

(D,ih a).L = (D,ih ",)lP
) + p",DB, 

(5011) 

(5.12) 

where the superscript (p) indicates that the quantities 
thus labelled are evaluated at constant density, Accord
ing to Eqso (508), (5 01), (20201. and an equation of the 
type of Eq. (4.12) written for [Ct~' we have 

(D/fJ Ct)iP
) = (tft} "')i - ,ihBe~", (5.13) 

u 

and 

(D{ "'B)i P
) = daB - 2{ l.(",e;B) (5,14) 

We compute DIP on account of Eqs, (5,3), (5.10)-(5,14), 
and of the Lorentz invariance condition (409)-written 
for ~aB and fk.'" 0 Substituting from the resulting expres
sion in Eq, (506), posited to be valid for arbitrary 
independent time rates daB and ({j:/I1 "').L' we are led 
to the following constitutive equations; 

ElBa = _ ppaB + p(~B<li _ 2~l.(B[~l.) _ p~(<li/l1B), 

8 '" =p~a, 

where the effective pressure p is defined by 

p=_p2($p+IPapp<liB+~<liBp<li) + 13'111 r• 

Then Eq. (5 08) provides the Cauchy stress 

tBOI. = _ ppOl.B + P (~Ba _ 2$l.(B{ ~,.l _ /fJ IBB cd 0 

(5015) 

(5.16) 

(5.17) 

(5.18) 

Equations (5,16) and (5018) are exact nonlinear consti
tutive equations for relativistic magnetoelasticity under 
high pressure, An approximation closely related to the 
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classical Hookean approximation is obtained by con
sidering an idealized equation of state of the form 

¢ = ~(P) + tCBaro(p){ ",s(p){ ra(P) + tiB" (p)ftI B(P)Jh a(P) 

+FrBa(p)/fJr(P)[~a(P), (5,19) 

Then Eqs. (5.18) and (5,16) give 

tBa = _ ppas + [C1:"'l'v(P) - 2c).(8[l'vl (p)t"'~(p) ]{I'v(p) 

+ [frB<li(p) _ 2frl.(B(pi.a~(p) _ H[<li pBlr]/fJ riP) 

(5.20) 

and 

(5,21) 

on account of the relationship H'" = 13 a -/11 a. We have 
not formulated the pressure formula (5,17), In spite 
of the approximation (5,19) we have kept quadratic 
terms in [ "'~ in t Ba because of the possibly large defor
mation. The spatial tensors 

-~ "'B(p) = pR"'~(p) _ p",a, 
(5.22) 

may be referred to as the elastic stiffness tensor, the 
piezomagneto tensor and the reciprocal magnetic 
suceptibility tensor. In virtue of their spatial charac
ter, of obvious symmetries, and of the fact that [a6 
has only five independent components as a consequence 
of constraint (5.2), they have, respectively, 15, 15, 
and 6 independent components for a general material 
symmetry. Thus, with ~(p), C",8(P), and ftlB(p) in 
addition, there are in all and at most, 45 independent 
scalar functions of p which must be specified to con
struct the present model. In addition, to study dynami
cal problems, time evolution equations must be con
structed for ({"'I'V, f rBa , and~a8 in order to be able 
to compute the time evolutions (ttBCt)i and (tHa)l' Such 
computations can be carried out by generaliz"ing the 
works of Carter, Quintana, and Barrabes. 
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On the covariant equations of the relativistic 
electrodynamics of continua. IV. Media with spin 
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The general scheme given in a previous work (Paper I) for the conservation laws and the thermodynamics 
of general relativistic electromagnetic continua is reexamined in the presence of intrinsic spin and couple 
stresses (Le., when the total energy-momentum tensor is not symmetrical). Following two different sets 
of hypotheses concerning the nature of this spin and of the interactions responsible for the couple stresses, 
two descriptions of continuous matter emerge from the kinematical and thermodynamical study: first, that 
of paramagnetic andlor dielectric continua endowed with a rigid microstructure (hence a granular 
structure of the media) and, second, that of continua endowed with a continuous distribution of electronic 
spins. The latter scheme provides a phenomenological description of quantum-mechanical effects, which 
has been previously studied in detail by the author. 

1. INTRODUCTION 

This paper is a continuation of three other papers 
herein after referred to as Parts I, IT and ITI. 1 We 
recall that the purpose of this series is to provide a 
firm basis for the covariant formulation of the electro
dynamics of continua, from the results of a microscopi
cal treatment serving as a background for the electro
magnetic sources in the mechanical and energetical con
servation laws. That is, the final phenomenological 
formulation emerges from a compromise between an 
entirely formal logico-deductive approach (as often 
favored nowadays in continuum mechanics) and the 
reliance upon microscopical concepts, the compromise 
with the first type of approach being necessary for the 
construction of quite general, but nonetheless exploit
able, constitutive equations. The microscopical treat
ment of which the results have been adopted is that of de 
Groot and Suttorp, 2 of which the main features and 
results have been recalled in Part I. 

In this part we consider the a priori existence of a 
density of intrinsic spin and of couple stresses. Depend
ing on the nature of this spin and of the interactions 
for which the couple stresses account, it is shown that 
we can deduce, on the one hand, the basic equations 
of the theory of relativistic continua with rigid micro
structure, as initiated in the works of Kafadar, 
Eringen, and Maugin, 3,4 but modify them so as to 
account for electromagnetic effects (e. g., in dielectrics 
and in linear or nonlinear paramagnets), and on the 
other hand, the basic equations of the relativistic theory 
of continua with electronic spin. In the first case we 
settle a covariant formulation, hence a basis and 
justification for the Galilean equations of the thermo
electro-magneto-elasticity of micropolar continua, 5 

where the new internal degrees of freedom (rotation 
of infinitesimally small rigid particles) account for the 
granular structure of the medium. Couple stresses then 
arise naturally as the macroscopic continuum represen
tation of the interactions exerted between neighboring 
rotating particles. In the second case both intrinsic
spin denSity and couple stresses find their origin in 
quantum mechanical effects (electron spin and 
exchange forces), which are smoothed out in a continu-

ous manner and may contribute at the macroscopical 
scale to the mechanical and electromagnetic behavior 
of the material, as is the case in the phenomenological 
theory of deformable ferromagnets. We thus provide a 
basis for the relativistic theories of magneto elastic 
interactions and spinning fluids developed previously 
by the author _ 6 

In Sec. 2, we recall the expression of the relativistic 
conservation laws in the presence of spin. These 
are transformed in the form of the conservation laws of 
4-momentum, moment of 4-momentum, and the local 
statement of the second prinCiple of thermodynamics 
in its form known as the Clausius-Duhem inequality, 
and this for arbitrary electromagnetic sources of 
ponderomotive force and couple and electromagnetic 
power. These sources are specified in Sec. 3 on the 
basis of the results of de Groot and Suttorp. The basic 
equations of the theory of relativistic continua with 
rigid microstructure are developed in Sec. 4, while 
those of the theory of relativistic continua with elec
tronic spin are deduced in Sec. 5. 

2. CONSERVATION LAWS IN PRESENCE OF SPIN 

The general local conservation laws recalled in Part 
I are7

: 

conservation of mass: 

V'e(pue) = 0, (2.1) 

conservation of energy-momentum: 

V' e m T,,6 = M F'" , (2.2) 

conservation oj moment of energy-momentum: 

V's",e,,- T 0I81 = L",B 
lJ. m M, (2.3) 

second principle oj thermodynamics: 

(2.4) 

In these equations the symbols used bear the following 
significance: p is the proper mass density, u~ is the 
world velocity (i["8U"'U8+c2=O), mT",e is the "matter" 
energy-momentum tensor (mT1O!aJ*O), MF'" is the 
electromagnetic 4-force, uL"'8 is the electromagnetic 
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couple 2-form, s",a" = - sa",,, is the total intrinsic spin 
tensor, and 1)" is the entropy-flux 4-vector. The fields 
mT"'/l, S"Il", 1)"', MFa, and ML",a have the following 
decompositions: 

mT"1l =p(1 +C-2E)UaUa + c-2u"{/ + p"'ua - [B", (2.5) 

s"ll" = ~pS "Ilu" - M"a" , (2.6) 

1)a = P1)u" + N" , (2. 7) 

MF" = Mf" + c-2 MWU", (2.8) 

ML,,1l = ML["uIl1 + Mcall. (2.9) 

Here E is the proper internal energy density, (/ is the 
spatial energy-current 4-vector, pa is the spatial 
"nonmechanical" momentum 4-vector, [B""* t"ll is the 
spatial relativistic stress tensor, S",1l = - Sa", is the 
spatial intrinsic-spin 2-form, M",Il" = - Mil"''' is the 
spatial relativistic couple-stress tensor. 1) is the proper 
entropy density. N" is the spatial entropy-flux 4-vector. 
Mfa is the (spatial) ponderomotive 4-force, Mwis the 
electromagnetic power denSity per unit of proper vol
ume, AIC"'1l is the (spatial) ponderomotive couple 2-form, 
and JlL'" is a spatial electromagnetic "momentum." 

On account of the definitions (2. 6), (2. 7), and (2. 9), 
Eqs. (2.3) and (2.4) can be rewritten in the following 
form: 

(2.10) 

and 

pD1) + V"N" ;" O. (2.11) 

D = U'" V" is the invariant derivative in the direction of 
the world velocity. 

Projecting Eqs. (2.2) and (2.10) in the direction of 
u'" and onto the three-dimensional hyperplane ML ortho
gonal to u'" on account of Eq. (2.1) and account of the 
defintions (2.5)-(2.9), we obtain the following local 
balance equations: 

local balance of 4-momentum (Euler-Cauchy equations 
of motion): 

P(1 + ;2) (Du")L + p[D~:)l = (Vlltll"')L + AIf'" 

- c-2Qlle~/l 

local balance of energy: 

pDE + VaQIl + p"'Du", = ta"'e"'ll + AIw, 

local balance of moment of 4-momentum: 

ip(DS"/l\ - (V "Maa")L + t[Il",)= MC"'1l 

and 

(2.12) 

(2.13) 

(2.14) 

In these equations the symbolism ( .• ·)L indicates pro
jection onto MH and 

e"'ll= ~IlU", =d",a + w",a, 

d",a=e("'IlP w",a=e[o<IlP 

(2.16) 

(2.17) 

are respectively the spatial gradient of the world velo
city, the rate of strain tensor, and the rate of rotation 
tensor. 
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Equation (2.14) provides the value of t[Ila1 in terms of 
the intrinsic spin,· the couple-stress and the pondero
motive couple. That is, 

t[1lo<1 = MC",a + (V"M a ll")1 - ip(DS all)l. (2.18) 

The quantity (DS",a)1 is none other than the Fermi 
derivative of the intrinsic spin. 8 As for Eq. (2.15), on 
account of the fact that sail and Mall" are purely spatial 
(i. e., they admit u a as zero vector), it can be written 
in the form 

pB =c-2(Q/l + pSllaDu a + 2Ma/l"e a,,) _ ML Il. 

The energy 4-current can be decomposed as 

Qa=l+QIl, 

(2.19) 

(2.20) 

where qll is the spatial heat-flux 4-vector and the spatial 
~a 

4-vector Q can be called the "excess-energy-flux" 
spatial 4-vector. We have shown in Part I that this 
vector can be set equal to zero without loss of generality 
when spin effects are discarded. Substituting for p" and 
(/ in Eqs. (2.12) and (2.13) yields the field equations 

pJall(Dua)L + c-2psaa(D2ull )L + c-2(D cq" + 2q/le~ll) 

+ c-2p[D{p-l((~a + 2Mlla"ell ,,)}1 + c-2Qlle~1l 

= (Vll t
ll")1 + {Mf'" + p[D( ML "/ p)l} 

and 

(2.21) 

1 ~ ~ 

pD€ + (Vaqll + 2c-2lDull) + C-2[VIlQIl + (Qil + 2Mall"e",,)Dulll 

(2.22) 

In writing down these equations we have taken account 
of defipition (I. 3.19) of the spatial covariant derivative 
noted V,,; of the definition (I. 4.39) of the contravariant 
convective time derivative noted Dc, and of the obvious 
result 

(2.23) 

which follows from the skew symmetry of sail. Finally, 
we have defined a kind of spatial inertia tensor, Jail, 
per unit of proper mass by 

Jall= (1 +!...)p"ll +..!..(Dsall) c 2 C2 l' 
(2.24) 

so that, obviously, 

J Call ) = (1 +!...) paa c2 , J[all 1 =';'(Dsall) J" =3(1 +!...). c 1'.a c2 

(2.25) 

The right-hand side of Eq. (2.22) can be transformed 
further if we introduce the spatial precession-velocity 
2-form of the intrinsic spin, 0,,1l' such that 

0all = - 0lla, 0a/lu" = O. (2.26) 

Then we can write 

tIlae =t(lla)d +t[lla1(w -0 )+t[ lla1 0 
all all all all all (2.27) 

on account of the decomposition of eall • The last contri
bution in this expression can be evaluated by saturating 
the indices of Eq. (2.18) by applying 0all to both sides 
of this equation. We thus have 

tllae =t(ll a )d +t[ll a1(W -0 )+ CallO "Il all all all M all 

+ [(V"M"Il")1 -1{J(DSa
ll)J0"a' (2.28) 
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Substituting this result into Eq. (2.22), we obtain the 
local energy balance in the following form: 

1 

pDE + ~p(Dsa~)J2",~ + (Y'sl + 2c-2!Dl4?,) 

= {(B", )d,,~ + t[p", IV,,~ + V" (/,v1 aS " Qa8 - (i") 

- {iV1 aB" [ (Y'" naS )l + C-
2

C a" DUB] + c-2Q~DIIBr 

+ {McaBQaB + Ii aDu", + MWr. (2.29) 

The quantities 

v"s 0= waS - Q"s, (VaBU B = 0), (2.30) 

are the components of a 2-form which represents the 
(spatial) precession velocity of the intrinsic spin with 
respect to the deformation matter in rotation. In general 
v",s differs from zero, for there is no reason that in a 
local frame the intrinsic spin precesses at the local 
rotational velocity of the matter (i. e., the vorticity). 
The condition vaB = 0 would be a constraint imposed on 
the spin precession (i. e. , the spin would be "frozen in" 
the deformable matter), somewhat analogous to the 
condition d"'B = 0 of local rigid-body motion. Indeed, in 
agreement with the duality inherent in thermodynamics, 
the time rates d",s and vaS are the duals of t(S"') and 
L[SQiI, respectively. 

Introducing the proper free energy density I/J by 

~7=E -1)8, (2.31) 

then eliminating DE between Eqs. (2.28) and (2.11), and 
introducing the proper thermodynamical temperature 8, 

we obtain the local statement of the second principle of 
thermodynamics, known as the Clausius-Duhem 
inequality, in the form 

- p(DI/J + 1)De) + eY'B (JVIl - ~)- e-1q'" e " + t(B" )d"a + t[S" IV,,~ 
+lcp(DS"a) Q +Y' (M"B"Q -Q-")+{iI1B",,[V Q ) 

:2 1 cxt3 J..J. aB u as.l 

+ c-2ea"D1t~] - C-2Q" Du,,} + LC"aQ,,~ + I,i "Du a + MW} 

> 0, (2. 32) 

* where e a is the spatial relativistic gradient of tempera-
ture defined by Eq. (1.4.35). 

Equations (2.21), (2.22), and (2.32) are the local 
statements of the balance laws of momentum, of energy 
and of entropy for a general electromagnetic continuum 
of which the total intrinsic spin tensor has the form 
(2.6). We still must select the expression of the spatial 
4-vectors Na and Q", provide the expressions of the 
electromagnetic "sources" yC"B, Mf', and yW, and 
construct constitutive equations for the fields <p, 1), 
rP ()" t(a,,) tW,,] and iH"a" to complete the theory. lJ ,?, , , 

3. ELECTROMAGNETIC INTERACTIONS WITH 
MATTER 

The expressions of MF", Mfa, MW, ML a, and Mcaa 
deduced from the microscopic treatment of de Groot and 
Suttorp9 and written down in terms of spatial 4-vectors 
have been stated in Part 1. They read 

MF" = - Y'a MTOls , 

.. ,d" = Mf" + pc-2 ([y 1fY )(Du")u 
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(3.1) 

(3.2) 

MW= MY., + pD(Cy1f
Y

) , 

ML "'=0, MC"a=MT["a]=p["c~]+!I1[a8B], 

where 
- 1 1 
1"- =qC" +_(0 * B)" + p"a[p"Y' c 

M c if a " 

+ frJ"V /3" +Dc (MPS)j, 

M1r = f) ",c" - !11 a DB", - P'" Dc " , 

pOl =!. (P* B + [ *1t1)(); Me' 

(3.3) 

(3.4) 

(3.7) 

->" = c([ *H)"', (3.9) 

and 

(3.10) 

In these equations q is the proper free-charge density, 
f)" is the conduction-current 4-vector and c, B, 1t1, P, 
D = c + P, and H =B -;/1 are the spatial electric field, 
magnetic induction, magnetization, polarization, 
electric displacement, and magnetic field 4-vectors, 
respectively. M T"B is the electromagnetic energy
momentum tensor, M!!''' is the spatial electromagnetic 
stress tensor, and S" is the spatial Poynting 4-vector, 
The symbolism (,* ,)" has been defined by Eq. (1. 3.17), 
and Dc indicates the covariant convective time derivative 
defined by Eq. (1. 5. 13). We have set 

ITa ~P"/p, /l0l o=/J1"'/p. (3.11) 

Equations (3.1) and (3.4) show that Eqs. (2.2) and 
(2.3) can be rewritten in the condensed form 

(3.12) 

and 

(3.13) 

where Ta~ is the nonsymmc/ric total energy-momentum 
tensor, 

(3.14) 

In order to keep the standard Riemannian geometrical 
description in the general relativistic framework a 
symmetrization procedure must be used as regards 
TaB. The Belinfante-Rosenfeld1o procedure fulfills 
this purpose. Hence, define a new total 
energy-momentum tensor, T"'~, by 

(3.15) 

Upon using Eq. (3.13), it is immediately checked that 
T"~ is symmetrical and divergence free, i. e. , 

(3.16) 

Thus T"B can be used as a source of nongravitational 
energy-momentum in the standard Einstein field 
equations. However, Eq. (3.12) now is modified and 
must read 

where R~SY6 is the Riemannian curvature tensor of 
spac e - time. 
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4. RELATIVISTIC CONTINUA WITH RIGID 
MICROSTRUCTURE 

Each particle of the material continuum is assumed to 
be an infinitesimally small rigid body endowed with 
rotational inertia. There is thus defined at each event 
point a density of inertia (per unit of proper mass), 
j ",a, which is a symmetric spatial tensor and acts as 
a linear operator between the precessional velocity of 
the spin and the spin itself. We thus define the spatial 
intrinsic spin 4-vector s'" and the precessional velocity 
4-vector n'" by 

(4.1) 

and 

(4.2) 

The alternation symbols (in fact, tensorial densities) 
J)",a, and D"'a, have been defined in Part 1. Then s'" and 
na are related by 

(4.3) 

It follows that 

(4.4) 

If an orthonormal triad of spatial 4-vectors is attached 
to each particle, then, in virtue of the rigidity of the 
"particle," the spatial tensor j"a has constant com
ponents in this triad. This can be restated as: The 
corotational time derivative (with respect to the pre
cessional motion) of j",a vanishes. That is, 11 

DrJ",a =. (Dj",a)l - n~,la - n~, j"" = O. (4.5) 

As a result of this identity and of Eqs. (4.1)-(4.4), it 
is easily shown that 

(4.6) 

Then the theory of electromagnetic relativistic continua 
with rigid microstructure is obtained under the follow
ing hypotheses: 

HI: Eqs. (4.3) and (4.5) hold good; 

H2 : Like in classical thermodynamics, the spatial 
entropy-flux 4-vector N'" and the heat-flux 4-vector 
q'" are related by 

N"=q"'/8; (4.7) 
~ 

H3: The excess-energy-flux Q" is chosen to be 

Q" =lYI",ei'n",e' (4.8) 

Indeed, defining new internal and free energy densities 
E and ¢by 

E=€ -C ",rr'" - ts",ena"" iP=E -1)8, 

defining the spatial third-order tensor A"ay by 

A ",a I' =. {v" n",a + c-2(n",eDu" + 2V"u[",Due,h 
1 

= (v"n",a)l + c-2(n"aDu" + 2e[ """ ,Dua,) 

=-Ae",i" 

(4.9) 

(4.10) 

and the corotational time derivatives (with respect to 
the precessional motionll

) of C" and B" by 

Dnc" =. (Dc ",)1 - n"aca, DgB", =. (DB ")1 - n"aBa, (4.11) 
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and taking account of HI, H2 , and H3 and of Eqs. (3.2), 
(3.3), (3.4), and (3.6), we can rewrite Eqs. (2.21), 
(2.29), and (2.32) in the form 

pJ"e(DUa)l + c-2{pS"a(D2ua)1 + (D cq" + 2qee~a 

+ M,,"an e'" + p(D[p-I(M,,"an + 2Me"'''e )J)} 
p.v ./1 p,v QP. .l 

= (Vata"')l + Mf" (4.12) 

with 

J"e =. [1 + c-2 (E' + ts""n"")]p,,,a + c-2 (DS"8)1' 

and 
.l 

pDf' + (Val + 2c-2qaDua) 

=t(80/ 1d",e+ t[e"'v"a + M""A ",e" 

(4.13) 

+ f) ",c'" - P"(Dnc ",) -In"'(DnB,,), (4.14) 
- * - p(D</!+ 1)D8) - (J'"lq"8" + t(8"'ld,.a + t[a""v",e 

+ Me"" A "Il" + f) aC" - P"(Dnc ,,) -In'" (Dr!3,,) ~ 0.(4. 15) 

By the same token the space and time decomposition 
of the total energy-momentum tensor (3.14) is shown 
to read, on account of Eqs. (2.5), (2.19), (2.20), and 
(3.8) , 

where 

w(tot) = 1 + c-2[f' + ts",ane" + 2~ (c2 + B2 + 2[ . P)], 

~totl = l + sa + M,,"e nIL"' 

(4.16) 

(4.17) 

(4.18) 

Pltot 1= c-2 (qa + S" + pSar Duy + 2M" "e,,, + M"""'n,,), (4. 19) 

and 

~~ot) = t6" + f)![" + BeH'" - t([2 + B2 - 2111 • B) paa. (4.20) 

Comments: Equations (4.2) and (4.14) are the local 
balance laws of 4-momentum and energy for an electro
magnetic continuum with rigid microstructure. In the 
absence of electromagnetic phenomena, they reduce the 
to the equations obtained by Kafadar and Eringen12 from 
a formal approach and by Maugin and Eringen13 from a 
variational principle. The Clausius-Duhem inequality 
(4.15) is the constraint to be placed upon the constitutive 
equations for the fields 'J: 1) q" t(a" I t[aa, Ma",,, (J 

~, " , , , if Q" 

P"', and In". The thermodynamical dual of the couple 
stress tensor Me",,, is the spatial tensor A ",e" defined by 
Eq. (4.10), which clearly is a relativistic generaliza
tion of the notion of gradient of precessional veloCity. 
Indeed, if we take the nonrelativistic limit of the 
spatial component of Eq. (4.10) in a local inertial 
frame, we obtain (i, j, k = 1, 2, 3) 

(4.21) 

The fact that corotational time derivatives replace con
vective time derivatives (compare Part I) as far as time 
rates of electromagnetic field are concerned, places 
in evidence the role of rotational effects in this model, 
which represents some kind of granular medium whose 
particles possess internal degrees of freedom (of 
rotation). As in classical continuum mechanics, 14 the 
thermodynamical duality between t[e"" and the relative 
precessional velocity v "a indicates the possible 
existence of rotational Viscosity. The presence of 
couple stresses greatly complicates the equations and, 
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in particular, the coupling between the Euler-Cauchy 
equations of motion and the moment of 4-momentum 
equations. The skew symmetry of t~" being left aside, 
these couplings are purely relativistic as shown by the 
presence of the factor c·2

• However, even in the absence 
of heat conduction, electromagnetic phenomena, and 
couple stresses, it must be noted that the 4-momentum 
defined by 

P" == PW(toU'I " + P(IOI) 

= PW(lol )u" + Pf_,-2S"Y Duy , (4.22) 

is not colinear with the world velocity. It possesses a 
spatial part which involves the spin density. This fact 
was already acknowledged in simpler theories of spinning 
continua. 15 The development of a constitutive theory is 
straightforward and will not be reported here. Of 
course, the new rotational degrees of freedom are 
accounted for by considering a rigid tetrad attached 
to each "particle. " We refer the reader to the above 
quoted papers for the expose of the corresponding 
kinematics and theory of deformations16 and for the 
constitutive equations of elastic bOdies in the absence of 
electromagnetic phenomena. Further comments on this 
relativistic theory will be made in Sec. 5. In the nonre
lativistic limit (c -00), Eqs. (4.12), (2.14), (4.14), and 
(4.15) yield, in Cartesian coordinates, the equations1

? 

(4.23) 

(4.24) 

(4.25) 

and 

(di"f de) 1 
-P dt +lIdi - e- q.ve+l(j;ld ij +f(jil(Wij -rl i ) 

+AJji"Aijk + f) ·t - Pi (Drl-i) - !I1i(DoBi) '" 0; (4.26) 

which are none other than the equations of the theory of 
rnicropolar continuaI8 modified so as to account for the 
fact that the continua considered can be electrically 
polarized and magnetized, and can conduct electricity. 
That is, they are, for instance, the equations of the 
thermo-electro-magneto-elasticity of micropolar 
continua. 19 Thus Eqs. (4.12), (2.14), (4.14), and (4.15) 
are the corresponding covariant equations for general 
nonlinear constitutive equations. 

5. RELATIVISTIC CONTINUA WITH ELECTRON 
SPIN 

In Sec. 4 we have assigned a real microstructure to 
each "particle" of the material continuum. The latter 
then is some kind of aggregate of rigid particles of 
which a smooth representation is obtained by allowing 
for the existence of a density of inertia (i. e., a geo
metrical distribution of matter). This results in the fact 
that a precessional velocity of these rigid "particles" 
different from the mean vorticity causes the existence 
of a skew symmetric part for the stress tensor, 
whereas the spatial variation of this precessional velo-
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city from one particle to its nearest neighbors "causes" 
the existence of couple stresses. Here, however, we 
consider a somewhat different model which accounts, 
not for a granular structure of the medium but rather 
for quantum mechanical effects, namely, the existence 
of an intrinsic spin with no reference to any structure. 
In agreement with Uhlenbeck, Goudsmit, and Frenkel, 
this intrinsic spin is purely spatial and has its origin 
in the magnetic dipole moments. We are thus led to put 
forward the following hypotheses: 

H;: The intrinsic-spin 4-vector defined by Eq. (4.1) 
is linearly related to the magnetization per unit of pro
per mass: 

H~: The intrinsic spin has a magnitude which does not 
depend on proper time, but depends eventually on which 
particle it is attached to; 

H;: The hypotheses Hz and H3 of Sec. 4 hold good. 

The hypothesis H~ is materialized by the (isotropic) 
gyro magnetic relationship 

(5.1) 

where y is the gyromagnetic ratio (assumed to be a 
constant for the sake of Simplicity). Using the notation 
of Part I, H; can be restated as 

(5.2) 

Obviously, s" has constant components in a spatial 
triad rigidly attached to ito Hence the corotational time 
derivative of fJ." with respect to this triad (which 
necessarily precesses at the spatial time rate rlna ) 
vanishes. 1. e., on account of Eq. (5,1) 

whereas the invariant time derivative of the spatial 4-
vector fJ." of constant magnitude in general reads20 

(5,4) 

That is, the latter is made of two parts, a precession 
measured, for instance, in a Fermi frame, and a 
Fermi-Walker dragging along the world line of the 
particle to which fJ." is attached. 20 Taking the spatial 
part of Eq. (5.4) yields anew Eq. (5.3), which can also 
be rewritten as [using the notation (10 3.17)] 

(DfJ.")l = (0* fJ.)"'. 

It then follows from Eqs. (4.1), (4.2) and (5.3) or 
(5.5) that 

~p(DS"a)l ria" = py-I(D fJ. a)l rI" == O. 

(5.5) 

(5.6) 

This means that in contrast to the case considered in 
Sec. 4, the intrinsic spin is here gyroscopical in that in 
it does not produce any power in a real precessional 
velocity field [compare Eq. (4.6)]. 

A Defining new internal and free energy densities i and 
<P by 

f=E-[aiT" +B"fJ.'" , ~=E-lIe, (5.7) 

taking account of the hypotheses Hf, H;, H~, of definition 
(4.10), of Eqs. (3.2)-(3,6), of Eqs. (4.11), andofthe 
peculiar result (5. 3)-which results from H~, we can 
rewrite the general equation (2.21) in the form (4.12), 
but now with 
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J",a -= [1 + c- 2 (e -ByJ.nJ P"'s + c-2 (DS"'s>.t , 

while Eqs. (2.29) and (2.32) become 

and 
A * - p(Dzi; + T)DtI) + t(S"'ld",s + t[a", J lJ ",a - e-1q'" e", 

+Ms"'''A +()"'~ -P"'(D ~ )~O cr/3#l ? La nCO!. 

(5.8) 

(5.10) 

By the same token the space and time decomposition of 
the total energy-momentum tensor (3.14) can be 
written in the form (4.16), with Eqs. (4.18), (4.19), 
and (4.20) left unchanged, but with Eq. (4.17) replaced 
by 

w(tot)=1+c-2 E+2~(C2+B2+2C·P-2/(J'B). (5.11) 

Comments: Clearly, the presence of electrical polari
zation can be discarded without too much loss of 
generality since, as is shown by Eqs. (5.9) and (5.10), 
this polarization is thermodynamically determined in 
the same way as in the theory outlined in Sec. 4 (i. e. , 
P'" has for its thermodynamical dual the corotational 
time derivative DoC", in both cases). However, in the 
present case, the magnetization density is not provided 
by a constitutive equation constrained to satisfy the 
Clausius-Duhem inequality. Rather, the magnetization 
is subjected to satisfy an evolution equation, Eq. (5.5), 
the magnitude of the 4-vector !l"', or s"', being only 
possibly dependent on the local thermodynamical tem
perature. That is, we have a situation analogous to that 
met in the three-dimensional theory of deformable 
ferromagnets at low temperature, 21 where the magneti
zation is considered to be saturated. On account of this 
comment we may consider that the equations developed 
in Sec. 4 correspond to the behavior of (linear or non
linear) diamagnetic and paramagnetic bodies. There are 
other points which differ from one theory to the other 
one. In the theory of Sec. 4 the energy densities may 
depend on the magnetization (compare Part m, but 
not on the magnetization gradients, for the couple 
stresses are caused by the spatial disuniformities in the 
fields which describe the internal degrees of freedom 
of the microstructured bodies. This microstructure is 
not related to the magnetization. In the theory of this 
section, it can be shown that the couple stresses result 
from the fact that the energy densities do depend, along 
with the magnetization itself, on the gradient of the 
magnetization. Comparing this fact to the classical 
theory of deformable ferro magnets, 22 we see that the 
couple stresses then account in a phenomenological 
manner for the Heisenberg exchange forces of quantum 
electrostatic origin. It can be shown that Eqs. (5.5) 
and (2.14) are entirely equivalent. This requires that 
n", be related to some dependent constitutive arguments 
from which Ma",,, can be deduced. 23 

When the medium is not electrically polarized, the 
equations obtained above are those which have been 
proposed in previous papers and on which we have based 
a detailed constitutive theory. 24 Furthermore, if the 
medium is a fluid of infinite electrical conductivity 
(which imposes that C'" -= 0) subject to no other type of 
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dissipation, then Eqs. (4.12), (5.5), and (5.9) are those 
that we have derived with the corresponding constitutive 
equations from two different variational principles in 
the special relativistic framework. 25 In the case of 
elastic bodies with vanishing electrical conduction, these 
equations had already been deduced from a variational 
principle by Maugin and Eringen. 26 In these two cases 
the energy equation (5.9) reduces to the corresponding 
Gibbs' equation27 

(5.12) 

Finally, it can be shown that, like in the classical theory 
of deformable ferromagnets, 28 the rotational viscosity 
which may exist according to the Clausius-Duhem 
inequality (5.10), is equivalent to a relaxation of the 
intrinsic spin towards its equilibrium direction. 29 In the 
nonrelativistic limit (c - 00) and in the absence of polari
zation in the quasimagnetostatic approximation, Eqs. 
(4.12), (2.14), (5.5), (5.9), and (5.10) take on the 
Galilean "couple-stress-theory" form of the equations 
that govern deformable ferromagnets as given, for 
instance, by the author. 30 
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Entropy production for quantum dynamical semigroups 
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In analogy to the phenomenological theory of irreversible thermodynamics we define the entropy 
production for an arbitrary quantum dynamical semigroup with a stationary state. We prove that the 
entropy production is convex and positive and that the entropy production is a measure of dissipativity of 
the semigroup. The entropy production is used to prove the approach to equilibrium and to classify the 
stationary states of semigroups arising in the weak coupling limit. 

1. DEFINITION OF THE ENTROPY PRODUCTION 

Under certain limiting conditions, ',2 the dynamics of 
an open quantum mechanical system S may be de
scribed by a quantum dynamical semigroup.3 

We associate with S a separable Hilbert space H. 
We denote by T(H) the Banach space of trace class 
operators on H and by B(H) the C*-algebra of bounded 
operators on H. A quantum dynamical semigroup is 
then a family of linear mappings At: T(H) - T(H), 
t?- 0, with the properties: (i) The dual map A't:B(H) 
- B(H) is completely positive, (ii) At is trace-pre
serving, (iii) {At It?- o} form a semigroup, At+s 
= At As, (iv) liml-o)Atp-plI,=O for all pET(H). At 
is a contraction, IIAtll= 1, and the strong continuity of 
{At It?- O} implies by the Hille- Yosida theorem the 
existence of a densely defined generator L: T(H) - T(H) 
such that for p in the domain of L lim'~O)ILp - (l/t)(AtP 
-p)II,=O. 

To motivate the definition of the entropy production, 
we start from the local form of the balance equation 
for the entropy, well known from nonequilibrium 
thermodynamics, 4 

as d' J a-t=- Ivs+a, (1, 1) 

where S is the local entropy and J s is the vector field of 
the entropy flow per unit area per unit time. The 
source term I] is the entropy production, In the phenom
enological theory it is asserted that a?- 0, since entropy 
can only be created, never destroyed, For reversible 
processes a = 0. This is a local formulation of the 
second law of thermodynamics. 

In the microscopic picture, the total entropy of 5 in 
the state p is given by 

S(p) = - tr(p logp), (1, 2) 

If the surroundings of 5 are at temperature {3-', then 
the total entropy flow is (3ltQ, where ltQ is the heat 
transfer from 5 to its surroundings. In other words
ltQ is the change of energy of 5 due to the coupling 
to its surroundings and therefore-ltQ =tr[pL*(H)] 
with H the Hamiltonian of 5, For certain semigroups 
(e. g., those obtained in the weak coupling limit') the 
canonical ensemble Pa = Z-' e-aH is invariant and for 
them the total entropy flow is given by 

alOn leave of absence of the Fachbereich Physik der 
Universitiit Munchen. Work supported by a DFG-research 
scholarship. 

Js(P) = ! tr((Atp)logpB) I too . (1. 3) 

Inserting (1, 2) and (1. 3) in (1.1), we obtain for the 
entropy production 

- tr((Atp)log(Atp))] I t.o 

= !S(AtP IPa) I t.o· (1. 4) 

S(p I Pa) is the relative entropy, 5 We generalize to arbi
trary quantum dynamical semigroups with a stationary 
state. 

Definition 1: Let {At It?- O} be a quantum dynamical 
semigroup, and let pO E T(H) be an At-invariant state, 
AtpO = pO for all t?- 0, Then the entropy production a 
(relative to pO) is defined by 

a(p)=- !S(Atplpo)lt=o, pET.(H), (1. 5) 

whenever the derivative exists. 

In the present paper we want to investigate a few 
properties of the entropy production and indicate its 
usefulness for the study of quantum dynamical semi
groups. We will prove that a is nonnegative and that a 
is a convex functional. The second result turns out to 
be an important stability property of the entropy pro
duction which allows one to show the so-called princi
ple of minimal entropy production. This together with 
other applications to irreversible thermodynamics of 
quantum mechanical systems weakly coupled to thermal 
reservoirs can be found in Ref. 6. The entropy produc
tion is shown to be a measure for the irreversibility 
(dissipation) of the time evolution of the system. For 
semigroups arising in the weak coupling limit the en
tropy production can be used to study their approach 
to stationarity (limit as t - 00) and to classify all their 
stationary states (cf. Sec. 3). 

2. SOME PROPERTIES OF THE ENTROPY 
PRODUCTION 

Lemma 1: t >- S(AtP Ipo) is decreasing and continuous 
from the right. 

Proof: Since At is completely positive and since pO 
is invariant, by Ref. 7, S(Atp Ipo) ., S(p Ipo) for all t?- 0, 
By the semigroup property 
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(2.1) 

for all t, s?- 0. At •• p - Atp uniformly for s - 0 ... There
fore, by Ref. 7, Lemma 1, 

S(Atp Ipo) '" lim inf S(At •• p I po), (2.2) 
... 0 

which implies lim.~o.S(At •• p Ipo) =S(Atp Ipo) by (2.1). 

Corollary 2: Let PH = Ranp-;;-. Then T(PH) is an in
variant subspace for {At It?- O}. 

Proof: LetD ={p E T.(H) IS(p Ipo) < cO}. Since the finite 
rank operators in T.(PH) are inD, !5 := T.(PH). By 
Lemma 1, AtD cD and by continuity AtT.(PH)CT.(PH), 
which extends by linearity to T(PH). 

By Corollary 2, we may without loss of generality 
assume that Ranpo := H. 

Theorem 3: Let dim/-I < co and let Ranp°:= H. Then 
the entropy production a is defined on T.(H) and is 
given by 

a(p):= tr(L(p)(logpo -logp», (2.3) 

P E T.(H), where At = eLt , t?- 0. We choose the conven
tion that in the eigenbasis of p 

tr(L (p )logp) :=.0 (logp j) (;p j I L (P);p i> 
j 

with 

(logpj)(;Pj IL(P);Pj) 

={_co: if (;PjIL(p);Pj) *0 and Pi:=O, 

° if (;Pj IL(P);Pj)=O. 

We have the properties 

(i) 0 is convex, 

(ii) a takes value in rO, 00 J. 
Proof: Since logpo is bounded, (d/ dt) tr«Atp)logpo) 

= tr(L(p)logpo). Using the spectral decomposition of 
J\p, Atp=L,jP/t)l;p/t»(;p/t) I, we obtain in the basis of 
p 

d 
dt tr«Atp )log(Atp» I t·o 

where we denoted the time derivative at t = ° by a dot. 
If p" = ° and p" > 0, then p" logp" = - co. If PI< = ° and p" 
= 0, then using a Taylor expansion of p,,(t) and perform
ing the limit as t - 0., one obtains p" logp" = 0. Since 

(;p" I L(P);p,,) = p,,( (~" I ;p,,> + (;PI< I ~,,») + p", (2.5) 

we have (d/ dt)tr«Atp)log(Atp)) I t=o=tr(L(p)logp) to
gether with our convention. 

(i) By a theorem of Lindblad,3 the general form of L 
is 

L(p)=- i[H,pJ+~ 6 [Vj,pvn+ [VjP' Vn, (2.6) 
jfC'I 

where H=H* E B(H) and L,iEI VjVjE B(H), VjE B(H). 
The first term in (2.3) is linear. The second term 
reads 
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- tr(L(p)logp) 

= 6 tr(VjVjp logp) - tr(Vjp Vj logp). 
JEI 

(2.7) 

By a theorem of Lieb,8 the function 

pI- - tr(pqVjpHVj), (2.8) 

0..:; q":; 1, is convex. For q=O, (2.8) is affine. There
fore, its derivative at q=O 

(2.9) 

is convex. One checks that our convention is satisfied. 
This implies then the convexity of - tr(L(p)logp). 

(ii) a?- ° follows from Lemma 1. We give here an 
alternative proof. By the convexity of - tr(L(p)logp) 

- tr(L(Ap + (1- A)po) log(Xp + (1- X)po)) 

..:; - X tr(L(p) logp) - (1- X)tr(L(p°) logpo) (2.10) 

By the invariance of pO 

0"" tr(L(p) log(xp + (1- X)po)) - tr(L(p) logp), (2.11) 

from which the derived result follows by taking the limit 
as X - 0. 

Remark: The extension of Theorem 3 to dimH = 00 

is most deSirable, where, by Lemma 1, the natural 
domain of a should be D := {p I S(p Ipo) < oo}. Of course, 
one can define a by (2.3), If the quantum dynamical 
semigroup is uniformly continuous, limt_o.!lAi -111=0, 
then L is bounded and Lindblad's theorem3 still holds. 
Therefore, the so-defined 0 is positive and convex on 
a suitable domain. However, the so-defined a would not 
serve as a tool to study the approach to stationarity for 
which it is essential to know that 0 is the time deriva
tive of -S(Atp\pO). 

Corollary 4: (i) {p E T.(H) IL(p) =O}~ {p ICC T.(H) \o(p) 
=O}. (In general, we have a proper inclusion.) If 
a(p) = ° only for p =po, then 

(2.12) 

for all p E T.(H). 

(ii) a=O if and only if L =- i[H, .J. 
Proof: If L = - i[H, 'J, then [H, logpo J = ° and there

fore 0=0. If 0==0, then tr(L(p)logp)=tr(L(p)logpo). 
For P = 1/jI)(/ji \, /jI E H, according to our convention, the 
left side vanishes. Therefore, (/jilL * (logpo )/jI) = ° which 
implies tr(L(p)logp)=0 for all pE T.(H) and by (2.7) 

.0tr(VjVjplogp)= 6tr(VjpVtlogp). (2.13) 
jE I JEI 

For p = \ ;p)(;p \, ;p E H, by our convention, (It I V/P) = ° 
for all ¢ E H orthogonal to ;p and all j E I which implies 
Vj=O. Therefore, VpVj=O, VjVjp=O, pVjVj=O for 
all p E T(H). Therefore, the non-Hamiltonian part of 
Lin (2.6) vanishes. 

Remark: Lindblad introduced the dissipation function 
D(L*;X, Y) =L*(X*Y) - L*(X*)Y -X* L*(Y), which has 
some properties similar to the entropy production a. 
D(L*; X,X) = ° is equivalent to L = - irH, .J. If 
D(L*;X,X) =0 implies X = c1 (Le., if the dissipation 
function is as positive as possible), then there exists 
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a unique stationary state pO such that limt~ .. Atp =P for 
every state P E T(H). 9 (This result has recently been 
extended by Frigerio10 to dimH == <Xl under certain 
technical restrictions on the generator L.) 

It is surprising that the properties of the entropy 
production anticipated by the phenomenological theory 
can be proved in a rather general context. The entropy 
production is nonnegative. If a = 0, we have reversible 
motion; if a> 0 except at pO, we have complete dissipa
tion. The convexity of a is a stability property (com
parable to the concavity of the entropy). 

3. AN APPLICATION 

The situation when the quantum mechanical system 
5 is weakly coupled to a thermal reservoir R is of par
ticular physical interest. In the weak coupling limit, 
A - 0, t- 00, but A2t=T fixed, the reduced dynamics of 
5 in the interaction picture is described by a quantum 
dynamical semigroup {At It'" O}. Let H='i,jEjP j be the 
self-adjoint Hamiltonian of 5 such that e-aH E T(H) for 
(3 > O. If the interaction between 5 and R is choosen to be 
'i,aEI V a:>9 V~, where V a= V~E B(H), 'i,aEIllVaW < <Xl, 

V~ bounded, self-adjoint operators pertaining to the 
reservoir with thermal average <V!) = 0, then the 
bounded generator L:T(H) - T(H) of At> t'" 0, is of the 
form3• 11 

L(p)= 6 6 {-is"a(w)[Va(w)*Va.(w),p] 
wESp([H •• ) a,aEI 

+ haa(w)([V a(w)p, V~(w )*] + [V ,,(w), p Va(w)*])} 

=La(p)+Ls(P)' (301) 

The convergence on the right-hand side is in the weak 
topology of T(H). Sp([H,']) denotes the spectrum of the 
Liouville-von Neumann operator i[H, ']. It is the set 
{Em-EnIEm,EnESp(H)}. The operators Va(w)EB(H) are 
defined by 

(3.2) 

haa is the Fourier transform of the time correlation 
function < V: V~(t) of the reservoir and therefore 
satisfies the KMS boundary condition 

(3.3) 

{haa(w)} is a positive matrix for all WE JR. s aB is the 
Hilbert transform of hall' USing (3.3), one checks that 
the canonical ensemble Pa == [tr(e-BH ) ]-1 e-aH is At-invari
ant. Furthermore, the detailed balance property12 
La(Pa) == 0, L:(Apa) = Ls(A)Pa holds, A E B(H). [Equiva
lently, L: is antisymmetric and L: is symmetric in 
the pre-Hilbert space B(H) equipped with the scalar 
product (A IB)a ==tr(A*Bpa)'] 

Now let dimH = N < 00. Then one obtains for the en
tropy production a (relative to Pa) 

a(p) = tr[L(p)(logpB -logp)] 

= wEsE .. ) j'~1 t'~lhaB(W)(l/IjIVa(W)l/Ik)<l/IkIVB(W)*1jJ)} 
X {(Pk - P je-BW)(logpk - logp j + {3w} (3.4) 

in the eigenbasis of P = 'i,~=l P j 11jJ j)(1/1 j I. 

1229 J. Math. Phys., Vol. 19, No.5, May 1978 

Lemma 5: Insert a(p)=O if and only if L(p)==O. 

Proof: Let a(p)==O. Since {haa(w)} is a positive matrix, 
we can diagonalize it. Let It,.(w) > 0 be its eigenvalues, 
and let {V)w)} be {Va(w)} expressed in the eigenbasis of 
{haa(w)}. Then 

a(p)= 6 t 6 hy(W) I (I/Ijl Vy(W)l/Ik) 12 
wESp([H,.) j,k=1 yEI 

(Pk - P je-aW) (logpk - logp j + (3w) == 0 

implies 

h)w )(1/1 j I V)w )l/Ik)(Pk - P je-aw) = 0 (3.5) 

for all YEI, wESp([H,·Dandj,k==l, ••• ,N. By (3.2) 

[Vy(w),peaH]=O (3.6) 

for all I' E I and W E Sp([H, • D. Let 

N =={Vy(w) II' E I, WE Sp([H,' D}" (3.7) 

where the prime denotes the commutant in B(H). Then 
p ==APa with l.E N. We write the generator (3.1) in 
terms of the Vy(w). Then [Vy(w)*Vy(w),Apa]=O since 
A EN, which implies La (P) = O. By the detailed balance 
property Ls(Ap~)=L:(A)Pa=O since AE N. Therefore, 
L(P)==O. 

Lemma 5 gives a classification of all stationary states 
of L. They are of the form 

(3.8) 

with AE N. We have La(APa) =0 and Ls(BApa)=L:(BA)PB 
= L: (B)APB' Therefore, L satisfies the detailed balance 
property with respect to any stationary state. (We note 
that by defining the entropy production through (3.4) all 
statements made so far remain valid for dimH == 00. ) 

Since a(p) == - (d/ dt)S(Atp IpB) and by Lemma 5, 

limAtp =A(P)Pa 
t~~ 

for all P E T.(H), where A(P) E" N depends on p. If N 

(309) 

= {a:1}, the unique stationary state is PB and every initial 
state relaxes to it. We obtain a condition more directly 
related to the Hamiltonian and the interaction, if we 
choose {haB(w)}> 0 for all w E'C Sp([H, . D. In that case 
{H, V" la E I}' = {a:1} implies (cf. Ref. 9) {V,,(w) la 
E I, wE Sp(rH, • ])}' = {a: 1}, which is equivalent to N 
= {a: 1}. The latter conditions have a direct physical 
interpretation: If all relevant frequencies of 5 are 
coupled to the reservoir and if the Hamiltonian Hand 
the interaction operators Va, a E I, together are suf
fiCiently incompatible, then the reservoir drives the 
system to thermal equilibrium. 
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ERRATA 

Erratum: Continuum calculus and Feynman's path integrals 
[J. Math. Phys. 17, 1988 (1976)] 

L. L. Lee 

School of Chemical Engineering and Materials Science, University of Oklahoma, Norman, 
Oklahoma 73019 
(Received 31 October 1977) 

The definition (2.1.) giving the rational derivative of 
a function f on a Banach space was not precise. A 
proper construction in a complex Banach space is given 
in the following: 

Let CB be the set of functions from E, the Banach 
space, to C, the complex number field. The function, f, 
maps E into C, i. e., fE C E

• Let S be the support of f, 
(S if. ~), and Sj = S - as be the interior of S (the overbar 
denotes the closure and a denotes the boundary). Given 
a point t E Sj, there exists a neighborhood, Vof t and 
VCS j • We first define a linear form LRft: E- C, for 
f at the point t. In fact, LRft will be recognized as the 
Frechet differential 1 ,2 for lnf. 

Definition 1: The Frechet differential LRft for lnf at t: 

(i) LRft is a linear form on Eo 

(ii) For any E > 0, there exist 6 > 0, ) 

!lnf(t+b)-lnf(t)-LRft{b)! <€IIbJ! 

whenever 

the norm of bE V, IIbll <6, 

We note that lnf(t) is defined since t E S. If such LRft 
eXists, we can define the r derivative of fat t as 
follows: 

Definition 2: The r derivative of f in a Banat;h space: 

The r derivative of f, Rf{t)/ Rt, at t is a function on 
E - C defined in terms of the Frechet differential LRfn 
'fI sEE, where LRft is defined, by 

R{(I)/Rt(s) = exp[LRft(s)]. 

tN. Dunford and J. T. Schwartz, Linear Operators, Vol. I: 
General Theory (Interscience, New York, 1967), pp. 92ff. 

2M.A. Krasnosel'skii, Topological Methods in the Theory of 
Nonlinear Integral Equations (Pergamon, New York, 1964), 
pp. 68ff. 

Erratum: Post-Newtonian two-body and n -body problems 
with electric charge in general relativity 
[J. Math. Phys. 18, 1818 (1977)] 

B. M. Barker 

Department of Physics and Astronomy, The University of Alabama, University, Alabama 35486 

R. F. O'Connell 

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 
(Received 3 November 1977) 

in the last three lines of Eq. (60) are in error and 
should be replaced, respectively, by 

These changes do not affect any of the other results or 
conclusions of this paper. 
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